Improved Surface Reflectance from Remote Sensing Data with Sub-Pixel Topographic Information
"> Figure 1
<p>The Tibetan Plateau and the study site used to test the sub-pixel topographic correction.</p> "> Figure 2
<p>Slope values distribution over the Tibetan Plateau (<b>a</b>) and the study area (<b>b</b>), expressed as percentage per slope gradient (histogram) and cumulated percentage (red line).</p> "> Figure 3
<p>Sub-pixel and pixel level concept (the greyscale represents theoretical radiance values).</p> "> Figure 4
<p>Slope and aspect sub-pixel normality distribution maps (<b>a</b>) and statistics (<b>b</b>) within each square kilometer pixel over the Tibetan Plateau and the surroundings.</p> "> Figure 5
<p>Sub-pixel topographic correction steps.</p> "> Figure 6
<p>Correlation between anisotropic and isotropic radiance values for 5 solar zenith angle classes and 5 different BRDF.</p> "> Figure 7
<p>Shadow Binary Factor computation tests (Az = Azimuth angle, SE = Sun elevation angle, TE = Terrain elevation angle). (<b>a</b>) Identification of the pixels located on the path to the sun, (<b>b</b>) Test of shadowing effect of neighboring pixels according to the difference between terrain and sun elevation angles.</p> "> Figure 8
<p>Shadow Binary Factor evolution over day time (shadowed pixels in black and illuminated pixels in white).</p> "> Figure 9
<p>Sky-view factor parameter tests: (<b>a</b>) mean difference according to search radius value for difference search direction, (<b>b</b>) mean difference according to the number of search direction for difference search radius values, (<b>c</b>) computation time required depending on the number of search directions and search radius values.</p> "> Figure 10
<p>Difference between irradiance (W∙m<sup>−2</sup>) computed without and with sub-pixel topographic correction over the day (DOY = 115): (<b>top</b>) Difference maps ranging from −600 (blue) to 600 (red) with the X axis representing the slope gradient and the Y axis the relative aspect, both in degree. (<b>bottom</b>) Irradiance difference summary according to local standard time.</p> "> Figure 11
<p>Hourly and daily variation of differences between sub-pixel and pixel level corrections for: (<b>a</b>) Shadow binary factor, in km<sup>2</sup> of lightened area; (<b>b</b>) ratio between incidence and zenith solar angle in radian; (<b>c</b>) Total irradiance values in W∙m<sup>−2</sup>; (<b>d</b>) Total irradiance normalized values in percentage.</p> "> Figure 12
<p>(<b>a</b>) Study site DEM, (<b>b</b>) Corresponding Landsat-7 scene and (<b>c</b>) Difference between reference reflectance and pixel (<b>top</b>) or sub-pixel (<b>bottom</b>) topographically corrected reflectance for the band 8 of Landsat-7.</p> "> Figure 13
<p>(<b>a</b>) Maps of the differences between reflectance values estimated from Landsat-7 band 8 with sub-pixel topographic reflectance as compared to the uncorrected reflectance value, (<b>b</b>) graph summarizing the distribution of those differences.</p> ">
Abstract
:1. Introduction
2. Site and Data Description
2.1. Topographic Data
2.2. Tibetan Plateau
2.3. Sub-Pixel Heterogeneity
3. Topographic Correction
3.1. Topographic Correction at Pixel Level
3.2. Topographic Correction at Sub-Pixel Level
3.3. Anisotropy Test
4. Sub-Pixel Topographic Correction Parameters
4.1. Shadow Binary Factor
4.2. Sky View Factor
5. Results and Discussion
5.1. Sub-Pixel Topographically Corrected Irradiance
5.2. Sub-Pixel Topographically Corrected Reflectance Retrieved from Aggregated Landsat Data
Pixel Level Mean | Pixel Level Standard Deviation | Sub-Pixel Level Mean | Sub-Pixel Level Standard Deviation | |
---|---|---|---|---|
Band 1 | 0.007 | 0.012 | −0.001 | 0.008 |
Band 2 | 0.007 | 0.013 | −0.002 | 0.010 |
Band 3 | 0.007 | 0.015 | −0.003 | 0.010 |
Band 4 | 0.007 | 0.017 | −0.004 | 0.011 |
Band 8 | 0.007 | 0.016 | −0.003 | 0.012 |
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Song, C.; Woodcock, C.E. Monitoring forest succession with multitemporal landsat images: Factors of uncertainty. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2557–2567. [Google Scholar] [CrossRef]
- Turner, R.; Spencer, M. Atmospheric model for the correction of spacecraft data. In Proceedings of International Symposium on Remote Sensing of Environment, Ann Arbor, USA, 2–6 October 1972; pp. 895–934.
- Kaufman, Y.J. Atmospheric effect on spatial resolution of surface imagery. Appl. Opt. 1984, 23, 3400–3408. [Google Scholar] [CrossRef] [PubMed]
- Rahman, H.; Dedieu, G. SMAC: A simplified method for the atmospheric correction of satellite measurements in the solar spectrum. Int. J. Remote Sens. 1994, 15, 123–143. [Google Scholar] [CrossRef]
- Van Laake, P.E.; Sanchez-Azofeifa, G.A. Simplified atmospheric radiative transfer modelling for estimating incident PAR using MODIS atmosphere products. Remote Sens. Environ. 2004, 91, 98–113. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.C.; Sobrino, J.A.; Mattar, C.; Franch, B. Atmospheric correction of optical imagery from MODIS and reanalysis atmospheric products. Remote Sens. Environ. 2010, 114, 2195–2210. [Google Scholar] [CrossRef]
- Rochon, G.; Audirac, H.; Larrivee, A.; Beaubien, J.; Gignac, P. Radiometric Correction for Topographic Effects on Landsat Images of Forests. Available online: http://www.scopus.com/record/display.url?eid = 2-s2.0-0018624386&origin = inward&txGid = 3FA131ADAD37D0F58FD34FCFC8A0DC98.f594dyPDCy4K3aQHRor6A%3a1 (accessed on 1 September 2014).
- Kawata, Y.; Ueno, S.; Kusaka, T. Radiometric correction for atmospheric and topographic effects on Landsat MSS images. Int. J. Remote Sens. 1988, 9, 729–748. [Google Scholar] [CrossRef]
- Proy, C.; Tanre, D.; Deschamps, P.Y. Evaluation of topographic effects in remotely sensed data. Remote Sens. Environ. 1989, 30, 21–32. [Google Scholar] [CrossRef]
- Meyer, P.; Itten, K.I.; Kellenberger, T.; Sandmeier, S.; Sandmeier, R. Radiometric corrections of topographically induced effects on Landsat TM data in an alpine environment. ISPRS J. Photogramm. Remote Sens. 1993, 48, 17–28. [Google Scholar] [CrossRef]
- A robust algorithm for correcting the topographic effect of satellite image over mountainous terrain. Available online: http://www.isprs.org/proceedings/xxxi/congress/part7/105_XXXI-part7.pdf (accessed on 1 September 2014).
- Richter, R. Correction of atmospheric and topographic effects for high-spatial-resolution satellite imagery. Int. J. Remote Sens. 1997, 18, 1099–1111. [Google Scholar]
- Wen, J.; Liu, Q.; Liu, Q.; Xiao, Q.; Li, X. Parametrized BRDF for atmospheric and topographic correction and albedo estimation in Jiangxi rugged terrain, China. Int. J. Remote Sens. 2009, 30, 2875–2896. [Google Scholar] [CrossRef]
- Riano, D.; Chuvieco, E. Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1056–1061. [Google Scholar] [CrossRef]
- Richter, R.; Kellenberger, T.; Kaufmann, H. Comparison of topographic correction methods. Remote Sens. 2009, 1, 184–196. [Google Scholar] [CrossRef] [Green Version]
- Szantoi, Z.; Simonetti, D. Fast and robust topographic correction method for medium resolution satellite imagery using a stratified approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1921–1933. [Google Scholar] [CrossRef]
- Kustas, W. Evaluating the effects of subpixel heterogeneity on pixel average fluxes. Remote Sens. Environ. 2000, 74, 327–342. [Google Scholar] [CrossRef]
- Liu, W.; Hu, B.; Wang, S. Improving land surface pixel level albedo characterization using sub-pixel information retrieved from remote sensing. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; pp. 801–804.
- Wen, J.; Liu, Q.; Liu, Q.; Xiao, Q.; Li, X. Scale effect and scale correction of land-surface albedo in rugged terrain. Int. J. Remote Sens. 2009, 30, 5397–5420. [Google Scholar] [CrossRef]
- Roman, M.O.; Gatebe, C.K.; Schaaf, C.B.; Poudyal, R.; Wang, Z.; King, M.D. Variability in surface BRDF at different spatial scales (30 m–500 m) over a mixed agricultural landscape as retrieved from airborne and satellite spectral measurements. Remote Sens. Environ. 2011, 115, 2184–2203. [Google Scholar] [CrossRef]
- Li, P.; Shi, C.; Li, Z.; Muller, J.-P.; Drummond, J.; Li, X.; Li, T.; Li, Y.; Liu, J. Evaluation of ASTER GDEM using GPS benchmarks and SRTM in China. Int. J. Remote Sens. 2013, 34, 1744–1771. [Google Scholar] [CrossRef]
- Measures of Shape: Skewness and Kurtosis. Available online: http://oakroadsystems.com/math/3shape.htm (accessed on 27 December 2012).
- Sandmeier, S.; Itten, K.I. A physically-based model to correct atmospheric and illumination effects in optical satellite data of rugged terrain. IEEE Trans. Geosci. Remote Sens. 1997, 35, 708–717. [Google Scholar] [CrossRef]
- Richter, R. Correction of satellite imagery over mountainous terrain. Appl. Opt. 1998, 37, 4004–4015. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, J.D.; Dymond, J.R. Correcting satellite imagery for the variance of reflectance and illumination with topography. Int. J. Remote Sens. 2003, 24, 3503–3514. [Google Scholar] [CrossRef]
- Baraldi, A.; Gironda, M.; Simonetti, D. Operational two-stage stratified topographic correction of spaceborne multispectral imagery employing an automatic spectral-rule-based decision-tree preliminary classifier. IEEE Trans. Geosci. Remote Sens. 2010, 48, 112–146. [Google Scholar] [CrossRef]
- Parametric Bidirectional Reflectance Factor Models: Evaluation, Improvements and Applications. Available online: file:///C:/Users/MDPI/AppData/Local/Temp/CLNA16426ENC_001.pdf (accessed on 1 September 2014).
- Rahman, H.; Verstraete, M.M.; Pinty, B. Coupled surface-atmosphere reflectance (CSAR) model 1. Model description and inversion on synthetic data. J. Geophys. Res. 1993, 98, 20779–20789. [Google Scholar] [CrossRef]
- Kastendeuch, P.P. A method to estimate sky view factors from digital elevation models. Int. J. Climatol. 2013, 33, 1574–1578. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates, 2nd ed.; Routledge: London, UK, 1987. [Google Scholar]
- Dozier, J.; Frew, J. Rapid calculation of terrain parameters for radiation modeling from digital elevation data. IEEE Trans. Geosci. Remote Sens. 1990, 28, 963–969. [Google Scholar] [CrossRef]
- Zaksek, K.; Ostir, K.; Kokalj, Z. Sky-view factor as a relief visualization technique. Remote Sens. 2011, 3, 398–415. [Google Scholar] [CrossRef]
- Vanonckelen, S.; Lhermitte, S.; Rompaey, A.V. The effect of atmospheric and topographic correction methods on land cover classification accuracy. Int. J.Appl. Earth. Obs. 2013, 24, 9–21. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roupioz, L.; Nerry, F.; Jia, L.; Menenti, M. Improved Surface Reflectance from Remote Sensing Data with Sub-Pixel Topographic Information. Remote Sens. 2014, 6, 10356-10374. https://doi.org/10.3390/rs61110356
Roupioz L, Nerry F, Jia L, Menenti M. Improved Surface Reflectance from Remote Sensing Data with Sub-Pixel Topographic Information. Remote Sensing. 2014; 6(11):10356-10374. https://doi.org/10.3390/rs61110356
Chicago/Turabian StyleRoupioz, Laure, Francoise Nerry, Li Jia, and Massimo Menenti. 2014. "Improved Surface Reflectance from Remote Sensing Data with Sub-Pixel Topographic Information" Remote Sensing 6, no. 11: 10356-10374. https://doi.org/10.3390/rs61110356
APA StyleRoupioz, L., Nerry, F., Jia, L., & Menenti, M. (2014). Improved Surface Reflectance from Remote Sensing Data with Sub-Pixel Topographic Information. Remote Sensing, 6(11), 10356-10374. https://doi.org/10.3390/rs61110356