Time Evolution of Storms Producing Terrestrial Gamma-Ray Flashes Using ERA5 Reanalysis Data, GPS, Lightning and Geostationary Satellite Observations
<p>Geographical distribution of the 648 terrestrial gamma-ray flash (TGF) events with associated lightning sferics detected by the AGILE MCAL instrument between March 2015 and February 2020.</p> "> Figure 2
<p>Distributions of (<b>a</b>) longitude, (<b>b</b>) local time, (<b>c</b>) duration (t50) and (<b>d</b>) intensity for the selected TGF sample.</p> "> Figure 3
<p>Boxplot of the atmospheric parameters for TGF (brown bars) and reference values (transparent blue bars). The number of the months is along the x-axis. The 25th and 75th percentiles are shown by the boxes, while the maximum and minimum values are given by the error bars. The average is shown by a trait inside the boxes. (<b>a</b>) Convective available potential energy (CAPE) [J\Kkg]; (<b>b</b>) convection inhibition energy (CIN) [J\Kkg]; (<b>c</b>) total column water vapor (TCWV) [mm]; and (<b>d</b>) 2 m dew point temperature (T2D) [K].</p> "> Figure 4
<p>Indonesian case studies. GPS receivers (black dots) and TGFs’ (orange diamonds) positions. Green square—case study Sumatra, 16 March 2019.</p> "> Figure 5
<p>American case studies. GPS receivers (black dots) and TGFs’ (orange diamonds) positions. Green square—case study Ecuador, 15 November 2019.</p> "> Figure 6
<p>Snapshots of brightness temperature (TB) at 10.3 µm from Himawari-8 satellite from 08:30 UTC to 12:30 UTC on 16 March 2019 within a 2° × 2° area centered at the TGF location near the coast of Sumatra. The black dot indicates the TGF location, while the diamonds indicate the GPS receivers’ locations. The panel (<b>e</b>) corresponds to the instant closest to the TGF occurrence.</p> "> Figure 7
<p>GPS-precipitable water vapor (PWV) data and ERA5-PWV data referred to LNNG GPS receiver, on 16 March 2019, Sumatra TGF case. In the right panel, r is the correlation coefficient, m is the slope and q is the intercept.</p> "> Figure 8
<p>GPS-PWV data and ERA5-PWV data referred to MKMK GPS receiver, on 16 March 2019, Sumatra TGF case. In the right panel, r is the correlation coefficient, m is the slope and q is the intercept.</p> "> Figure 9
<p>Distribution of pierce points, at 7 km of altitude, referred to LNNG GPS receiver. GPS receivers (black dots), TGF position (orange diamonds) and pierce points’ positions (green crosses)—case study 16 March 2019, Sumatra TGF case.</p> "> Figure 10
<p>Daily trend of GPS-PWV (black solid line) and stroke rate (blue solid line). The vertical dashed line indicates the time of TGF occurrence—case study 16 March 2019, Sumatra TGF case.</p> "> Figure 11
<p>Snapshots of TB at 10.3 µm from GOES-R satellite from 04:40 UTC to 08:40 UTC on 15 November 2019 within a 2° × 2° area centered at the TGF location in Ecuador. The diamonds indicate the TGFs’ locations, while the dots indicate the GPS receivers’ locations. The panel (<b>e</b>) corresponds to the instant closest to the TGF occurrence.</p> "> Figure 12
<p>GPS-PWV data referred to GPS receivers, on 15 November 2019, Ecuador TGF case. The first panel shows the PWV values referred to the GPS sensors located in the vicinity of TGF coordinates; in the central panel, the comparison between GPS-PWV and ERA5-PWV related to one of GPS receivers (MZEC) is given; and in the third one, the correlation between GPS-PWV and ERA5-PWV is shown. In the right panel, r is the correlation coefficient, m is the slope and q is the intercept.</p> "> Figure 13
<p>Distribution of pierce points, at 7 km of altitude, referred to MZEC GPS receiver. GPS receivers (black dots), TGFs’ positions (orange diamonds) and pierce points’ positions (green crosses)—case study 15 November 2019, Ecuador TGF case.</p> "> Figure 14
<p>Daily trend of GPS-PWV (black solid line) and stroke rate (blue solid line). The vertical dashed line indicates the time of TGF occurrence—15 November 2019, Ecuador TGF case.</p> ">
Abstract
:1. Introduction
2. Instruments and Data
2.1. AGILE MCAL
2.2. ERA5 Reanalyses
2.3. GPS
2.4. GOES
2.5. Himawari
3. Results
3.1. ERA5
3.2. Case Studies
3.2.1. Sumatra—16 March 2019
3.2.2. Ecuador—15 November 2019
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Acronym | Explanation |
ABI | Advanced Baseline Imager |
AGILE | Astro-rivelatore Gamma ad Immagini Leggero |
AHI | Advanced Himawari Imager |
ASIM | Atmosphere-Space Interactions Monitor |
CAPE | Convective Available Potential Energy |
CGRO | Compton Gamma-Ray Observatory |
CIN | Convection Inhibition Energy |
ECMWF | European Centre for Medium-Range Weather Forecasts |
ELF ERA5 | Extremely Low Frequency Fifth Generation ECMWF Atmospheric Reanalysis |
GNSS | Global Navigation Satellite Systems |
GOES | Geostationary Operational Environmental Satellite |
GPM | Global Precipitation Measurement |
GPS | Global Positioning System |
IC | Intracloud |
IR | Infrared |
JMA | Japan Meteorological Agency |
MCAL | Mini-Calorimeter |
MSG | Meteosat Second Generation |
NARR | North American Regional Reanalysis |
NASA | National Aeronautics and Space Administration |
NOAA | National Oceanic and Atmospheric Administration |
PP | Pierce Points |
PWV | Precipitable Water Vapor |
RHESSI | Reuven Ramaty High Energy Solar Spectroscopic Imager |
SAA | South Atlantic Anomaly |
STD | Slant Total Delay |
T2D | 2m Dew Point Temperature |
TB | Brightness Temperature |
TCWV | Total Column Water Vapor |
TGF | Terrestrial Gamma-Ray Flashes |
VIS | Visible |
WWLN | World Wide Lightning Location Network |
ZHD | Zenith Hydrostatic Delay |
ZTD | Zenith Total Delay |
ZWD | Zenith Wet Delay |
References
- Fishman, G.J. Discovery of Intense Gamma-Ray FLashes of Atmospheric Origin. Science 1994, 264, 1313–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dwyer, J.R. The relativistic feedback discharge model of terrestrial gamma ray flashes. J. Geophys. Res. Space Phys. 2012, 117, 117. [Google Scholar] [CrossRef]
- Smith, D.M. Terrestrial Gamma-Ray FLashes Observed up to 20 MeV. Science 2005, 307, 1085–1088. [Google Scholar] [CrossRef] [Green Version]
- Briggs, M.S.; Fishman, G.J.; Connaughton, V.; Bhat, P.N.; Paciesas, W.S.; Preece, R.D. First Results on Terrestrial Gamma-ray Flashes from the Fermi Gamma-ray Burst Monitor. J. Geophys. Res. 2010, 115, A7. [Google Scholar] [CrossRef]
- Marisaldi, M.; Fuschino, F.; Labanti, C.; Galli, M.; Longo, F.; Del Monte, E.; Barbiellini, G.; Tavani, M.; Giuliani, A.; Moretti, E.; et al. Detection of terrestrial gamma ray flashes up to 40 MeV by the AGILE satellite. J. Geophys. Res. Space Phys. 2010, 115. [Google Scholar] [CrossRef]
- Neubert, V.T.; Østgaard, N.; Blanc, E.; Chanrion, O.; Oxborrow, C.A.; Orr, A.; Tacconi, M.; Hartnack, O.; Bhanderi, D.D.V. The ASIM Mission on the International Space Station. Space Sci. Rev. 2019, 6, 254–273. [Google Scholar] [CrossRef] [Green Version]
- Tavani, M.; Argan, A.; Paccagnella, A.; Pesoli, A.; Palma, F.; Gerardin, S.; Bagatin, M.; Trois, A.; Picozza, P.; Benvenuti, P.; et al. Possible effects on avionics induced by terrestrial gamma-ray flashes. Nat. Hazards Earth Syst. Sci. 2013, 13, 1127–1133. [Google Scholar] [CrossRef] [Green Version]
- Splitt, M.E.; Lazarus, S.M.; Barnes, D.; Dwyer, J.R.; Rassoul, H.K.; Smith, D.M. Thunderstorm Characteristics Associated with RHESSI Identified Terrestrial Gamma Ray FLashes. J. Geophys. Res. Atmos. 2010, 115, 6. [Google Scholar] [CrossRef]
- Smith, D.M. Terrestrial Gamma Ray FLashes Correlated to Storm Phase and Tropopause Height. J. Geophys. Res. Space Phys. 2010, 115, 86–88. [Google Scholar] [CrossRef] [Green Version]
- Tiberia, A.; Dietrich, S.; Porcù, F.; Marisaldi, M.; Ursi, A.; Tavani, M. Gamma ray storms: Preliminary meteorological analysis of AGILE TGFs. Rend. Lincei. Sci. Fis. Nat. 2019. [Google Scholar] [CrossRef]
- Ursi, A.; Marisaldi, M.; Dietrich, S.; Tavani, M.; Tiberia, A.; Porcù, F. Analysis of Thunderstorms Producing Terrestrial Gamma Ray Flashes with the Meteosat Second Generation. J. Geophys. Res. Atmos. 2019, 124, 12667–12682. [Google Scholar] [CrossRef]
- Chronis, T.; Briggs, M.S.; Priftis, G.; Connaughton, V.; Brundell, J.; Holzworth, R.; Heckman, S.; McBreen, S.; Fitzpatrick, G.; Stanbro, M. Characteristics of Thunderstorms That Produce Terrestrial Gamma Ray Flashes. Bull. Am. Meteorol. Soc. 2016, 97, 639–653. [Google Scholar] [CrossRef]
- Mesinger, F.; DiMego, G.; Kalnay, E.; Mitchell, K.; Shafran, P.C.; Ebisuzaki, W.; Jović, D.; Woollen, J.; Rogers, E.; Berbery, E.H.; et al. North American Regional Reanalysis. Bull. Am. Meteorol. Soc. 2006, 87, 343–360. [Google Scholar] [CrossRef] [Green Version]
- Tiberia, A.; Porcú, F.; Marisaldi, M.; Ursi, A.; Fuschino, F.; Tavani, M.; Dietrich, S. GPM-DPR Observations on TGFs Producing Storms. Press 2020. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Price, C. Lightning and Climate: The Water Vapor Connection; American Geophysical Union: Washington, DC, USA, 2001. [Google Scholar]
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res. Space Phys. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Duan, J.; Bevis, M.; Fang, P.; Bock, Y.; Chiswell, S.; Businger, S. GPS Meteorology: Direct Estimation of the Absolute Value of Precipitable Water. J. Appl. Meteorol. 1996, 35, 830–838. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Inoue, H.Y.; Inoue, T. Characteristics of the Water-Vapor Field over the Kanto District Associated with Summer Thunderstorm Activities. SOLA 2007, 3, 101–104. [Google Scholar] [CrossRef] [Green Version]
- D’Adderio, L.P.; Pazienza, L.; Mascitelli, A.; Tiberia, A.; Dietrich, S. A Combined IR-GPS Satellite Analysis for Potential Applications in Detecting and Predicting Lightning Activity. Remote Sens. 2020, 12, 1031. [Google Scholar] [CrossRef] [Green Version]
- Marisaldi, M.; Fuschino, F.; Tavani, M.; Dietrich, S.; Price, C.; Galli, M. Properties of Terrestrial Gamma Ray FLashes Detected by AGILE MCAL below 30 MeV. J. Geophys. Res. Space Phys. 2014, 119, 1337–1355. [Google Scholar] [CrossRef]
- Lindanger, A.; Marisaldi, M.; Maiorana, C.; Sarria, D.; Albrechtsen, K.; Østgaard, N.; Galli, M.; Ursi, A.; Labanti, C.; Tavani, M.; et al. The 3rd AGILE terrestrial gamma ray flash catalog. Part I: Association to lightning sferics. J. Geophys. Res. Atmos. 2020, 125, e2019JD031985. [Google Scholar] [CrossRef]
- Maiorana, C.; Marisaldi, M.; Lindanger, A.; Østgaard, N.; Ursi, A.; Sarria, D.; Galli, M.; Labanti, C.; Tavani, M.; Pittori, C.; et al. The 3rd AGILE Terrestrial Gamma-ray Flashes Catalog. Part II: Optimized Selection Criteria and Characteristics of the New Sample. J. Geophys. Res. Atmos. 2020, 125. [Google Scholar] [CrossRef]
- Tavani, M. The AGILE Mission. Astron. Astrophys. 2009, 502, 995–1013. [Google Scholar] [CrossRef]
- Labanti, C. Design and Construction of the Mini-Calorimeter of the AGILE Satellite. Nucl. Instrum. Methods Phys. Res. 2009, 598, 470–479. [Google Scholar] [CrossRef] [Green Version]
- Marisaldi, M.; Argan, A.; Ursi, A.; Gjesteland, T.; Fuschino, F.; Labanti, C.; Galli, M.; Tavani, M.; Pittori, C.; Verrecchia, F.; et al. Enhanced detection of terrestrial gamma-ray flashes by AGILE. Geophys. Res. Lett. 2015, 42, 9481–9487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutchins, M.L.; Holzworth, R.H.; Brundell, J.B.; Rodger, C.J. Relative detection efficiency of the World Wide Lightning Location Network. Radio Sci. 2012, 47. [Google Scholar] [CrossRef]
- Connaughton, V.; Briggs, M.S.; Xiong, S.; Dwyer, J.R.; Hutchins, M.L.; Grove, J.E. Radio Signals from Electron Beams in Terrestrial Gamma Ray Flashes. J. Geophys. Res. Space Phys. 2013, 118, 2313–2320. [Google Scholar] [CrossRef] [Green Version]
- Groves, P.D. Principles of GNSS, inertial, and multisensor integrated navigation systems, 2nd edition [Book review]. IEEE Aerosp. Electron. Syst. Mag. 2015, 30, 26–27. [Google Scholar] [CrossRef]
- Sansò, F. Navigazione Geodetica e Rilevamento Cinematico; Polipress: Roma, Italy, 2006. [Google Scholar]
- Sampietro, D.; Caldera, S.; Capponi, M.; Realini, E. Geoguard-An Innovative Technology Based on Low-Cost GNSS Receivers to Monitor Surface Deformations. In Proceedings of the First EAGE Workshop on Practical Reservoir Monitoring, European Association of Geoscientists & Engineers, Amsterdam, The Netherlands, 6–9 March 2017; p. cp-505. [Google Scholar]
- Mascitelli, A.; Coletta, V.; Bombi, P.; De Cinti, B.; Federico, S.; Matteucci, G.; Mazzoni, A.; Muzzini, V.G.; Petenko, I.; Dietrich, S. Tree Motion: Following the Wind-Induced Swaying of Arboreous Individual Using a GNSS Receiver. Ital. J. Agrometeorol. 2019, 3, 25–36. [Google Scholar]
- Fratarcangeli, F.; Savastano, G.; D’Achille, M.C.; Mazzoni, A.; Crespi, M.; Riguzzi, F.; DeVoti, R.; Pietrantonio, G. VADASE Reliability and Accuracy of Real-Time Displacement Estimation: Application to the Central Italy 2016 Earthquakes. Remote. Sens. 2018, 10, 1201. [Google Scholar] [CrossRef] [Green Version]
- Mascitelli, A. New Applications and Opportunities of GNSS Meteorology. Ph.D. Thesis, Sapienza Università di Roma, Roma, Italy, 2020. [Google Scholar]
- Mascitelli, A.; Federico, S.; Torcasio, R.C.; Dietrich, S. Assimilation of GPS Zenith Total Delay Estimates in RAMS NWP Model: Impact Studies over Central Italy. Adv. Space Res. 2020. [Google Scholar] [CrossRef]
- Campanelli, M.; Mascitelli, A.; Sanò, P.; Diémoz, H.; Estellés, V.; Federico, S.; Iannarelli, A.M.; Fratarcangeli, F.; Mazzoni, A.; Realini, E. Precipitable Water Vapour Content from ESR/SKYNET Sun–Sky Radiometers: Validation against GNSS/GPS and AERONET over Three Different Sites in Europe. Atmos. Meas. Tech. 2018, 11, 81. [Google Scholar] [CrossRef] [Green Version]
- Saastamoinen, J. Contributions to the Theory of Atmospheric Refraction. Bull. Géod. 1946–1975 1973, 107, 13–34. [Google Scholar] [CrossRef]
- Hopfield, H. Two-Quartic Tropospheric Refractivity Profile for Correcting Satellite Data. J. Geophys. Res. 1969, 74, 4487–4499. [Google Scholar] [CrossRef]
- Realini, E.; Sato, K.; Tsuda, T.; Manik, T. An Observation Campaign of Precipitable Water Vapor with Multiple GPS Receivers in Western Java, Indonesia. Prog. Earth Planet. Sci. 2014, 1, 17. [Google Scholar] [CrossRef] [Green Version]
- Berberan-Santos, M.N.; Bodunov, E.N.; Pogliani, L. On the Barometric Formula. Am. J. Phys. 1997, 65, 404–412. [Google Scholar] [CrossRef]
- Bai, Z.; Feng, Y. GPS Water Vapor Estimation Using Interpolated Surface Meteorological Data from Australian Automatic Weather Stations. J. Glob. Position. Syst. 2003, 2, 83–89. [Google Scholar] [CrossRef]
- Böhm, J.; Heinkelmann, R.; Schuh, H. Short Note: A Global Model of Pressure and Temperature for Geodetic Applications. J. Geod. 2007, 81, 679–683. [Google Scholar] [CrossRef]
- Hersbach, H. The ERA5 Atmospheric Reanalysis. AGUFM 2016, 2016, NG33D-01. [Google Scholar]
- Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks. J. Geophys. Res. Solid Earth 1997, 102, 5005–5017. [Google Scholar] [CrossRef] [Green Version]
- Herrera, A.M.; Suhandri, H.F.; Realini, E.; Reguzzoni, M.; de Lacy, M.C. GoGPS: Open-Source MATLAB Software. GPS Solut. 2016, 20, 595–603. [Google Scholar] [CrossRef]
- Schmit, T.J.; Griffith, P.; Gunshor, M.M.; Daniels, J.M.; Goodman, S.J.; Lebair, W.J. A Closer Look at the ABI on the GOES-R Series. Bull. Am. Meteorol. Soc. 2017, 98, 681–698. [Google Scholar] [CrossRef]
- Schmit, T.J.; Gunshor, M.M.; Menzel, W.P.; Gurka, J.J.; Li, J.; Bachmeier, A.S. Introducing the next-generation advanced baseline imager on GOES-R. Bull. Am. Meteorol. Soc. 2005, 86, 1079–1096. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H. An Introduction to Himawari 8/9 Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. 2016, 94, 151–183. [Google Scholar] [CrossRef] [Green Version]
- Iwabuchi, H.; Putri, N.S.; Saito, M.; Tokoro, Y.; Sekiguchi, M.; Yang, P.; Baum, B.A. Cloud Property Retrieval from Multiband Infrared Measurements by Himawari-8. J. Meteorol. Soc. Jpn. 2018, 27–42. [Google Scholar] [CrossRef] [Green Version]
- Berrisford, P.; Kållberg, P.; Kobayashi, S.; Dee, D.; Uppala, S.; Simmons, A.J.; Poli, P.; Sato, H. Atmospheric conservation properties in ERA-Interim. Q. J. R. Meteorol. Soc. 2011, 137, 1381–1399. [Google Scholar] [CrossRef]
TGF Date-Time | TGF Coordinates | GPS Marker | GPS Coordinates | Distance [km] | r GPS-ERA5 |
---|---|---|---|---|---|
2015.04.13 12:06:36.42 | φ = 0.010 λ = 99.540 | ABGS | φ = 0.221 λ = 99.388 H = 251.0 | 28.93 | 0.46 |
2015.05.23 21:12:11.55 | φ = 0.160 | ABGS | φ = 0.221 | 42.61 | −0.05 |
λ = 99.430 | λ = 99.388 H = 251.0 | ||||
2015.06.06 13:12:23.09 | φ = 5.310 | MLKN | φ = 5.353 | 42.72 | 0.89 |
λ = 102.660 | λ = 102.277 | ||||
H = 26.9 | |||||
2018.02.18 21:26:5.48 | φ = 1.500 λ = 98.770 | BTET | φ = 1.282 λ = 98.644 H = 38.0 φ = 1.202 λ = 98.940 H = 13.1 φ = 1.326 λ = 99.089 H = 45.5 | 28.04 | 0.72 −0.81 0.02 |
SOBY | 38.19 | ||||
MSAI | 40.42 | ||||
2018.05.04 06:33:43.59 | φ = 1.515 λ = 78.966 | SNLR | φ = 1.293 λ = 78.847 H = 6.2 φ = 1.822 | 28.00 | 0.91 |
TUMA | 43.06 | 0.87 | |||
λ = 78.730 H = 13.2 |
TGF Date-Time | TGF Coordinates | GPS Marker | GPS Coordinates | Distance [km] | r GPS-ERA5 |
---|---|---|---|---|---|
2019.03.1 610:35:38.43 | φ = −2.440 λ = 101.410 | LNNG | φ = −2.285 λ = 101.156 H = 42.6 φ = −2.543 λ = 101.091 H = 6.3 | 33.00 | 0.87 |
MKMK | 37.19 | 0.85 | |||
2019.09.05 08:14:32.09 | φ = 8.850 | ACP6 | φ = 9.238 | 43.20 | 0.42 |
λ = −79.410 | λ = −79.409 H = 930.6 | ||||
2019.11.15 06:40:47.36 | φ = −1.750 λ = −78.240 | MZEC | φ = −1.493 λ = −78.483 | 39.31 | −0.51 |
BIEC | H = 2911.8 φ = −1.447 λ = −78.501 H = 2354.7 | 44.51 | −0.59 | ||
2019.11.15 06:41:58.16 | φ = −1.680 λ = −78.380 | MZEC | φ = −1.493 λ = −78.483 H = 2911.8 φ = −1.447 λ = −78.501 H = 2354.7 φ = −1.651 λ = −78.651 H = 2789.9 φ = −1.364 λ = −78.412 H = 2560.3 | 23.72 | −0.51 |
BIEC | 29.24 | −0.59 −0.78 −0.23 | |||
RIOP | 30.31 | ||||
VZCY | 35.34 | ||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiberia, A.; Mascitelli, A.; D’Adderio, L.P.; Federico, S.; Marisaldi, M.; Porcù, F.; Realini, E.; Gatti, A.; Ursi, A.; Fuschino, F.; et al. Time Evolution of Storms Producing Terrestrial Gamma-Ray Flashes Using ERA5 Reanalysis Data, GPS, Lightning and Geostationary Satellite Observations. Remote Sens. 2021, 13, 784. https://doi.org/10.3390/rs13040784
Tiberia A, Mascitelli A, D’Adderio LP, Federico S, Marisaldi M, Porcù F, Realini E, Gatti A, Ursi A, Fuschino F, et al. Time Evolution of Storms Producing Terrestrial Gamma-Ray Flashes Using ERA5 Reanalysis Data, GPS, Lightning and Geostationary Satellite Observations. Remote Sensing. 2021; 13(4):784. https://doi.org/10.3390/rs13040784
Chicago/Turabian StyleTiberia, Alessandra, Alessandra Mascitelli, Leo Pio D’Adderio, Stefano Federico, Martino Marisaldi, Federico Porcù, Eugenio Realini, Andrea Gatti, Alessandro Ursi, Fabio Fuschino, and et al. 2021. "Time Evolution of Storms Producing Terrestrial Gamma-Ray Flashes Using ERA5 Reanalysis Data, GPS, Lightning and Geostationary Satellite Observations" Remote Sensing 13, no. 4: 784. https://doi.org/10.3390/rs13040784