Evaluation of TRMM/GPM Blended Daily Products over Brazil
<p>Spatial distribution of precipitation climatology (1998–2016) based on MERGE data [<a href="#B34-remotesensing-10-00882" class="html-bibr">34</a>] for the five identified regions, for each grid box of approximately 2 degrees.</p> "> Figure 2
<p>Spatial distribution of grid points which present rain gauge data frequency of at least 50% in the studied period, and in regularly spaced grids of 0.25°.</p> "> Figure 3
<p>Temporal evolution of daily averages of the precipitation estimate products IMERG-F (blue), TMPA-V7 (red) and brightness temperature (black) from GOES-13 (Geostationary Operational Environmental Satellite) for the R1 (<b>a</b>), R2 (<b>b</b>), R3 (<b>c</b>), R4 (<b>d</b>), R5 (<b>e</b>) regions, and whole Brazil (<b>f</b>).</p> "> Figure 3 Cont.
<p>Temporal evolution of daily averages of the precipitation estimate products IMERG-F (blue), TMPA-V7 (red) and brightness temperature (black) from GOES-13 (Geostationary Operational Environmental Satellite) for the R1 (<b>a</b>), R2 (<b>b</b>), R3 (<b>c</b>), R4 (<b>d</b>), R5 (<b>e</b>) regions, and whole Brazil (<b>f</b>).</p> "> Figure 4
<p>Equitable Threat Score (ETS), considering the whole studied period, for regions R1 (<b>a</b>), R2 (<b>b</b>), R3 (<b>c</b>), R4 (<b>d</b>), R5 (<b>e</b>) and Brazil (<b>f</b>).</p> "> Figure 4 Cont.
<p>Equitable Threat Score (ETS), considering the whole studied period, for regions R1 (<b>a</b>), R2 (<b>b</b>), R3 (<b>c</b>), R4 (<b>d</b>), R5 (<b>e</b>) and Brazil (<b>f</b>).</p> "> Figure 5
<p>Performance diagram [<a href="#B47-remotesensing-10-00882" class="html-bibr">47</a>] summarizing the SR, POD, BIAS, and CSI for regions R1 (<b>a</b>), R2 (<b>b</b>), R3 (<b>c</b>), R4 (<b>d</b>), R5 (<b>e</b>) and BRAZIL (<b>f</b>). Dashed lines represent BIAS scores with labels on the outward extension of the line, while labelled solid contours are CSI. Circles represent the eight precipitation thresholds. The smallest circle represents the rain/no rain threshold (0.5 mm), and the largest circle represents the threshold above 50 mm.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Interest and Characterization of the Precipitation Regimes
2.2. Observed Data
2.3. TMPA Products
2.4. IMERG Product
2.5. GSMaP Product
2.6. Statistical and Categorical Indexes
2.7. Standardization of Data
- (a)
- Using the position (latitude and longitude) of each station, satellite-based precipitation retrievals are extracted from TMPA-V7, IMERG-F and GSMaP-G products using the nearest neighbor approach (the closest center of the correspondent grid point is selected). This approach is the same as that used in [11] to retain the original retrieved value of each algorithm. In this case, the maximum distance between the center of the grid point and the gauge is approximately seven kilometers for IMERG-F and GSMaP-G, and eighteen kilometers for TMPA-V7 (below the nominal spatial resolution of the respective products);
- (b)
- A table is built with the latitude and longitude of the station, observed precipitation and estimated precipitation for the three products following the procedure described in the paragraph above;
- (c)
- From this table, and using the same regularly spaced grid as that of the TMPA-V7 (0.25° × 0.25°), three grids with the averages of existing precipitations inside each grid point are calculated for IMERG-F, GSMaP-G and OBS. In the case of the TMPA-V7, the original value is preserved. These values represent the average precipitation at each grid point. Grid points with no existing gauges are flagged as invalid. Additionally, the average of the brightness temperature of GOES-13 channel 4 (10.8 microns) is also performed for those grid points with at least one gauge station. This variable, which represents the temperature of the top of the cloud, is used as a proxy to identify, in a very general way, the mean depth of the clouds;
- (d)
- In order to perform a statistically robust study, only grid points with 50% or more of rain gauge data frequency, using the entire time series, were considered. The spatial distribution of points which satisfy this criterion is shown in Figure 2. Table 5 shows the amount of valid grid points per region.
3. Results
3.1. Temporal Evolution
3.2. Quantitative Precipitation Forecast (QPF)
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kelley, O.A. Where the Least Rainfall Occurs in the Sahara Desert, the TRMM Radar Reveals a Different Pattern of Rainfall Each Season. J. Clim. 2014, 27, 6919–6939. [Google Scholar] [CrossRef]
- Knox, R.; Bisht, G.; Wang, J.; Bras, R. Precipitation Variability over the Forest-to-Nonforest Transition in Southwestern Amazonia. J. Clim. 2011, 24, 2368–2377. [Google Scholar] [CrossRef]
- Short, D.A.; Nakamura, K. TRMM Radar Observations of Shallow Precipitation over the Tropical Oceans. J. Clim. 2000, 13, 4107–4124. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Sorooshian, S.; Hsu, K.-L.; Gao, X.; Gupta, H.V.; Imam, B.; Braithwaite, D. Evaluation of PERSIANN System Satellite–Based Estimates of Tropical Rainfall. Bull. Am. Meteorol. Soc. 2000, 81, 2035–2046. [Google Scholar] [CrossRef] [Green Version]
- Aonashi, K.; Awaka, J.; Hirose, M.; Kozu, T.; Kubota, T.; Liu, G.; Shige, S.; KIDA, S.; Seto, S.; Takahashi, N.; Takayabu, Y.N. GSMaP Passive Microwave Precipitation Retrieval Algorithm: Algorithm Description and Validation. J. Meteorol. Soc. Jpn. 2009, 87A, 119–136. [Google Scholar] [CrossRef]
- Barrett, E.C. The estimation of monthly rainfall from satellite. Mon. Weather Rev. 1970, 98, 322–327. [Google Scholar] [CrossRef]
- Follansbee, W.A. Estimation of Average Daily Rainfall from Satellite Cloud Photographs. 1973. Available online: https://trove.nla.gov.au/work/17767436?selectedversion=NBD6944042 (accessed on 21 August 2017).
- Kummerow, C.; Barnes, W.; Kozum, T.; Shiue, J.; Simpson, J. The Tropical Rainfall Measuring Mission (TRMM) Sensor Package. J. Atmos. Ocean. Technol. 1998, 15, 809–817. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Nelkin, E.J. The TRMM Multi-Satellite Precipitation Analysis (TMPA). In Satellite Rainfall Applications for Surface Hydrology; Springer: Dordrecht, The Netherlands, 2010; pp. 3–22. [Google Scholar]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Xie, P.; Yoo, S.-H. NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). Algorithm Theor. Basis Doc. Version 2015, 4, 30. [Google Scholar]
- Schneider, U.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Ziese, M.; Rudolf, B. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol. 2014, 115, 15–40. [Google Scholar] [CrossRef]
- Hamada, A.; Murayama, Y.; Takayabu, Y.N. Regional Characteristics of Extreme Rainfall Extracted from TRMM PR Measurements. J. Clim. 2014, 27, 8151–8169. [Google Scholar] [CrossRef]
- Agel, L.; Barlow, M.; Qian, J.-H.; Colby, F.; Douglas, E.; Eichler, T. Climatology of Daily Precipitation and Extreme Precipitation Events in the Northeast United States. J. Hydrometeorol. 2015, 16, 2537–2557. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, S.; Cao, Q.; Hong, Y.; Wu, B.; Huang, M.; Qiao, L.; Zhang, Z.; Li, Z.; Li, W.; et al. Evaluation of Version-7 TRMM Multi-Satellite Precipitation Analysis Product during the Beijing Extreme Heavy Rainfall Event of 21 July 2012. Water 2013, 6, 32–44. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Hong, Y.; Wang, J.; Adler, R.F.; Policelli, F.S.; Habib, S.; Irwn, D.; Korme, T.; Okello, L. Evaluation of the real-time TRMM-based multi-satellite precipitation analysis for an operational flood prediction system in Nzoia Basin, Lake Victoria, Africa. Nat. Hazards 2009, 50, 109–123. [Google Scholar] [CrossRef]
- Dinis, P.A.; Mantas, V.; Andrade, P.S.; Tonecas, J.; Kapula, E.; Pereira, A.; Carvalho, F.S. Contribution of TRMM rainfall data to the study of natural systems and risk assessment. Cases of application in SW Angola. Estudos Quaternário 2013, 9, 33–43. [Google Scholar]
- Siddique-E-Akbor, A.H.M.; Hossain, F.; Sikder, S.; Shum, C.K.; Tseng, S.; Yi, Y.; Turk, F.J.; Limaye, A. Satellite Precipitation Data–Driven Hydrological Modeling for Water Resources Management in the Ganges, Brahmaputra, and Meghna Basins. Earth Interact. 2014, 18, 1–25. [Google Scholar] [CrossRef]
- Rozante, J.R.; Cavalcanti, I.F.A. Regional Eta model experiments: SALLJEX and MCS development. J. Geophys. Res. 2008, 113, D17106. [Google Scholar] [CrossRef]
- Da Rocha, R.P.; Morales, C.A.; Cuadra, S.V.; Ambrizzi, T. Precipitation diurnal cycle and summer climatology assessment over South America: An evaluation of Regional Climate Model version 3 simulations. J. Geophys. Res. 2009, 114, D10108. [Google Scholar] [CrossRef]
- Nicholson, S.E.; Some, B.; McCollum, J.; Nelkin, E.; Klotter, D.; Berte, Y.; Diallo, B.M.; Gaye, I.; Kpabeba, G.; Ndiaye, O.; et al. Validation of TRMM and Other Rainfall Estimates with a High-Density Gauge Dataset for West Africa. Part II: Validation of TRMM Rainfall Products. J. Appl. Meteorol. 2003, 42, 1355–1368. [Google Scholar] [CrossRef]
- Zou, C.-Z.; Zheng, W. Simulation of diurnal patterns of summer precipitation in the North American monsoon: An assessment using TRMM. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Wolff, D.B.; Marks, D.A.; Amitai, E.; Silberstein, D.S.; Fisher, B.L.; Tokay, A.; Wang, J.; Pippitt, J.L. Ground Validation for the Tropical Rainfall Measuring Mission (TRMM). J. Atmos. Ocean. Technol. 2005, 22, 365–380. [Google Scholar] [CrossRef]
- Dinku, T.; Ceccato, P.; Grover-Kopec, E.; Lemma, M.; Connor, S.J.; Ropelewski, C.F. Validation of satellite rainfall products over East Africa’s complex topography. Int. J. Remote Sens. 2007, 28, 1503–1526. [Google Scholar] [CrossRef]
- Su, F.; Hong, Y.; Lettenmaier, D.P. Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and Its Utility in Hydrologic Prediction in the La Plata Basin. J. Hydrometeorol. 2008, 9, 622–640. [Google Scholar] [CrossRef]
- Franchito, S.H.; Rao, V.B.; Vasques, A.C.; Santo, C.M.E.; Conforte, J.C. Validation of TRMM precipitation radar monthly rainfall estimates over Brazil. J. Geophys. Res. 2009, 114, D02105. [Google Scholar] [CrossRef]
- Palharini, A.; Santos, R.; Vila, D.A. Climatological Behavior of Precipitating Clouds in the Northeast Region of Brazil. Adv. Meteorol. 2017, 2017, 12. [Google Scholar] [CrossRef]
- Laing, A.G.; Michael, F.J. The global population of mesoscale convective complexes. Q. J. R. Meteorol. Soc. 1997, 123, 389–405. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef] [Green Version]
- Hsu, K.; Gao, X.; Sorooshian, S.; Gupta, H.V. recipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks. J. Appl. Meteorol. 1997, 36, 1176–1190. [Google Scholar] [CrossRef]
- Kubota, T.; Shige, S.; Hashizume, H.; Aonashi, K.; Takahashi, N.; Seto, S.; Hirose, M.; Takayabu, Y.N.; Ushio, T.; Nakagawa, K. Global Precipitation Map Using Satellite-Borne Microwave Radiometers by the GSMaP Project: Production and Validation. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2259–2275. [Google Scholar] [CrossRef]
- Mega, T.; Ushio, T.; Kubota, T.; Kachi, M.; Aonashi, K.; Shige, S. Gauge Adjusted Global Satellite Mapping of Precipitation (GSMaP_Gauge). In XXXIth URSI General Assembly and Scientific Symposium (URSI GASS); IEEE: Beijing, China, 2014; pp. 1–4. [Google Scholar]
- Rozante, J.R.; Moreira, D.S.; de Goncalves, L.G.G.; Vila, D.A. Combining TRMM and Surface Observations of Precipitation: Technique and Validation over South America. Weather Forecast. 2010, 25, 885–894. [Google Scholar] [CrossRef]
- Reboita, M.S.; Gan, M.A.; da Rocha, R.P.; Ambrizzi, T. Regimes de precipitação na América do Sul: Uma revisão bibliográfica. Rev. Bras. Meteorol. 2010, 25, 185–204. [Google Scholar] [CrossRef]
- Velasco, I.; Fritsch, J.M. Mesoscale convective complexes in the Americas. J. Geophys. Res. 1987, 92, 9591. [Google Scholar] [CrossRef]
- Quadro, M.F.L.; de Dias, M.A.F.; Herdies, D.L.; Gonçalves, L.G.G. de Análise climatológica da precipitação e do transporte de umidade na região da ZCAS através da nova geração de reanálises. Rev. Bras. Meteorol. 2012, 27, 152–162. [Google Scholar] [CrossRef]
- Vera, C.; Baez, J.; Douglas, M.; Emmanuel, C.B.; Marengo, J.; Meitin, J.; Nicolini, M.; Nogues-Paegle, J.; Paegle, J.; Penalba, O.; et al. The South American Low-Level Jet Experiment. Bull. Am. Meteorol. Soc. 2006, 87, 63–78. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Lau, K.-M. Does a Monsoon Climate Exist over South America? J. Clim. 1998, 11, 1020–1040. [Google Scholar] [CrossRef]
- Kousky, V.E. Alonso Gan M Upper tropospheric cyclonic vortices in the tropical South Atlantic. Tellus 1981, 33, 538–551. [Google Scholar] [CrossRef]
- Kousky, V.E. Pentad outgoing longwave radiation climatology for the South American sector. Rev. Bras. Meteorol. 1988, 3, 217–231. [Google Scholar]
- Cohen, J.C.P.; Silva Dias, M.A.F.; Nobre, C.A. Environmental Conditions Associated with Amazonian Squall Lines: A Case Study. Mon. Weather Rev. 1995, 123, 3163–3174. [Google Scholar] [CrossRef] [Green Version]
- Shige, S.; Yamamoto, T.; Tsukiyama, T.; Kida, S.; Ashiwake, H.; Kubota, T.; Seto, S.; Aonashi, K.; Okamoto, K. The GSMaP Precipitation Retrieval Algorithm for Microwave Sounders—Part I: Over-Ocean Algorithm. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3084–3097. [Google Scholar] [CrossRef]
- Kachi, M.; Kubota, T.; Ushio, T.; Shige, S.; Kida, S.; Aonashi, K.; Okamoto, K.; Oki, R. Development and Utilization of “JAXA Global Rainfall Watch” System based on Combined Microwave and Infrared Radiometers Aboard Satellites. IEEJ Trans. Fundam. Mater. 2011, 131, 729–737. [Google Scholar] [CrossRef]
- Ushio, T.; Sasashige, K.; Kubote, T.; Shige, S.; Okamoto, K.; Aonashi, K.; Inoue, T.; Tankahashi, N.; Iguchi, T.; Kachi, M. A Kalman Filter Approach to the Global Satellite Mapping of Precipitation (GSMaP) from Combined Passive Microwave and Infrared Radiometric Data. J. Meteorol. Soc. Jpn. 2009, 87A, 137–151. [Google Scholar] [CrossRef]
- Wilks, D. Statistical Methods in the Atmospheric Sciences, 3rd ed.; Academic Press: Cambridge, MA, USA, 2011; p. 676. [Google Scholar]
- Roebber, P.J. Visualizing Multiple Measures of Forecast Quality. Weather Forecast. 2009, 24, 601–608. [Google Scholar] [CrossRef]
- Ning, S.; Song, F.; Udmale, P.; Jin, J.; Thapa, B.R.; Ishidaira, H. Error Analysis and Evaluation of the Latest GSMap and IMERG Precipitation Products over Eastern China. Adv. Meteorol. 2017, 2017, 1–16. [Google Scholar] [CrossRef] [Green Version]
Statistical Index | Equation | Optimal Value |
---|---|---|
Root Mean Square Error | 0 | |
Mean Error | 0 |
Gauge Rain | Gauge No-Rain | Total | |
---|---|---|---|
Satellite rain | a = Hit | b = false alarm | E = (a + b) |
Satellite no-rain | c = miss | d = correct negative | (c + d) |
Total | O = (a + c) | (b + d) | (a + b + c + d) |
Categorical Index | Equation | Optimal Value |
---|---|---|
Adjusted Equitable Threat Score (Mesinger, 2008) | Where, | 1 |
Probability of detection | 1 | |
False alarm ratio | 0 | |
BIAS | 1 | |
Critical success index | 1 |
Rain Intensity Classification | Precipitation Thresholds (mm) |
---|---|
Rain/no-rain | 0.5 |
Light | 2–5 |
Moderate | 10–20 |
Heavy | 35–50 |
Region | N. of Grid Points |
---|---|
R1 | 271 |
R2 | 892 |
R3 | 270 |
R4 | 222 |
R5 | 124 |
BRAZIL | 1779 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rozante, J.R.; Vila, D.A.; Barboza Chiquetto, J.; Fernandes, A.D.A.; Souza Alvim, D. Evaluation of TRMM/GPM Blended Daily Products over Brazil. Remote Sens. 2018, 10, 882. https://doi.org/10.3390/rs10060882
Rozante JR, Vila DA, Barboza Chiquetto J, Fernandes ADA, Souza Alvim D. Evaluation of TRMM/GPM Blended Daily Products over Brazil. Remote Sensing. 2018; 10(6):882. https://doi.org/10.3390/rs10060882
Chicago/Turabian StyleRozante, José Roberto, Daniel A. Vila, Júlio Barboza Chiquetto, Alex De A. Fernandes, and Débora Souza Alvim. 2018. "Evaluation of TRMM/GPM Blended Daily Products over Brazil" Remote Sensing 10, no. 6: 882. https://doi.org/10.3390/rs10060882
APA StyleRozante, J. R., Vila, D. A., Barboza Chiquetto, J., Fernandes, A. D. A., & Souza Alvim, D. (2018). Evaluation of TRMM/GPM Blended Daily Products over Brazil. Remote Sensing, 10(6), 882. https://doi.org/10.3390/rs10060882