A New Satellite-Based Retrieval of Low-Cloud Liquid-Water Path Using Machine Learning and Meteosat SEVIRI Data
"> Figure 1
<p>Scatter plot for homogeneous (<b>upper</b>) and inhomogeneous (<b>lower</b>) situations with no feature selection (<b>left</b> column), with feature selection (<b>middle</b> column), and CM SAF LWP (<b>right</b> column) for Leipzig. Independent test data shown in this figure are a random subset of 33% of the full dataset, and date from 11 August 2011 to 30 November 2015. The red solid line is a line of best fit to the scatter plot, and the black dotted line is an identity line. The color indicates the point density from blue (low) to yellow (high), estimated by a Gaussian kernel density estimation. Note that the axes for the CM SAF LWP plots have different sizes to include all data points.</p> "> Figure 2
<p>Median and interquartile range of biases between CloudNet LWP binned by LWP predicted by the GBRT model (red) and CM SAF (black) for: (<b>a</b>) homogeneous cloud fields; and (<b>b</b>) inhomogeneous ones without feature selection for Leipzig (<b>left</b>), Lindenberg (<b>middle</b>), and Juelich (<b>right</b>), respectively. Numbers at the bottom of the panels state number of observations.</p> "> Figure 3
<p>Bias calculated for bins of 20 g m<sup>−2</sup> from instantaneous LWP retrieved by the GBRT model (<b>top</b>) and CLAAS-2 (<b>bottom</b>) as a function of CloudNet LWP for Leipzig (<b>left</b>), Lindenberg (<b>middle</b>), and Juelich (<b>right</b>) for homogeneous cloud fields without feature selection. The error bars are for one standard deviation of samples in each bin. The dotted line indicates the number of samples.</p> "> Figure 4
<p>Bias calculated for bins of 20 g m<sup>−2</sup> from daily medians of LWP retrieved by the GBRT model as a function of CloudNet LWP for Leipzig (<b>left</b>), Lindenberg (<b>middle</b>), and Juelich (<b>right</b>) for homogeneous cloud fields without feature selection. The error bars are for one standard deviation of samples in each bin. The dotted line indicates the number of samples.</p> "> Figure 5
<p>Angle-dependent error plots as a function of solar zenith angle (<b>top</b>) and azimuth angle (<b>bottom</b>) for test data for homogeneous without feature selection in Leipzig. The black lines are means of the bias between LWP retrieved by the GBRT model and CloudNet LWP with one standard deviation as the red vertical line. The black dashed lines indicate the number of samples.</p> "> Figure 6
<p>Time-dependent error plots as a function of hours (<b>top</b>) and months (<b>bottom</b>) for test data for homogeneous without feature selection in Leipzig. The black lines are means of the bias between LWP retrieved by the GBRT model and CloudNet LWP with one standard deviation as the red vertical line. The black dashed lines indicate the number of samples.</p> "> Figure 7
<p>Feature importance (<b>top</b>) and partial dependence plot (<b>bottom</b>) for training data for homogeneous cloud fields without feature selection. The <span class="html-italic">y</span>-axis of the partial dependence plot shows the changes of LWP (in units of LWP) relative to the mean prediction (centered around zero) for each grid value on the <span class="html-italic">x</span>-axis.</p> "> Figure 8
<p>Feature importance (<b>left</b>) and partial dependence plot (<b>right</b>) for training data for homogeneous cloud fields with feature selection. The <span class="html-italic">y</span>-axis of the partial dependence plot shows the changes of LWP (in units of LWP) relative to the mean prediction (centered around zero) for each grid value on the <span class="html-italic">x</span>-axis.</p> "> Figure 9
<p>Box plot (<b>left</b>) of LWP based on SZA and AZA and SHAP interaction values (<b>right</b>) for between LWP and the satellite viewing geometry in Leipzig.</p> "> Figure A1
<p>Droplet effective radius derived from CM SAF CLAAS-2 for test data for the study sites.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Meteosat-9 SEVIRI Data
2.2. CloudNet Data
2.3. CLAAS-2 Data
2.4. Paring of SEVIRI, CLAAS-2 and CloudNet Data
2.5. Gradient Boosting Regression Trees
3. Results and Discussion
3.1. Statistics for Model Performance
3.2. Bias Analysis for LWP Retrieval
3.3. Relationship between LWP and Input Variables
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Situations | Sites | Linear Relation of LWPGBRT − LWPgr | |||
---|---|---|---|---|---|
n | R2 (%) | Slope | Intercept (g m−2) | ||
Homogeneous | Leipzig | 450 | 47.3 | 0.47 | 38.51 |
Lindenberg | 1207 | 34.1 | 0.33 | 36.76 | |
Juelich | 412 | 46.4 | 0.46 | 43.67 | |
Homogeneous after feature selection | Leipzig | 450 | 39.0 | 0.43 | 42.31 |
Lindenberg | 1207 | 20.3 | 0.20 | 44.26 | |
Juelich | 412 | 37.6 | 0.32 | 54.46 | |
Inhomogeneous | Leipzig | 528 | 43.0 | 0.44 | 36.61 |
Lindenberg | 1415 | 31.3 | 0.31 | 34.64 | |
Juelich | 482 | 35.9 | 0.38 | 44.78 | |
Inhomogeneous after feature selection | Leipzig | 528 | 40.0 | 0.39 | 40.60 |
Lindenberg | 1415 | 20.0 | 0.17 | 42.19 | |
Juelich | 482 | 28.7 | 0.30 | 49.88 | |
Linear Relation of LWPCMSAF − LWPgr | |||||
Homogeneous | Leipzig | 450 | 26.0 | 1.00 | 24.03 |
Lindenberg | 1202 | 12.9 | 0.91 | 51.57 | |
Juelich | 412 | 18.6 | 0.95 | 18.28 | |
Inhomogeneous | Leipzig | 528 | 25.7 | 0.95 | 35.99 |
Lindenberg | 1411 | 12.1 | 0.90 | 57.97 | |
Juelich | 482 | 9.5 | 0.90 | 28.33 |
Situations | Sites | Difference between LWPGBRT and LWPgr | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean (GBRT) | Mean (gr) | Median (GBRT) | Median (gr) | Accuracy (PB%) | Q50 (Prec) | Q66 | Q95 | ||
Homogeneous | Leipzig | 73.38 | 74.42 | 72.98 | 66.87 | 6.11 (9.14) | 40.01 | 59.49 | 131.44 |
Lindenberg | 57.80 | 64.27 | 56.23 | 54.63 | 1.60 (2.93) | 46.46 | 65.25 | 144.39 | |
Juelich | 81.89 | 83.34 | 85.32 | 78.89 | 6.43 (8.15) | 42.40 | 66.38 | 130.20 | |
Homogeneous after feature selection | Leipzig | 74.40 | 74.42 | 72.75 | 66.87 | 5.88 (8.79) | 39.37 | 60.25 | 141.88 |
Lindenberg | 56.81 | 64.27 | 54.41 | 54.63 | −0.22 (0.40) | 58.77 | 77.65 | 146.24 | |
Juelich | 81.25 | 83.34 | 86.12 | 78.89 | 7.23 (9.16) | 53.69 | 76.55 | 138.57 | |
Inhomogeneous | Leipzig | 67.53 | 69.92 | 67.24 | 60.47 | 6.77 (11.20) | 40.98 | 59.13 | 149.26 |
Lindenberg | 54.10 | 62.03 | 52.16 | 51.73 | 0.43 (0.83) | 47.96 | 71.84 | 151.74 | |
Juelich | 76.10 | 81.76 | 76.96 | 77.30 | −0.33 (0.43) | 50.20 | 73.37 | 148.12 | |
Inhomogeneous after feature selection | Leipzig | 67.53 | 69.92 | 68.23 | 60.47 | 7.76 (12.83) | 45.89 | 66.72 | 152.95 |
Lindenberg | 52.88 | 62.03 | 51.12 | 51.73 | −0.60 (1.17) | 58.95 | 83.36 | 152.11 | |
Juelich | 74.49 | 81.76 | 76.07 | 77.30 | −1.23 (1.59) | 57.06 | 79.42 | 153.06 | |
Difference between LWPCMSAF and LWPgr | |||||||||
Homogeneous | Leipzig | 98.27 | 74.42 | 80.60 | 66.87 | 13.73 (20.53) | 58.40 | 85.55 | 273.97 |
Lindenberg | 110.12 | 64.27 | 77.50 | 54.63 | 22.87 (41.86) | 92.46 | 140.74 | 368.75 | |
Juelich | 97.35 | 83.34 | 66.20 | 78.89 | −12.69 (16.09) | 63.28 | 108.42 | 359.40 | |
Inhomogeneous | Leipzig | 102.64 | 69.92 | 83.30 | 60.47 | 22.83 (37.76) | 57.89 | 89.87 | 276.40 |
Lindenberg | 113.68 | 62.03 | 81.80 | 51.73 | 30.07 (58.14) | 96.34 | 141.95 | 403.75 | |
Juelich | 101.87 | 81.76 | 69.70 | 77.30 | −7.60 (9.83) | 69.93 | 114.32 | 345.44 |
References
- Boucher, O.; Randall, D.; Artaxo, P.; Bretherton, C.; Feingold, G.; Forster, P.; Kerminen, V.M.; Kondo, Y.; Liao, H.; Lohmann, U.; et al. Clouds and aerosols. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 571–657. [Google Scholar]
- Greuell, W.; Roebeling, R. Toward a standard procedure for validation of satellite-derived cloud liquid water path: A study with SEVIRI data. J. Appl. Meteorol. Climatol. 2009, 48, 1575–1590. [Google Scholar] [CrossRef] [Green Version]
- Hollmann, R.; Merchant, C.J.; Saunders, R.; Downy, C.; Buchwitz, M.; Cazenave, A.; Chuvieco, E.; Defourny, P.; de Leeuw, G.; Forsberg, R.; et al. The ESA climate change initiative: Satellite data records for essential climate variables. Bull. Am. Meteorol. Soc. 2013, 94, 1541–1552. [Google Scholar] [CrossRef] [Green Version]
- Roebeling, R.; Feijt, A.; Stammes, P. Cloud property retrievals for climate monitoring: Implications of differences between Spinning Enhanced Visible and Infrared Imager (SEVIRI) on METEOSAT-8 and Advanced Very High Resolution Radiometer (AVHRR) on NOAA-17. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- O’Dell, C.W.; Wentz, F.J.; Bennartz, R. Cloud liquid water path from satellite-based passive microwave observations: A new climatology over the global oceans. J. Clim. 2008, 21, 1721–1739. [Google Scholar] [CrossRef]
- Seethala, C.; Horváth, Á. Global assessment of AMSR-E and MODIS cloud liquid water path retrievals in warm oceanic clouds. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Roebeling, R.; Deneke, H.; Feijt, A. Validation of cloud liquid water path retrievals from SEVIRI using one year of CloudNET observations. J. Appl. Meteorol. Climatol. 2008, 47, 206–222. [Google Scholar] [CrossRef]
- Kniffka, A.; Stengel, M.; Lockhoff, M.; Bennartz, R.; Hollmann, R. Characteristics of cloud liquid water path from SEVIRI onboard the Meteosat Second Generation 2 satellite for several cloud types. Atmos. Meas. Tech. 2014, 7, 887–905. [Google Scholar] [CrossRef] [Green Version]
- Kostsov, V.S.; Kniffka, A.; Stengel, M.; Ionov, D.V. Cross-comparison of cloud liquid water path derived from observations by two space-borne and one ground-based instrument in northern Europe. Atmos. Meas. Tech. 2019, 12, 5927–5946. [Google Scholar] [CrossRef]
- Schutgens, N.; Roebeling, R. Validating the validation: The influence of liquid water distribution in clouds on the intercomparison of satellite and surface observations. J. Atmos. Ocean. Technol. 2009, 26, 1457–1474. [Google Scholar] [CrossRef]
- Greenwald, T.J.; Bennartz, R.; Lebsock, M.; Teixeira, J. An uncertainty data set for passive microwave satellite observations of warm cloud liquid water path. J. Geophys. Res. Atmos. 2018, 123, 3668–3687. [Google Scholar] [CrossRef]
- Müller, J.; Fowler, G.; Dammann, K.; Rogers, C.; Buhler, Y.; Flewin, J. MSG Level 1.5 Image Data Format Description; Rapport Technique; EUMETSAT: Darmstadt, Germany, 2010; Volume 68, p. 167. [Google Scholar]
- SAF, C. Algorithm Theoretical Basis Document, SEVIRI Cloud Physical Products, CLAAS Edition 2, EUMETSAT Satellite Application Facility on Climate Monitoring; Technical Report, SAF/CM/KNMI/ATBD/SEVIRI/CPP; Satellite Application Facility on Climate Monitoring (CM SAF): Darmstadt, Germany, 2016. [Google Scholar]
- Cermak, J.; Bendix, J. A novel approach to fog/low stratus detection using Meteosat 8 data. Atmos. Res. 2008, 87, 279–292. [Google Scholar] [CrossRef]
- Strabala, K.I.; Ackerman, S.A.; Menzel, W.P. Cloud Properties inferred from 8–12-µm Data. J. Appl. Meteorol. 1994, 33, 212–229. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Illingworth, A.; Hogan, R.; O’connor, E.; Bouniol, D.; Brooks, M.; Delanoë, J.; Donovan, D.; Eastment, J.; Gaussiat, N.; Goddard, J.; et al. Cloudnet: Continuous evaluation of cloud profiles in seven operational models using ground-based observations. Bull. Am. Meteorol. Soc. 2007, 88, 883–898. [Google Scholar] [CrossRef] [Green Version]
- Löhnert, U.; Crewell, S. Accuracy of cloud liquid water path from ground-based microwave radiometry 1. Dependency on cloud model statistics. Radio Sci. 2003, 38. [Google Scholar] [CrossRef] [Green Version]
- Gaussiat, N.; Hogan, R.J.; Illingworth, A.J. Accurate liquid water path retrieval from low-cost microwave radiometers using additional information from a lidar ceilometer and operational forecast models. J. Atmos. Ocean. Technol. 2007, 24, 1562–1575. [Google Scholar] [CrossRef]
- Finkensieper, S.; Meirink, J.; van Zadelhoff, G.; Hanschmann, T.; Benas, N.; Stengel, M.; Fuchs, P.; Hollmann, R.; Werscheck, M. CLAAS-2: CM SAF CLoud Property dAtAset Using SEVIRI, 2nd ed.; Satellite Application Facility on Climate Monitoring: Darmstadt, Germany, 2016. [Google Scholar]
- Stephens, G.L. Radiation Profiles in Extended Water Clouds. II: Parameterization Schemes. J. Atmos. Sci. 1978, 35, 2123–2132. [Google Scholar] [CrossRef]
- Benas, N.; Finkensieper, S.; Stengel, M.; van Zadelhoff, G.J.; Hanschmann, T.; Hollmann, R.; Meirink, J.F. The MSG-SEVIRI-based cloud property data record CLAAS-2. Earth Syst. Sci. Data 2017, 9, 415. [Google Scholar] [CrossRef] [Green Version]
- Tranquilli, C.; Viticchiè, B.; Pessina, S.; Hewison, T.; Müller, J.; Wagner, S. Meteosat SEVIRI Performance Characterisation and Calibration with Dedicated Moon/Sun/Deep-space Scans. In Proceedings of the 14th International Conference on Space Operations, Daejeon, Korea, 16–20 May 2016; p. 2536. [Google Scholar]
- Aminou, D.M.A.; Jacquet, B.; Pasternak, F. Characteristics of the Meteosat Second Generation (MSG) radiometer/imager: SEVIRI. Sensors, Systems, and Next-Generation Satellites. Int. Soc. Opt. Photonics 1997, 3221, 19–31. [Google Scholar]
- Fuchs, J.; Cermak, J.; Andersen, H. Building a cloud in the southeast Atlantic: Understanding low-cloud controls based on satellite observations with machine learning. Atmos. Chem. Phys. 2018, 18, 16537–16552. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Roebeling, R.; Van Meijgaard, E. Evaluation of the daylight cycle of model-predicted cloud amount and condensed water path over Europe with observations from MSG SEVIRI. J. Clim. 2009, 22, 1749–1766. [Google Scholar] [CrossRef] [Green Version]
- Box, G.E.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. Ser. B Methodol. 1964, 26, 211–243. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Advances in Neural Information Processing Systems 30; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: New York, NY, USA, 2017; pp. 4765–4774. [Google Scholar]
- Loeb, N.G.; Coakley, J., Jr. Inference of marine stratus cloud optical depths from satellite measurements: Does 1D theory apply? J. Clim. 1998, 11, 215–233. [Google Scholar] [CrossRef]
- Chang, F.L.; Li, Z. Estimating the vertical variation of cloud droplet effective radius using multispectral near-infrared satellite measurements. J. Geophys. Res. Atmos. 2002, 107, AAC-7. [Google Scholar] [CrossRef] [Green Version]
- Greenwald, T.J. A 2 year comparison of AMSR-E and MODIS cloud liquid water path observations. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
Feature Set 1 | Feature Set 2 |
---|---|
VIS0.6, VIS0.8 | VIS0.6 |
IR1.6, IR3.9, IR8.7, IR10.8, IR12, IR13.4 | IR1.6, IR3.9 |
SZA, AZA | SZA, AZA |
Model Hyper-Parameters | Parameter Grid Search |
---|---|
The number of estimators | [10,500,10] |
Learning rate | [0.01,0.1,10] |
Maximum number of features | [1,5,1] |
Minimum number of samples to split | [2,10,1] |
Minimum number of samples in a leaf | [2,10,1] |
Maximum depth of a tree | [2,3,1] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Cermak, J.; Andersen, H.; Fuchs, J.; Stirnberg, R. A New Satellite-Based Retrieval of Low-Cloud Liquid-Water Path Using Machine Learning and Meteosat SEVIRI Data. Remote Sens. 2020, 12, 3475. https://doi.org/10.3390/rs12213475
Kim M, Cermak J, Andersen H, Fuchs J, Stirnberg R. A New Satellite-Based Retrieval of Low-Cloud Liquid-Water Path Using Machine Learning and Meteosat SEVIRI Data. Remote Sensing. 2020; 12(21):3475. https://doi.org/10.3390/rs12213475
Chicago/Turabian StyleKim, Miae, Jan Cermak, Hendrik Andersen, Julia Fuchs, and Roland Stirnberg. 2020. "A New Satellite-Based Retrieval of Low-Cloud Liquid-Water Path Using Machine Learning and Meteosat SEVIRI Data" Remote Sensing 12, no. 21: 3475. https://doi.org/10.3390/rs12213475