Accuracies of Soil Moisture Estimations Using a Semi-Empirical Model over Bare Soil Agricultural Croplands from Sentinel-1 SAR Data
"> Figure 1
<p>Map of the study area with sampling locations.</p> "> Figure 2
<p>The process of estimating soil moisture using Sentinel-1 Co-Polarization (VV) and Cross-Polarization (VH) imagery.</p> "> Figure 3
<p>Observed soil moisture of each point during six passes of the satellite estimated using the gravimetric method during 2017.</p> "> Figure 4
<p>Observed soil moisture of each point during seven passes of the satellite estimated using the gravimetric method during 2018.</p> "> Figure 5
<p>Localized and generalized linear models between soil moisture and backscatter. (<b>Top</b>) Examples of localized models refer to the Sentinel-1 acquisition of 15 May 2017. The remaining rows refer to the generalized models obtained using all Sentinel-1 images acquired in 2017, 2018, and in the total study from 2017 to 2018. The images from left to right represent Sentinel-1 images VV, VH, and VV + VH backscattering coefficients.</p> "> Figure 6
<p>Localized models. Validation (2017 and 2018).</p> "> Figure 6 Cont.
<p>Localized models. Validation (2017 and 2018).</p> "> Figure 7
<p>Generalized models. Validation between the estimated and observed soil moisture.</p> "> Figure 8
<p>Temporal soil moisture, backscatter, and rainfall, 2017–2018 (March to May).</p> "> Figure 9
<p>Spatial variability in the soil moisture in Siruguppa <span class="html-italic">taluk</span> during 2017.</p> "> Figure 10
<p>Spatial variability in the soil moisture in Siruguppa <span class="html-italic">taluk</span> during 2018.</p> "> Figure 11
<p>Spatial variability in the estimated soil moisture from combining all the dates in 2017 and 2018.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. In Situ Data
2.2.1. Soil Sampling and Ground Data Collection
2.2.2. Laboratory Analysis
2.3. Data Collection and Pre-Processing
2.4. Methodology
2.4.1. Semi-Empirical Model
2.4.2. Delineation of Agricultural Fields
2.4.3. Evaluation of Semi-Empirical Model
3. Results
3.1. Field Measurements and Laboratory Analysis
3.2. Localized and Generalized Relationships
3.3. Soil Moisture Evaluation
4. Discussion
4.1. Relationship between and with Observed Data
4.2. Localized and Generalized Relationships
4.3. Modeling the Relationships
4.4. Validation of Models
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barrett, B.W.; Dwyer, E.; Whelan, P. Soil Moisture Retrieval from Active Spaceborne Microwave Observations: An Evaluation of Current Techniques. Remote Sens. 2009, 1, 210–242. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Ding, J.; Zou, J.; Liu, B.; Zhang, J.; Chen, W. Soil Moisture Retrival Based on Sentinel-1 Imagery under Sparse Vegetation Coverage. Sensors 2019, 19, 589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thoma, D.P.; Moran, M.S.; Bryant, R.; Rahman, M.; Holifield-Collins, C.D.; Skirvin, S.; Sano, E.E.; Slocum, K. Comparison of four models to determine surface soil moisture from C-band radar imagery in a sparsely vegetated semiarid landscape. Water Resour. Res. 2006, 42, W01418. [Google Scholar] [CrossRef] [Green Version]
- Romshoo, S.; Taikan, O.; Katumi, M. C-band radar for soil moisture estimation under agricultural conditions. IEEE Int. Geosci. Remote Sens. Symp. 2002, 4, 2217–2219. [Google Scholar] [CrossRef]
- Suni, T.; Guenther, A.; Hansson, H.; Kulmala, M.; Andreae, M.; Arneth, A.; Artaxo, P.; Blyth, E.; Brus, M.; Ganzeveld, L.; et al. The significance of land-atmosphere interactions in the Earth system—iLEAPS achievements and perspectives. Anthropocene 2015, 12, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Verhoest, N.E.C.; Lievens, H.; Wagner, W.; Álvarez-Mozos, J.; Moran, M.S.; Mattia, F. On the Soil Roughness Parameterization Problem in Soil Moisture Retrieval of Bare Surfaces from Synthetic Aperture Radar. Sensors 2008, 8, 4213–4248. [Google Scholar] [CrossRef] [Green Version]
- Dubois, P.C.; van Zyl, J.; Engman, T. Measuring soil moisture with imaging radars. IEEE Trans. Geosci. Remote Sens. 1995, 33, 915–926. [Google Scholar] [CrossRef] [Green Version]
- Fung, A.; Li, Z.; Chen, K. Backscattering from a randomly rough dielectric surface. IEEE Trans. Geosci. Remote Sens. 1992, 30, 356–369. [Google Scholar] [CrossRef]
- Haider, S.S.; Said, S.; Kothyari, U.C.; Arora, M.K. Soil moisture estimation using ERS 2 SAR data: A case study in the Solani River catchment/Estimation de l’humidité du sol grâce à des données ERS-2 SAR: Étude de cas dans le bassin de la rivière Solani. Hydrol. Sci. J. 2004, 49, 334. [Google Scholar] [CrossRef] [Green Version]
- Baghdadi, N.; Aubert, M.; Cerdan, O.; Franchisteguy, L.; Viel, C.; Martin, E.; Zribi, M.; Desprats, J.-F.; Eric, M. Operational Mapping of Soil Moisture Using Synthetic Aperture Radar Data: Application to the Touch Basin (France). Sensors 2007, 7, 2458–2483. [Google Scholar] [CrossRef]
- Rao, S.S.; Pandey, A.K.; Das, S.N.; Nagaraju, M.S.S.; Venugopal, M.V.; Rajankar, P.; Laghate, P.; Reddy, M.S.; Joshi, A.K.; Sharma, J.R. Modified Dubois Model for Estimating Soil Moisture with Dual Polarized SAR Data. J. Indian Soc. Remote Sens. 2013, 41, 865–872. [Google Scholar] [CrossRef]
- Alexakis, D.D.; Mexis, F.-D.K.; Vozinaki, A.-E.K.; Daliakopoulos, I.N.; Tsanis, I. Soil Moisture Content Estimation Based on Sentinel-1 and Auxiliary Earth Observation Products. A Hydrological Approach. Sensors 2017, 17, 1455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conde, V.; Nico, G.; Catalao, J. Comparison of In-Field Measurements and INSAR Estimates of Soil Moisture: Inversion Strategies of Interferometric Data. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 6186–6189. [Google Scholar]
- Alvino, A.; Marino, S. Remote Sensing for Irrigation of Horticultural Crops. Horticulturae 2017, 3, 40. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Sanchez, J.M.; Cloude, S.R.; Ballester-Berman, J.D. Rice Phenology Monitoring by Means of SAR Polarimetry at X-Band. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2695–2709. [Google Scholar] [CrossRef]
- McNairn, H.; Ellis, J.; Van Der Sanden, J.; Hirose, T.; Brown, R. Providing crop information using RADARSAT-1 and satellite optical imagery. Int. J. Remote Sens. 2002, 23, 851–870. [Google Scholar] [CrossRef]
- Holmes, M.G. Applications of Radar in Agriculture. In Applications of Remote Sensing in Agriculture; Clark, J.A., Steven, M.D., Eds.; Butterworths: Sevenoaks, UK, 1990; pp. 307–330. [Google Scholar]
- Baghdadi, N.; El Hajj, M.; Zribi, M.; Bousbih, S. Calibration of the Water Cloud Model at C-Band for Winter Crop Fields and Grasslands. Remote Sens. 2017, 9, 969. [Google Scholar] [CrossRef] [Green Version]
- Oh, Y. Effect of standing stubble on radar backscatter from harvested rice fields. Electron. Lett. 2008, 44, 1423. [Google Scholar] [CrossRef]
- Petersen, R.G.; Calvin, L.D. Sampling. In Methods of Soil Analysis Part 3; Soil Science Society of America Book Series; American Society of Agronomy, Inc.: Madison, WI, USA, 1996; pp. 1–18. [Google Scholar]
- Cline, M.G. Principles of soil Sampling. Soil Sci. 1944, 58, 275–288. [Google Scholar] [CrossRef]
- Ozerdem, M.S.; Acar, E.; Ekinci, R. Soil Moisture Estimation over Vegetated Agricultural Areas: Tigris Basin, Turkey from Radarsat-2 Data by Polarimetric Decomposition Models and a Generalized Regression Neural Network. Remote Sens. 2017, 9, 395. [Google Scholar] [CrossRef] [Green Version]
- Small, D. Flattening Gamma: Radiometric Terrain Correction for SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3081–3093. [Google Scholar] [CrossRef]
- Smith, A.; Major, D. Radar Backscatter and Crop Residues. Can. J. Remote Sens. 1996, 22, 243–247. [Google Scholar] [CrossRef]
- Yin, H.; Udelhoven, T.; Fensholt, R.; Pflugmacher, D.; Hostert, P. How Normalized Difference Vegetation Index (NDVI) Trends from Advanced very High Resolution Radiometer (AVHRR) and Système Probatoire d’Observation de la Terre Vegetation (SPOT VGT) Time Series Differ in Agricultural Areas: An Inner Mongolian Case Study. Remote Sens. 2012, 4, 3364–3389. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Liu, X.; Chen, Y.; Liang, X. Land-cover mapping using Random Forest classification and incorporating NDVI time-series and texture: A case study of central Shandong. Int. J. Remote Sens. 2018, 39, 8703–8723. [Google Scholar] [CrossRef]
- Oldak, A.; Jackson, T.; Starks, P.; Elliott, R. Mapping near-surface soil moisture on regional scale using ERS-2 SAR data. Int. J. Remote Sens. 2003, 24, 4579–4598. [Google Scholar] [CrossRef]
- Puri, S.; Stephen, H.; Ahmad, S. Relating TRMM precipitation radar land surface backscatter response to soil moisture in the Southern United States. J. Hydrol. 2011, 402, 115–125. [Google Scholar] [CrossRef]
- Bousbih, S.; Zribi, M.; Chabaane, Z.L.; Baghdadi, N.; El Hajj, M.; Gao, Q.; Mougenot, B. Potential of Sentinel-1 Radar Data for the Assessment of Soil and Cereal Cover Parameters. Sensors 2017, 17, 2617. [Google Scholar] [CrossRef] [Green Version]
- Jamal, I. Multicollinearity and Regression Analysis. J. Phys. Conf. Ser. 2017, 949, 012009. [Google Scholar]
- Montgomery, D.C.; Peck, E.A.; Vinning, G.G. Introduction to Linear Regression Analysis, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
Year | Acquisition Date | ||||||
---|---|---|---|---|---|---|---|
2017 | 4 March | 28 March | 21 April | 3 May | 15 May | 27 May | |
2018 | 11 March | 23 March | 4 April | 16 April | 28 April | 10 May | 22 May |
Field Measurement | Soil Moisture (m3/m3) | ||
---|---|---|---|
Min | Max | Mean | |
4 March 2017 | 0.14 | 0.31 | 0.22 |
28 March 2017 | 0.12 | 0.30 | 0.23 |
21 April 2017 | 0.14 | 0.30 | 0.22 |
3 May 2017 | 0.12 | 0.30 | 0.23 |
15 May 2017 | 0.17 | 0.34 | 0.28 |
27 May 2017 | 0.15 | 0.30 | 0.23 |
11 March 2018 | 0.15 | 0.33 | 0.24 |
23 March 2018 | 0.15 | 0.34 | 0.26 |
4 April 2018 | 0.13 | 0.33 | 0.24 |
16 April 2018 | 0.13 | 0.34 | 0.25 |
28 April 2018 | 0.14 | 0.33 | 0.25 |
10 May 2018 | 0.11 | 0.32 | 0.24 |
22 May 2018 | 0.11 | 0.32 | 0.23 |
Sentinel-1 Acquisition Date | |||
---|---|---|---|
4 March 2017 | 0.63 | 0.66 | 0.83 |
28 March 2017 | 0.65 | 0.65 | 0.87 |
21 April 2017 | 0.68 | 0.67 | 0.84 |
3 May 2017 | 0.69 | 0.56 | 0.80 |
15 May 2017 | 0.75 | 0.70 | 0.88 |
27 May 2017 | 0.62 | 0.43 | 0.71 |
11 March 2018 | 0.69 | 0.32 | 0.75 |
23 March 2018 | 0.63 | 0.34 | 0.78 |
4 April 2018 | 0.56 | 0.47 | 0.60 |
16 April 2018 | 0.64 | 0.33 | 0.72 |
28 April 2018 | 0.63 | 0.31 | 0.66 |
10 May 2018 | 0.65 | 0.62 | 0.86 |
22 May 2018 | 0.57 | 0.54 | 0.78 |
Year | R2 | |
---|---|---|
2017 | VV | 0.68 |
2017 | VH | 0.67 |
2017 | VV + VH | 0.79 |
2018 | VV | 0.66 |
2018 | VH | 0.32 |
2018 | VV + VH | 0.62 |
2017, 2018 | VV | 0.62 |
2017, 2018 | VH | 0.47 |
2017, 2018 | VV + VH | 0.72 |
Validation | |||||||
---|---|---|---|---|---|---|---|
Sentinel-1 Image | Acquisition Date | Model | A | B | T | R2 | RMSE |
1 | 4 March 2017 | 0.014 | 0.011 | 0.60 | 0.82 | 0.01 | |
2 | 28 March 2017 | 0.013 | 0.014 | 0.65 | 0.88 | 0.02 | |
3 | 21 April 2017 | 0.011 | 0.015 | 0.65 | 0.84 | 0.01 | |
4 | 3 May 2017 | 0.014 | 0.012 | 0.62 | 0.76 | 0.01 | |
5 | 15 May 2017 | 0.008 | 0.008 | 0.47 | 0.90 | 0.02 | |
6 | 27 May 2017 | 0.017 | 0.012 | 0.63 | 0.75 | 0.03 | |
7 | 11 March 2018 | 0.016 | 0.008 | 0.57 | 0.82 | 0.02 | |
8 | 23 March 2018 | 0.013 | 0.008 | 0.52 | 0.84 | 0.02 | |
9 | 4 April 2018 | 0.022 | 0.004 | 0.55 | 0.76 | 0.02 | |
10 | 16 April 2018 | 0.015 | 0.008 | 0.53 | 0.77 | 0.03 | |
11 | 28 April 2018 | 0.022 | 0.010 | 0.67 | 0.70 | 0.02 | |
12 | 10 May 2018 | 0.016 | 0.017 | 0.74 | 0.90 | 0.02 | |
13 | 22 May 2018 | 0.014 | 0.019 | 0.76 | 0.78 | 0.02 |
Validation | |||||||
---|---|---|---|---|---|---|---|
Year | Model | B | T | R2 | RMSE | ||
2017 | VV | + T | 0.015 | - | 0.39 | 0.70 | 0.03 |
2017 | VH | + T | - | 0.017 | 0.56 | 0.67 | 0.03 |
2017 | VV + VH | + T | 0.009 | 0.009 | 0.51 | 0.80 | 0.02 |
2018 | VV | + T | 0.019 | - | 0.44 | 0.60 | 0.03 |
2018 | VH | + T | - | 0.014 | 0.50 | 0.32 | 0.03 |
2018 | VV + VH | + T | 0.016 | 0.009 | 0.58 | 0.70 | 0.02 |
2017, 2018 | VV | + T | 0.016 | - | 0.41 | 0.60 | 0.03 |
2017, 2018 | VH | + T | 0.016 | 0.59 | 0.50 | 0.04 | |
2017, 2018 | VV + VH | + T | 0.011 | 0.009 | 0.59 | 0.70 | 0.02 |
Year | t Value | |||
---|---|---|---|---|
2017 | VV | 24.24 | <2 × 10−16 *** | - |
2017 | VH | 23.24 | <2 × 10−16 *** | - |
2017 | VV, VH | 12.17, 11.20 | <2 × 10−16 *** | 2.11 |
2018 | VV | 21.23 | <2 × 10−16 *** | - |
2018 | VH | 11.98 | <2 × 10−16 *** | - |
2018 | VV, VH | 20.76, 11.50 | <2 × 10−16 *** | 1.10 |
2017, 2018 | VV | 29.49 | <2 × 10−16 *** | - |
2017, 2018 | VH | 24.31 | <2 × 10−16 *** | - |
2017, 2018 | VV, VH | 21.57, 16.32 | <2 × 10−16 *** | 1.40 |
Date | t Value | |||
---|---|---|---|---|
4 March 2017 | VV, VH | 4.63, 7.54 | <2 × 10−16 *** | 1.36 |
28 March 2017 | VV, VH | 8.24, 8.04 | <2 × 10−16 *** | 1.30 |
21 April 2017 | VV, VH | 6.93,9.02 | <2 × 10−16 *** | 1.54 |
3 May 2017 | VV, VH | 7.39, 4.34 | <2 × 10−16 *** | 1.63 |
15 May 2017 | VV, VH | 6.93, 5.02 | <2 × 10−16 *** | 1.71 |
27 May 2017 | VV, VH | 5.03, 5.17 | <2 × 10−16 *** | 1.12 |
11 March 2018 | VV, VH | 10.45, 6.07 | <2 × 10−16 *** | 1.09 |
23 March 2018 | VV, VH | 11.25, 6.00 | <2 × 10−16 *** | 1.10 |
4 April 2018 | VV, VH | 10.19, 1.94 | <2 × 10−16 *** | 1.14 |
16 April 2018 | VV, VH | 9.17, 4.47 | <2 × 10−16 *** | 1.11 |
28 April 2018 | VV, VH | 9.10, 4.12 | <2 × 10−16 *** | 1.0 |
10 May 2018 | VV, VH | 10.69, 11.09 | <2 × 10−16 *** | 1.27 |
22 May 2018 | VV, VH | 6.66, 6024 | <2 × 10−16 *** | 1.26 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoskera, A.K.; Nico, G.; Irshad Ahmed, M.; Whitbread, A. Accuracies of Soil Moisture Estimations Using a Semi-Empirical Model over Bare Soil Agricultural Croplands from Sentinel-1 SAR Data. Remote Sens. 2020, 12, 1664. https://doi.org/10.3390/rs12101664
Hoskera AK, Nico G, Irshad Ahmed M, Whitbread A. Accuracies of Soil Moisture Estimations Using a Semi-Empirical Model over Bare Soil Agricultural Croplands from Sentinel-1 SAR Data. Remote Sensing. 2020; 12(10):1664. https://doi.org/10.3390/rs12101664
Chicago/Turabian StyleHoskera, Anil Kumar, Giovanni Nico, Mohammed Irshad Ahmed, and Anthony Whitbread. 2020. "Accuracies of Soil Moisture Estimations Using a Semi-Empirical Model over Bare Soil Agricultural Croplands from Sentinel-1 SAR Data" Remote Sensing 12, no. 10: 1664. https://doi.org/10.3390/rs12101664
APA StyleHoskera, A. K., Nico, G., Irshad Ahmed, M., & Whitbread, A. (2020). Accuracies of Soil Moisture Estimations Using a Semi-Empirical Model over Bare Soil Agricultural Croplands from Sentinel-1 SAR Data. Remote Sensing, 12(10), 1664. https://doi.org/10.3390/rs12101664