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Abstract: A methodology for elaborating multi-temporal Sentinel-1 and Landsat 8 satellite images
for estimating topsoil Soil Moisture Content (SMC) to support hydrological simulation studies is
proposed. After pre-processing the remote sensing data, backscattering coefficient, Normalized
Difference Vegetation Index (NDVI), thermal infrared temperature and incidence angle parameters
are assessed for their potential to infer ground measurements of SMC, collected at the top 5 cm.
A non-linear approach using Artificial Neural Networks (ANNs) is tested. The methodology
is applied in Western Crete, Greece, where a SMC gauge network was deployed during 2015.
The performance of the proposed algorithm is evaluated using leave-one-out cross validation and
sensitivity analysis. ANNs prove to be the most efficient in SMC estimation yielding R2 values
between 0.7 and 0.9. The proposed methodology is used to support a hydrological simulation with
the HEC-HMS model, applied at the Keramianos basin which is ungauged for SMC. Results and
model sensitivity highlight the contribution of combining Sentinel-1 SAR and Landsat 8 images for
improving SMC estimates and supporting hydrological studies.
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1. Introduction

The assessment of Soil Moisture Content (SMC) is indispensable for various disciplines such as
meteorology, hydrology and agriculture [1], finding applications in evapotranspiration estimation,
flood-risk prediction and assessment of irrigation requirements. The most accurate approach for SMC
estimation is that of the gravimetric method [2], nevertheless, large scale SMC ground measurements
are time and labor intensive. However, remote sensing provides a fast alternative to mapping SMC
and its temporal distribution. The advent of satellite based remote sensing has led to a considerable
amount of scientific literature on identifying the potential of such sensors to provide explicit SMC
maps from space [3]. Several theoretical approaches exist for calculating backscattering from land
surfaces with different roughness scales [4] and comparing them against in situ SMC observations.

Backscattering measurements of microwaves from SAR sensors have demonstrated their potential
for effective monitoring of soil properties. In this context, research activities have shown that sensors
operating within microwave bands from P to L are more sensitive to variations of the soil layer’s
moisture level [5,6]. While at higher frequencies, such as C band or higher, radar’s ability to monitor
soil moisture is mainly limited by vegetation cover, this problem is significantly reduced at lower
frequencies [7]. Many factors, such as alterations in topography, vegetation regime, soil types, and
water content, affect the spatial variability of SMC [8]. According to [9], soil properties and topography
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are the most significant physical parameters that jointly control the spatio-temporal evolution of soil
moisture. Especially in the case of bare soils and high radar frequency observation, backscattering is
considered to be extremely sensitive to soil surface roughness [10]. For reference, an observed surface
is considered smooth if its elevation variations are smaller than the radar’s wavelength. While SMC is
usually characterized by smooth changes in space and abrupt changes in time, soil roughness may
drastically change spatially though it remains relatively constant in time [11]. In the case of high
frequencies, backscattered signal is mostly affected by surface roughness and vegetation, rather than
SMC. Various backscattering models have been developed over the past 30 years, categorized into three
main groups: physical, empirical and semi-empirical [3]. Despite the progress achieved by refined
electromagnetic models, the parameterization of surface roughness in soil backscatter modelling has
not yet matured [12]. The accuracy of SMC estimation by inverse backscattering models is also affected
by various parameters such as surface roughness [10,13].

Nowadays, most SAR systems operate at bands C and X (RADARSAT2, COSMO SkyMed, and
TerraSAR-X), which are not considered optimal for retrieving SMC since they respond to surface
roughness and vegetation cover as well [14]. Given the high temporal sampling and the operational
configuration of the newly launched Sentinel-1 (C-band), this satellite is expected to make significant
contributions in the operational monitoring of dynamic hydrological processes [15]. Compared to
ENVISAT ASAR GM mode (stopped working in 2012), Sentinel-1 IWS mode is of improved spatial,
temporal, and radiometric resolution while working at nearly the same center frequency (5.4 versus
5.5 GHz) [16]. Furthermore, according to [14], multi-temporal approaches for extracting SMC from
C-band can successfully account for surface roughness effects and low vegetation cover. This limitation
has been overcome with the Sentinel-1 mission, where sufficiently frequent SAR acquisitions are
available to ensure the stability of roughness and vegetation regime among them.

Different approaches have been followed in the past to calculate SMC, such as multi-temporal
change detection [17–19] and forward model inversion models (ANN, Bayes theorem) with extremely
promising results. Concerning ANNs, their effectiveness in solving inverse remote sensing problems
such as those required by SMC monitoring has diachronically been proved [20]. [21] have implemented
the SMOSAR algorithm for retrieving SMC from Sentinel-1 multi-temporal data. A wide range of
theoretical and empirical models for retrieving SMC from active and passive remote sensing data have
been also utilized [22,23]. Among them, one of the most commonly adopted theoretical models is
the Integral Equations Method (IEM) Model [24] and its evolution, the Advanced Integral Equation
Model (AIEM) [25,26]. This model allows the simulation of the radar measurements in the presence
of a specific soil condition, usually represented in terms of dielectric permittivity and roughness [27].
Concerning semi-empirical models, the most popular are those of Oh [28,29], providing analytical
relationships between the backscattered radar signal and various physical soil parameters.

In water resources management, SMC is an essential variable playing a crucial role in most
of the hydrological processes [30]. Hydrological models typically contain a substantial number of
conceptual parameters that are difficult to measure directly. These parameters need to be calibrated to
the best-fitting local values so that some agreement between the calculated and observed variables can
be obtained. The idea of feeding hydrological models with input derived from satellite data may assist
in overcoming such limitations and uncertainties of hydrological modeling [31]. [32] demonstrated
that the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) SMC product was essential for
the calibration of the soil hydraulic properties in the Noah land surface model (LSM). [31,33,34] also
showed that the calibration of a hydrological model with Scatterometer on European Remote Sensing
Satellite (SCAT) improved soil moisture simulations at basin scale [35].

This study investigates the potential of the synergetic use of the newly-launched Sentinel-1
IW mode and Landsat-8 Operational Land Images (OLI) images for estimating the top 5 cm
SMC. According to [11], the combined use of active and passive remote sensing data can provide
complementary information in terms of soil water content. Vertical (VV) multi-temporal C-band
ASAR backscatter measurements are used. Ground SMC measurements were collected during 2015
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in a study area in Western Crete. The free, full, and open data policy of Sentinel-1 images adopted
for the ESA Copernicus program opens new horizons to the extensive use of radar satellite remote
sensing data. A non-linear Artificial Neural Network (ANN) approach is assessed for its potential
to translate satellite remote sensing input to SMC. The estimated SMC values are used as input to
the HEC-HMS [36] hydrological model to simulate a flow event that took place on April 2015 in the
Keramianos sub-basin located in Chania, Crete, Greece. Model sensitivity to SMC spatial aggregation
is also investigated.

2. Case Study and Data

The study site is located in the broader Chania region in the western part of the island of Crete,
Greece. The climate of the study area is sub-humid Mediterranean with humid winters and warm
summers [37]. The municipality of Chania covers a total area of approximately 2.343 km2. The Koiliaris
watershed is located at the north of the municipality (Figure 1a), covers 130 km2 and has been
characterized as a Mediterranean Critical Zone Observatory (CZO) due to its special geomorphologic
and hydrogeological characteristics [38,39]. The Keramianos ephemeral tributary that drains the
homonymous sub-catchment of 32 km2 includes a rain and stage gauge. Overgrazing in the Keramianos
sub-catchment (Figure 1b) leaves the top soil vulnerable to surface runoff [40]. As a result of poor
vegetation cover and steep slopes, the Keramianos tributary is often responsible for Koiliaris River
flash flooding, which in the past has caused several damages in the downstream area of the Koiliaris
watershed [41]. Here we have chosen to model a flow event of April 2015 in order to capture the
importance of SMC even in low flow estimation.
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Figure 1. The broader study area, its topography and location of SMC and rain gauge stations (a). The 
Keramianos sub-basin used for the hydrological application, along with discharge and rain gauge 
locations (b). 

2.1. Earth Observation Data 

For the needs of the study, 38 images of both radar (Sentinel-1) and optical/ thermal 
(Landsat 8) satellite sensors were collected (Table 1). Specifically, an integrated time series of 
satellite data covering the period from January 2015 to December 2015 was processed (Figure 2). 
Concerning Sentinel-1 images, the Interferometric Wave (IW) mode images were incorporated 
in the final model. In order to meet the demanding image quality and swath width requirements, 
the IW mode is used as a Scan SAR mode. This requires a fast antenna beam steering in elevation 
for Scan SAR operation [42]. Sentinel-1 incidence angles for western Crete mainly range between 
38° and 41°. Although low incidence angles are considered to be optimal for SMC estimation, 
[43] argue that high incidence angles (>45°) are suitable for the discrimination between smooth 
and rough areas. Therefore, incidence angles were considered sufficient for this study. 

Figure 1. The broader study area, its topography and location of SMC and rain gauge stations (a).
The Keramianos sub-basin used for the hydrological application, along with discharge and rain gauge
locations (b).

2.1. Earth Observation Data

For the needs of the study, 38 images of both radar (Sentinel-1) and optical/ thermal (Landsat 8)
satellite sensors were collected (Table 1). Specifically, an integrated time series of satellite data covering
the period from January 2015 to December 2015 was processed (Figure 2). Concerning Sentinel-1
images, the Interferometric Wave (IW) mode images were incorporated in the final model. In order to
meet the demanding image quality and swath width requirements, the IW mode is used as a Scan SAR
mode. This requires a fast antenna beam steering in elevation for Scan SAR operation [42]. Sentinel-1
incidence angles for western Crete mainly range between 38◦ and 41◦. Although low incidence angles
are considered to be optimal for SMC estimation, [43] argue that high incidence angles (>45◦) are
suitable for the discrimination between smooth and rough areas. Therefore, incidence angles were
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considered sufficient for this study. Furthermore, 11 cloud-free Landsat 8 images from the same
period were acquired and analyzed to extract vegetation coverage and temperature regime at the four
experimental fields.

Table 1. Satellite data used in the study.

# Sensor Date of Acquisition # Sensor Date of Acquisition

1 Landsat 8 9 February 2015 20 Sentinel-1 23 April 2015
2 Landsat 8 13 April 2015 21 Sentinel-1 4 March 2015
3 Landsat 8 29 April 2015 22 Sentinel-1 5 March 2015
4 Landsat 8 15 March 2015 23 Sentinel-1 16 March 2015
5 Landsat 8 31 March 2015 24 Sentinel-1 17 March 2015
6 Landsat 8 16 June 2015 25 Sentinel-1 28 March 2015
7 Landsat 8 18 July 2015 26 Sentinel-1 29 March 2015
8 Landsat 8 19 August 2015 27 Sentinel-1 9 June 2015
9 Landsat 8 20 September 2015 28 Sentinel-1 21 June 2015

10 Landsat 8 23 November 2015 29 Sentinel-1 22 June 2015
11 Landsat 8 25 December 2015 30 Sentinel-1 3 July 2015
12 Sentinel-1 16 January 2015 31 Sentinel-1 4 July 2015
13 Sentinel-1 17 January 2015 32 Sentinel-1 27 July 2015
14 Sentinel-1 9 February 2015 33 Sentinel-1 28 July 2015
15 Sentinel-1 29 March 2015 34 Sentinel-1 8 August 2015
16 Sentinel-1 30 March 2015 35 Sentinel-1 25 September 2015
17 Sentinel-1 10 April 2015 36 Sentinel-1 7 October 2015
18 Sentinel-1 11 April 2015 37 Sentinel-1 24 November 2015
19 Sentinel-1 22 April 2015 38 Sentinel-1 18 December 2015
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Initially, geometric corrections are carried out using an adequate number of Ground Control Points
(GCPs). The SRTM 3Sec is used to eliminate topography related phase changes. Due to topographical
variations of a scene, distances are usually distorted in the SAR images. Range Doppler Terrain
Correction is therefore applied to all SAR images to implement orthorectification. The SAR images are
then first multi-looked to reduce speckle and radiometrically calibrated to derive the backscattering
coefficients σ0 in dB. In terms of roughness and vegetation correction, the semi-empirical Dubois
model [29] is implemented. The model is initially formulated using scatterometer data collected at
six frequencies between 2.5 GHz and 11 GHz and has been used in many studies with generally
satisfactory results [44]. The validity of the model is restricted to normalized surface roughness
and incidence angles greater than 30◦. The Dubois model has two equations [45] that relate the
backscatter to sensor and soil surface parameters, one applicable to HH polarized data (horizontal
transmit and horizontal receive) and the other for VV polarized data (vertical transmit and vertical
receive). Concerning Sentinel-1, only VV polarized data are available. The VV equation is sufficiently
assuming vegetation at early growth stages and low density. The parameter RMS height s is replaced
by roughness mode. All the study areas are covered by weeds with mean height of 3 cm as measured
in the field. For this purpose, a Vernier caliper was utilized. Significant variations were observed
between different field campaigns mainly due to rain effect and cultivation practices.

The final model is modified to be used along with Topp’s model [46] (Equation (1)) which does
not require any prior knowledge about soil other than ε to derive SMC, θν:

θν = − 5.3× 10−2 + 2.92 × 10−2ε − 5.5× 10−4ε2 + 4.3 × 10−6ε3 (1)

Landsat 8 images are radiometrically corrected to account for illumination’s changes and changes
in viewing geometry among different image acquisitions. Thus, the Digital Number (DN) values
of satellite images are converted to reflectance values [37]. Eventually, images are corrected for
atmospheric distortions using the Darkest Pixel (DP) atmospheric correction approach [47] and dams
and lakes as non-variant Darkest Pixel targets. The method can practically eliminate atmospheric
distortions of otherwise unknown distributions and intensities by accounting for dark and non-variant
targets located in the image or by conducting in situ measurements.

The Normalized Difference Vegetation (NDVI) is used to estimate the degree of vegetation
coverage in terms of vegetation height and density. Tall or dense vegetation absorbs most incident
visible light and reflects a large portion of the near-infrared (NIR) light, resulting in high NDVI
values [48]. NDVI is widely accepted as a sensitive indicator that can be used to monitor phenological
variations and biomass changes of vegetation in time-series analyses [49].

The canopy temperature can indirectly describe the soil moisture regime [50]. The Thermal
Infrared Sensor (TIRS) onboard the LandSat-8 mission measures land surface temperature in two
thermal bands by applying quantum physics principles. Atmospheric conditions and their effects on
Thermal Infrared (TIR) spectral band data are different from day to day, so images that are acquired
on different dates often have different ranges in TIR values. Thus, a relevant index is developed to
remove or reduce the absolute differences by normalizing the values to a range of 0 to 1 [51]. For this
purpose, the thermal band (band 10) of Landsat 8 is used. The TIRn was estimated for all the available
Landsat 8 images and was incorporated as a parameter in the overall model.

2.2. Ground Data

Time Domain Reflectometry (TDR) Decagon EC-5 sensors were used to measure in situ SMC.
EC-5 consists of two parallel-pronged plastic rods of 50 mm length and 9.8 mm width, and a spacing
of 12.1 mm with a reported measurement volume of 0.24 L. The sensor reads mV and a compatible
data logger converts mV readings into digital signal [52]. It operates at a frequency of 70 MHz
with a measurement range between 0 and 0.57 m3·m−3 at a resolution of 0.1 m3·m−3. Sensors were
installed in four experimental fields, serving as replicates, at the Eastern part of the Municipality of
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Chania: Marathi, Neo Horio, Alikampos, and at the campus of the Technical University of Crete (TUC)
(Table 2, Figure 1a). All four experimental fields are areas of generally bare soil surface or very sparse
vegetation (approximately 3 cm height). Sensors were installed approximately 5 cm below ground
and measurements were collected every 15 min. Figure 3 shows daily averages for the period of the
study from the Neo Horio TDR sensors. SMC measurements corresponding to the exact time of earth
observation from Sentinel-1 were eventually extracted from the dataset. According to the overall
number of available satellite images, 160 ground SMC measurements were incorporated in the overall
analysis together with corresponding satellite data. In order to spatially reference SMC measurements
against satellite images, their geographical locations were determined using a pair of differential GPS
(DGPS) Leica GS20 Professional Data Mappers. DGPS measurements were corrected offline using the
L1 pseudo-range in conjunction with station TUC2 from the Reference Frame Sub-Commission for
Europe (EUREF) Permanent Network (EPN), located within the TUC campus. The same method was
used to collect GCPs within the study area in order to geometrically correct the satellite images.

Table 2. Spatial characteristics of Soil Moisture Content gauge stations.

Experimental Field Distance from Sea (m) Elevation (m)

Marathi 450 52
Neo Horio 3000 36
Alikampos 6000 398

TUC Campus 1500 120
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3. Methodology

The overall methodology is based on the synergistic use of Sentinel-1 images and auxiliary Landsat
8 products to estimate SMC. Specifically, a SMC gauge network established in the Municipality of
Chania in Western Crete is used as ground truth. Following, Sentinel-1 and Landsat 8 images are
statistically analyzed using a non-linear Artificial Neural Network (ANN) approach. Four different
parameters were selected as inputs in the ANN approach, namely, corrected radar backscattering σ0

dB,
NDVI, incidence angle ϑ, and thermal infrared temperature TIRn. Besides the first three variables
that have been extensively used as input in previous studies, temperature has been incorporated in
relevant models only either as Temperature-Vegetation-Drought-Index (TVDI) [53] or as a parameter
that depends on dielectric properties and therefore on soil moisture [54]. Following, the estimated
SMC is used as input in the HEC-HMS model to conduct hydrologic simulations. Figure 4 outlines the
methodological steps presented in the following paragraphs.
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3.1. ANN Approach

ANNs provide an alternative to conventional numerical modeling techniques, which sometimes
are limited by rigid normality and linearity [55–57]. An ANN consists of a number of hidden neurons or
nodes that work in parallel to convert data from an input to output layer. Here, the VV backscattering,
NDVI, TIRn and Incidence Angle parameters were used as input and ground SMC measurements
(experimental data) as output in MATLAB® environment. Besides backscattering data, NDVI was
incorporated in the model for accounting vegetation and roughness, incidence angle for topography
and thermal infrared temperature for water content. A feed-forward Multilayer Perceptron (MLP)
modelis used. In MLPs, successive layers of neurons are interconnected, with connection weights that
control the strength of the connection. The feasibility of ANNs in solving remote sensing problems has
been highlighted in various studies since ANN can easily merge data coming from different sources
into a unique integrated algorithm [58]. Specifically, the effectiveness of the ANN in estimating SMC
has been investigated in other relevant studies [14,58] where the need for auxiliary information derived
from passive remote sensing imagery such as the NDVI was pointed out. The optimal architecture of
an ANN is defined by varying the number of neurons in the hidden layer and successively training and
testing against variable sets previous unknown to the network. The main aim of the training process is
to minimize the error between the ANN output and the input data by adjusting the correlation weights
between them [59].
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Trial and error (hidden layers and neurons added or removed from the model) determined the
optimal MLP architecture to a three-layer network consisting of an input layer (four neurons: V
backscattering, NDVI, TIRn, Incidence Angle), one hidden layer (10 neurons) and one output layer
(in situ SMC). The specific architecture guaranteed an optimum model performance (minimum error
and maximum convergence), avoiding any possible overfitting. The model was trained with the
use of both experimental and simulated data in order to minimize the RMSE. Thus, 160 sets from
each individual parameter (160 × 4 = 640 in total) were incorporated as input (experimental data)
in the ANN model with 160 corresponding ground SMC values as output. The available data were
divided in 80%-10%-10% for training, testing and validation phases, respectively. For the needs of
training, 1000 iterations were set as a threshold to cease the procedure. Training was based on the
Levenberg-Marquardt method which is an alternative of the Newton algorithm for finding an optimum
solution to a minimization problem. The specific algorithm is often characterized as more stable and
efficient [60]. ANN training was repeated 50 times and the RMSE of the mean value of the final results
was estimated.

3.2. Hydrological Model

Continuous flow and precipitation time series data for the studied extreme event were available
from the “Entrance” and “Psychro Pigadi” gauge stations, respectively (Figure 1b). The model was
initially calibrated using past events from the period 2013–2014 and subsequently implemented for the
flow event on April 2015. The total observed rainfall recorded in the gauge station “Psychro Pigadi”
for the studied period was 67.8 mm. The maximum observed flow was 2.67 m3 s−1 and the observed
water volume equivalent for the sub-catchment was 1.197 mm. Furthermore, SMC was converted to
saturation degree S using soil porosity value ε = 0.5094, for the specific sub-catchment as obtained
from [61].

For the need of the study the Hydrologic Modeling System (HEC-HMS) was used. HEC-HMS
has been developed by the Hydrologic Engineering Center (HEC) of the US Army Corps of Engineers
to simulate the hydrologic processes of dendritic watershed systems [36]. Since moisture conditions
are a crucial factor for flood modeling in the Mediterranean region [62] but uncertainties are high,
the loss method adopted here is the simple but robust Soil Moisture Account (SMA) [36]. SMA uses
one vegetation (canopy interception storage) and three ground (soil, upper groundwater, and lower
groundwater storage) reservoirs to represent the vertical dynamics of soil moisture. Here, emphasis is
given to the soil profile storage, which represents water stored in the top layer of the soil. Its principal
input parameter is the initial condition of the soil, which is determined as the degree of saturation S
(%) at the beginning of the simulation. Here, we consider that S can be estimated directly from the
SMC derived from the satellite data and the soil porosity ε (dimensionless) using:

S =
θν

ε
× 100 (2)

When infiltration capacity is reached, excess precipitation is generated. The Snyder (1938)
synthetic unit hydrograph (UH) method which relates the watershed’s physical characteristics to
the basic parameters of the UH is used for transforming excess precipitation to runoff. Subsurface
calculations are performed using the recession base flow method, which is intended for event
simulation. Finally, the Muskingum routing method performs the calculations in the reach using
a simple conservation of mass approach to route flow through the stream reach, whereas interactions
with the subsurface are performed by the constant loss/gain method contained within the reach.

Three criteria are mainly used to assess the effectiveness of each network and its ability to make
precise predictions: RMSE indicates the discrepancy between the observed and calculated values, and
R2 representing the percentage of the initial uncertainty explained by the model. The performance
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of the hydrological model is assessed using Nash-Sutcliffe efficient (NSE) coefficient [63] which is
a measure of the model quality with respect to the representation of the variance of the data:

NSE = 1 − ∑(yi − ŷi)
2

∑n
i=1(yi − y)2 (3)

where y is the mean value of the n observations. The perfect fit between observed and calculated
values would have RMSE = 0, R2 = 1 and NSE = 1. Finally, absolute percentage error (APE) given by
APE = |(yi − ŷi)/yi| is also used to assess hydrological model performance.

4. Results and Discussion

The ANN MLP simulation results (Figure 5) produced good agreement with the ground truth
data in terms of R2 and RMSE (Table 3).
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Table 3. Statistics of R2 and RMSE concerning the performance of MPL ANN algorithm in the different
SMC gauge stations.

# Study Area R2 RMSE

1 Marathi 0.867 0.022
2 Neo Horio 0.842 0.041
3 Alikampos 0.914 0.031
4 TUC 0.810 0.047
5 Overall (All the study sites) 0.500 0.042
6 Study Areas: Neo Horio, Marathi, Alikampos 0.829 0.040
7 Study Areas: Neo Horio, TUC, Alikampos 0.819 0.048
8 Study Areas: Alikampos, Marathi, TUC 0.657 0.033
9 Study Areas: TUC, Marathi, Alikampos 0.400 0.058
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In order to assess the model’s performance, the leave-one-out cross validation method is applied.
Specifically, each time the ground SMC measurements of a SMC gauge station is treated as prediction
points and compared to the output of the ANN model. Results show that the elimination of the TUC
field from the overall model improved its performance. Most importantly, the fact that a single network
can yield acceptable results for all fields underlines the ability of ANNs to spatially extrapolate SMC
estimates. In addition, the comparison of observed and calculated SMC measurements highlighted
the fact that the optimal performance of the ANN network is observed during summer and spring
rather than winter and autumn period. Finally, a sensitivity analysis is performed to define the relative
importance of each individual parameter in the SMC detection methodology (Table 4). Results denote
that among the different input parameters, NDVI is the most important for the smooth performance of
the ANN. However, the final results highlight the need of the synergistic use of the four individual
parameters for the optimum performance of the model.

The flow event on April 2015 was investigated in order to apply the saturation degree values
obtained from the satellite SMC measured on 10 April 2015. For this purpose, the already trained
ANN model was implemented over Keramianos watershed (ungauged in terms of SMC) grid cells
using the same parametrization and producing a spatially distributed SMC estimation. The final
developed map (30 m pixel resolution) was spatially masked due to the partial cloud and snow cover
of Landsat 8 image within Keramianos watershed during flow event (Figure 6).
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Figure 6. Soil Moisture Content map in Keramianos basin and broader area. The snow and cloud cover
area is indicated with grey colour.

Since the SMA method implementation of HEC-HMS accepts a single value to describe the
SMC of the lamped watershed, the average value of the estimated SMC grid cells (masked area) is
used. Average SMC before the rain event is estimated at 0.3334 m3 m−3 (S = 65.5%) and for this
value the simulation results yield a satisfactory performance when compared against observations
(NSE = 0.712, R2 = 0.726; Table 5). For the average S the equivalent water volume is simulated at
1.05 mm, underestimating the observed volume by 12.5% (Table 5). In Table 5, model efficiency criteria
are also shown for ±10% and ±20% variations to the average SMC value used as input in HEC-HMS.
The simulated equivalent water volume is strongly affected by the satellite-derived SMC values,
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ranging from 0.57 mm (10% decrease of SMC average value) to 1.54 mm (10% increase of SMC average
value), or −53% and +28% from the observed value, respectively.

Based on the results of Table 5, Figure 7a shows the modelled instantaneous flow for the average
SMC value and the ±10% variation as a function of the observed flow time series (±20% not shown for
simplicity). Figure 7b translates these values (including the±20% variation) for cumulative flow values.
The percentages in the Figure 7b demonstrate the increase or decrease of the respective simulated
equivalent water volume versus the observed equivalent water volume value, also shown in Table 5.
The simulated flow time series, using the initial average satellite SMC estimate, fits adequately with
the flow observations (R2 = 0.726), whereas the percentage variation of the specific value denotes
that model results are very sensitive to variations of the saturation degree. Besides this sensitivity,
satellite-based SMC estimates are adequate to result into a good fit.Sensors 2017, 17, 1455 11 of 16 
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Table 4. Sensitivity analysis results of the input factors. Bold values inside brackets indicate the
percent difference between the leave-one-out results and the results including all the parameters
(according to Table 3).

Subtracted
Parameter

Marathi Neo Horio Alikampos TUC All Fields

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

σ0
db

0.724
0.057

0.846
0.055

0.867
0.036 0.811 0.044

0.745
0.044(−17%) (+0.4) (−6%) (+50%)

NDVI
0.338

0.052
0.569

0.059
0.506

0.072
0.552

0.082
0.349

0.069(−62%) (−35%) (−35%) (−32%) (31%)

TIRn
0.774

0.039
0.895

0.028
0.664

0.066
0.781

0.053
0.509

0.062(−10%) (+6%) (−28%) (−4%) (+1.8%)

ϑ
0.788

0.034
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0.032
0.857

0.035
0.843

0.041
0.746

0.051(−9%) (+3%) (−7%) (+4%) (+50%)

Table 5. Model results according to the degree of saturation S parameter change.

SMC
Scenario

Satellite SMC
(m3 m−3)

Degree of Saturation,
S (%) NSE R2 Simulated Equivalent

Volume, Q (mm) APE (%)

−20% 0.2667 52.4 0.016 0.356 0.05 95.8
−10% 0.3001 58.9 0.494 0.555 0.57 52.5

Average
SMC 0.3334 65.5 0.712 0.726 1.05 12.5

+10% 0.3667 72.0 0.556 0.599 1.54 28.3
+20% 0.4001 78.5 0.253 0.525 2.12 76.7
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A more thorough sensitivity analysis is conducted by applying the entire range of the spatial
variability of satellite-predicted SMC in the watershed to HEC-HMS. The behavior of the estimated
NSE and APE of the resulting flow depending on the percentile of SMC used are shown in Figure 8.
Values of SMC between percentiles 50–60% indeed yield acceptable values of model error. Beyond
the range of percentiles 50–60% the model results deteriorate fast, which effectively shows the model
sensitivity to the parameter of the degree of soil saturation. Moreover, the model generates no flow for
S under 40% (which coincides with the 30% percentile of values in the watershed) thus providing a feel
for the ability of the watershed to absorb runoff. This sensitivity of the hydrological model to small
fluctuations of SMC underlines the importance in the contribution of high quality remote sensing data
in reliable model output.
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5. Conclusions

This paper investigates the estimation of surface Soil Moisture Content (SMC) using multisource
and multi-temporal remote sensing data (Sentinel-1, Landsat 8) for use in hydrological applications.
Specifically, it aims to highlight the potential of the newly launched Sentinel 1 sensor in estimating SMC.
In addition, the proposed model incorporates four different input parameters in order to feed efficiently
an ANN model for estimating SMC. Finally, the manuscript aims to highlight the potential of satellite
remote sensing in providing essential input data to hydrological modeling. SMC is an indispensable
input data for hydrology. Due to the fact that the collection of in situ SMC data in remote areas is often
impractical or impossible, the development of alternative data collection methods is necessary.

The correction of SAR images in terms of vegetation effects and roughness was carried out by
coupling Dubois and Topp model. Lack of HH polarization information from the Sentinel-1 possibly
renders it applicable only for areas of low vegetation growth and density, which is nevertheless the
very case for many flood prone watersheds. Statistical analysis of remote sensing variables versus
ground SMC measurements showed that a non-linear approach can explain as much as 89.5% (Table 4)
of data uncertainty for the specific case study. ANNs are certainly a good option for the problem
at hand, being essentially non-parametric and requiring little understanding of the inner workings
between model variables input and output.

Concerning environmental parameters, the results in our case study denoted the fact that incidence
Angle ϑ is the least sensitive parameter, while NDVI is the most sensitive for the accurate estimation
of SMC. In addition, the thermal infrared temperature parameter seems to be important for the
overall performance of the model. Results demonstrate that the retrieval of SMC is possible at C-band
(VV polarization) by using an inversion algorithm that includes a compensation for the effects of
vegetation. Furthermore, it is possible that even the little vegetation present in the experimental fields is
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enough to induce attenuation in the measured backscattering. Hence, the complementary information
from optical/thermal infrared sensors was proved substantial for the optimum performance of the
model. Therefore, NDVI may be the most important parameter but all parameters are important for
the optimum results.

Soil moisture is a crucial factor when evaluating the initial conditions for flood prediction, through
an event-based rainfall–runoff model. The estimated SMC values for sub-basin ungauged for soil
moisture were used for the hydrologic simulation of a flow event. In this study, the hydrological
simulation parameterization has been improved through the use of satellite data permitting accurate
prediction of flood characteristics. Simulations have shown that a calibrated model can be very sensitive
to SMC, producing over 50% uncertain results even for low flows. Therefore, a precise estimation is
indispensable in order to yield meaningful results. In conclusion, the sensitivity of the hydrological
model results regarding the SMC values changes is evident, showing the importance of an accurate
initial soil moisture condition determination through the use of multisource and multi-temporal remote
sensing data (Sentinel-1, Landsat 8).

The presented methodology forms a sufficient method for the determination of initial soil moisture
conditions during the hydrologic analysis. It can be also used as an alternative to the data intensive
physical models. Furthermore, it highlights the potential of the ANN inversion model for the estimation
of Soil Moisture Content from SAR observations. Future research will focus on further data collection
for a more accurate validation of the results at a wider range of stream flows and vegetation cover.
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