A Framework to Predict High-Resolution Spatiotemporal PM2.5 Distributions Using a Deep-Learning Model: A Case Study of Shijiazhuang, China
"> Figure 1
<p>The study area (Shijiazhuang City) and the distributions of the air quality sites and meteorology stations in and around it.</p> "> Figure 2
<p>The workflow of the framework to predict PM<sub>2.5</sub>. The definitions of abbreviations are as follows: GEOS FP (Goddard Earth Observing System forward-processing), PBLH (planetary boundary layer height), MCD19A2 (Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm-based Level 2 gridded (L2G)), AOD (aerosol optical depth), IDW (inverse distance weighted), RHU(relative humidity), PRE (precipitation), NDVI (normalized difference vegetation index), DEM (DEM), SPOT/VEGETATION (Satellite Pour l’Observation de la Terre Vegetation) ERA (ECMWF Reanalysis), SRTM (Shuttle Radar Topography Mission), XGBoost (eXtreme gradient boosting), ConvLSTM (convolutional long short-term memory), SARIMA (seasonal autoregressive integrated moving average). And the correspondence of the colors and steps are as follows: step 1 (blue), 2 (green), 3 (brown), 4 (purple), 5 (yellow), 6 (dark blue), 7 (dark green), 8 (black) and 9 (red).</p> "> Figure 3
<p>The frequency histogram of the AOD maps with missing values, where the orange bars illustrate the volumes of the frequency. For example, there are 40 AODs (<math display="inline"><semantics> <mrow> <mn>151</mn> <mo>×</mo> <mn>26</mn> <mo>%</mo> <mo>≈</mo> <mn>40</mn> </mrow> </semantics></math>) that have 0%–10% missing value cells, which is shown as the first bar from the left.</p> "> Figure 4
<p>The workflow of the Block Statistics and Missing-value Padding (BSMP) method. Padded (white) cells in (<b>a</b>) have no values where (<b>a</b>) shows the original raster of a case of AOD distribution. (<b>b</b>) shows the process of the block statistic for the original raster, while the result of the BSMP after one round has been shown in (<b>c</b>).</p> "> Figure 5
<p>The validation strategy for time series PM<sub>2.5</sub> distributions. Every square block represents one day’s PM<sub>2.5</sub> data. The training and prediction days’ data have been differentiated using blue and orange colors. Some days, data has not been displayed, as it makes the figure too wide to be displayed and are represented by symbol ellipses (“…”), such as February and March.</p> "> Figure 6
<p>Examples of the distributions of the 6 factors that contribute to the PM<sub>2.5</sub>-AOD relationship. (<b>a</b>–<b>d</b>) show cases of the albedo, precipitation, relative humidity and wind speed distributions in Jan 2019; (<b>e</b>) shows the elevation distribution of the study area, while (<b>f</b>) illustrates the NDVI that in Dec 2018. In (<b>b</b>), because there is no precipitation in that day, the black cells, which mean the 0 values, cover the whole study area.</p> "> Figure 7
<p>An example of the processing of the BSMP method using an AOD-2 distribution from the 1 January 2019. (<b>a</b>) shows the AOD-2, and (<b>b</b>–<b>f</b>) illustrate the 5 rounds of BSMP to get the final used AOD-2 distribution. “SJZ” is the abbreviation of Shijiazhuang City; “AOD-2” is not the original AOD but the corrected AOD using Equations (1) and (2).</p> "> Figure 8
<p>The relationship of the AOD and PM<sub>2.5</sub> and the regression results of XGBoost: (<b>a</b>) is the linear regression result of the AOD and PM<sub>2.5</sub> where red points are the fitting coordinate points, (<b>b</b>) shows the prediction and comparison results of the observed and estimated PM<sub>2.5</sub> illustrated by green points and (<b>c</b>) is the importance analysis result that shows the feature importance ranking for the trained XGBoost model with blue bars. ALB means albedo.</p> "> Figure 9
<p>Five examples of the estimated PM<sub>2.5</sub> distributions. (<b>a</b>–<b>e</b>) show the examples of the first days of the months from January to May.</p> "> Figure 10
<p>Predicted PM<sub>2.5</sub> loss versus epoch number. Legend Group 0 to 9 shows the loss changing situations for 1 to 10 groups.</p> "> Figure 11
<p>The tested ConvLSTM-prediction, and the SARIMA-prediction, for PM<sub>2.5</sub>. (<b>a</b>–<b>j</b>) illustrate the 10 group comparison results, respectively. “Date index” is defined as the 28 predicted days in each group based on <a href="#remotesensing-12-02825-f005" class="html-fig">Figure 5</a>, in different subplots; the index represents different ranges of dates, i.e., in Group 0, index 0 to 27 represents the dates 25 April to 22 May, while it represents the dates 26 April to 23 May in Group 1.</p> "> Figure 12
<p>The root mean square errors (RMSEs) of the SARIMA and ConvLSTM models in time. All groups’ data share the same x-axis, while, in the y-axis, there are 10 bins, such that every bin spans the RMSE from 0 to 50, where 50 could also be the start of the next bin.</p> "> Figure 13
<p>Frequency distribution histogram of the RMSEs of the SARIMA and ConvLSTM models in space. The x-axis of all subplots shows the RMSE values, while the y-axis represents the frequency. (<b>a</b>–<b>t</b>) alternately represent the RMSE frequency distribution of SARIMA (red bars) and ConvLSTM (blue bars).</p> "> Figure 14
<p>The spatial distribution of the RMSEs of the SARIMA and ConvLSTM models. (<b>a</b>–<b>t</b>) alternately show the RMSE maps of the SARIMA and ConvLSTM in Shijiazhuang. The color bar from left to right are from white, blue to red, green, and final to dark. The more left the color is, the larger the value of RMSE is.</p> ">
Abstract
:1. Introduction
2. Literature Review
3. Data and Method
3.1. Data
3.1.1. Study Area and Period
3.1.2. Data Sources
3.2. Method
3.2.1. Part 1: High-Resolution AOD Acquisition and Correction
3.2.2. Part 2: Regression Modeling to Compute High-Resolution PM2.5
3.2.3. Part 3: Prediction of High-Resolution PM2.5 Distributions
4. Results
4.1. Data Reprocessing
4.1.1. Data Preparation for Estimation Models
4.1.2. BSMP Processing
4.2. PM2.5 Estimation Model
4.2.1. Model Performance and Comparison
- Ridge: alpha = 0.001 (alpha is the regularization strength).
- LASSO: alpha = 0.001 (alpha is the constant that multiplies the L1 term).
- Cubist: committees = 1000.
- XGBoost: max_depth = 8, subsample = 0.8, colsample_bytree = 0.8, eta = 0.3 and num_boost_round = 1000. (The max_depth is the maximum depth of a tree, subsample is the subsample ratio of the training instances, colsample_bytree is the subsample ratio of columns when constructing each tree and num_boost_round is the number of boosting iterations.).
4.2.2. XGBoost Estimation
4.3. Prediction
4.3.1. SARIMA
4.3.2. ConvLSTM
4.4. Accuracy Analysis
4.4.1. Comparison in Time
4.4.2. Comparison in Space
5. Discussion
5.1. The Characteristics of the Prediction Framework
5.2. Contributions
- (1)
- We present a framework that not only estimates the spatially continuous PM2.5 distributions but, also, predicts the distributions in the future at high-resolution resolutions in time and space.
- (2)
- In the spatial estimation process, we compare some popular regression models and machine-learning methods to select the most accurate model to be used in the framework.
- (3)
- In the prediction process, we use a ConvLSTM model, as a proven accurate deep-learning model, for the reason that we need to consider the spatial autocorrelation. This is a key process used for prediction related to a continuous region, compared with a traditional time series prediction model and seasonal autoregressive integrated moving average (SARIMA), and is used to test the accuracy and stability of the ConvLSTM.
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fan, Y.; Rui, X.; Poslad, S.; Zhang, G.; Yu, T.; Xu, X.; Song, X. A better way to monitor haze through image based upon the adjusted LeNet-5 CNN model. Signal Image Video Process. 2019, 14, 455–463. [Google Scholar] [CrossRef]
- Tao, M.; Chen, L.; Wang, Z.; Ma, P.; Tao, J.; Jia, S. A study of urban pollution and haze clouds over northern China during the dusty season based on satellite and surface observations. Atmos. Environ. 2014, 82, 183–192. [Google Scholar] [CrossRef]
- Ziomas, I.C.; Melas, D.; Zerefos, C.S.; Bais, A.F.; Paliatsos, A.G. Forecasting peak pollutant levels from meteorological variables. Atmos. Environ. 1995, 29, 3703–3711. [Google Scholar] [CrossRef]
- Chaloulakou, A.; Kassomenos, P.; Spyrellis, N.; Demokritou, P.; Koutrakis, P. Measurements of PM10 and PM2.5 particle concentrations in Athens, Greece. Atmos. Environ. 2003, 37, 649–660. [Google Scholar] [CrossRef]
- Hussein, T.; Karppinen, A.; Kukkonen, J.; Härkönen, J.; Aalto, P.P.; Hämeri, K.; Kerminen, V.-M.; Kulmala, M. Meteorological dependence of size-fractionated number concentrations of urban aerosol particles. Atmos. Environ. 2006, 40, 1427–1440. [Google Scholar] [CrossRef]
- Barlow, P.G.; Brown, D.M.; Donaldson, K.; Maccallum, J.; Stone, V. Reduced alveolar macrophage migration induced by acute ambient particle (PM10) exposure. Cell Boil. Toxicol. 2007, 24, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Dockery, D.W. Health Effects of Particulate Air Pollution. Ann. Epidemiol. 2009, 19, 257–263. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Quan, J.; Tie, X.; Li, X.; Liu, Q.; Gao, Y.; Zhao, D. Effects of meteorology and secondary particle formation on visibility during heavy haze events in Beijing, China. Sci. Total Environ. 2015, 502, 578–584. [Google Scholar] [CrossRef]
- Ebenstein, A.; Fan, M.; Greenstone, M.; He, G.; Zhou, M. New evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River Policy. Proc. Natl. Acad. Sci. USA 2017, 114, 10384–10389. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Hu, X.; Huang, L.; Bi, J.; Liu, Y. Estimating Ground-Level PM2.5 in China Using Satellite Remote Sensing. Environ. Sci. Technol. 2014, 48, 7436–7444. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, H.; Chen, S.; Wiedinmyer, C.; Vandenberghe, F.; Ying, Q.; Kleeman, M.J. Predicting Primary PM2.5 and PM0.1 Trace Composition for Epidemiological Studies in California. Environ. Sci. Technol. 2014, 48, 4971–4979. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, X.; Zhu, X.; Zhang, H.; Gao, J.; Hopke, P.K. Chemical Characteristics of PM2.5 during a 2016 Winter Haze Episode in Shijiazhuang, China. Aerosol Air Qual. Res. 2017, 17, 368–380. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Rui, X.; Fan, Y. Critical Review of Methods to Estimate PM2.5 Concentrations within Specified Research Region. ISPRS Int. J. Geo-Inf. 2018, 7, 368. [Google Scholar] [CrossRef] [Green Version]
- Hwa-Lung, Y.; Chih-Hsin, W. Retrospective prediction of intraurban spatiotemporal distribution of PM2.5 in Taipei. Atmos. Environ. 2010, 44, 3053–3065. [Google Scholar] [CrossRef]
- Zhao, R.; Gu, X.; Xue, B.; Zhang, J.; Ren, W. Short period PM2.5 prediction based on multivariate linear regression model. PLoS ONE 2018, 13, e201011. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, L.; Zhang, L. Research on Application of BP Artificial Neural Network in Prediction of the concentration of PM2.5 in Beijing. In Proceedings of the 2015 4th International Conference on Sensors, Measurement and Intelligent Materials, Shenzhen, China, 27–28 December 2015. [Google Scholar]
- Ai, H.; Shi, Y. Application of GM (1, 1) model in PM2.5 content prediction. In Proceedings of the International Conference on Education, Management and Computing Technology (ICEMCT-16), Hangzhou, China, 9–10 April 2016. [Google Scholar]
- Pan, B. Application of XGBoost algorithm in hourly PM2.5 concentration prediction. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Harbin, China, 8–10 December 2017; Volume 113, p. 012127. [Google Scholar]
- Huang, J.; McQueen, J.; Wilczak, J.; Djalalova, I.; Stajner, I.; Shafran, P.; Allured, D.; Lee, P.; Pan, L.; Tong, D.; et al. Improving NOAA NAQFC PM2.5 Predictions with a Bias Correction Approach. Weather Forecast. 2017, 32, 407–421. [Google Scholar] [CrossRef]
- Song, L.; Pang, S.; Longley, I.; Olivares, G.; Sarrafzadeh, A. Spatio-temporal PM2.5 prediction by spatial data aided incremental support vector regression. In Proceedings of the 2014 International Joint Conference on Neural Networks (IJCNN), Beijing, China, 6–11 July 2014; pp. 623–630. [Google Scholar]
- Zong, R.; Zhang, T.; Chen, Z.; Zhu, Y. Cross-city PM2.5 predictions with recurrent neural network. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Seoul, South Korea, 26–29 January 2019. [Google Scholar]
- Zhang, G.; Rui, X.; Poslad, S.; Song, X.; Fan, Y.; Wu, B. A Method for the Estimation of Finely-Grained Temporal Spatial Human Population Density Distributions Based on Cell Phone Call Detail Records. Remote Sens. 2020, 12, 2572. [Google Scholar] [CrossRef]
- Chen, Y. Prediction algorithm of PM2.5 mass concentration based on adaptive BP neural network. Computing 2018, 100, 825–838. [Google Scholar] [CrossRef]
- Sun, W.; Sun, J. Daily PM2.5 concentration prediction based on principal component analysis and LSSVM optimized by cuckoo search algorithm. J. Environ. Manag. 2017, 188, 144–152. [Google Scholar] [CrossRef]
- Bahari, R.A.; Abbaspour, R.A.; Pahlavani, P. Prediction of PM2.5 concentrations using temperature inversion effects based on an artificial neural network. In Proceedings of the 1st ISPRS International Conference on Geospatial Information Research, Tehran, Iran, 15–17 November 2014; pp. 73–77. [Google Scholar]
- Jiang, P.; Dong, Q.; Li, P. A novel hybrid strategy for PM2.5 concentration analysis and prediction. J. Environ. Manag. 2017, 196, 443–457. [Google Scholar] [CrossRef]
- Lorenz, E.N.; Haman, K. The essence of chaos. Pure Appl. Geophys. 1996, 147, 598–599. [Google Scholar]
- Zheng, Y.; Zhang, Q.; Wang, Z.; Zhu, Y. Application research on PM2.5 concentration prediction of multivariate chaotic time series. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Chengdu, China, 7–9 December 2018; Volume 237, p. 022010. [Google Scholar]
- Haiming, Z.; Xiaoxiao, S. Study on Prediction of Atmospheric PM2.5 Based on RBF Neural Network. In Proceedings of the 2013 Fourth International Conference on Digital Manufacturing & Automation, Qingdao, China, 29–30 June 2013; pp. 1287–1289. [Google Scholar]
- Zhang, C.; Wang, X.; Chen, S.; Zou, L.; Tang, C. PM2.5 Prediction based on Multifractal Dimension and Artificial Bee Colony Algorithm. In Proceedings of the Journal of Physics: Conference Series, Xi’an, China, 29–31 March 2019; Volume 1237, p. 022085. [Google Scholar]
- Liu, Y.; Zheng, H.; Feng, X.; Chen, Z. Short-term traffic flow prediction with Conv-LSTM. In Proceedings of the 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 11–13 October 2017; pp. 1–6. [Google Scholar]
- Qiao, H.; Wang, T.; Wang, P.; Qiao, S.; Zhang, L. A Time-Distributed Spatiotemporal Feature Learning Method for Machine Health Monitoring with Multi-Sensor Time Series. Sensors 2018, 18, 2932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Z.; Zhou, X.; Yang, T. Hetero-convlstm: A deep learning approach to traffic accident prediction on heterogeneous spatio-temporal data. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London UK, 19–23 August 2018; pp. 984–992. [Google Scholar]
- Zhang, G.; Rui, X.; Poslad, S.; Song, X.; Fan, Y.; Ma, Z. Large-Scale, Fine-Grained, Spatial, and Temporal Analysis, and Prediction of Mobile Phone Users’ Distributions Based upon a Convolution Long Short-Term Model. Sensors 2019, 19, 2156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Ho, H.C.; Wong, M.S.; Deng, C.; Shi, Y.; Chan, T.-C.; Knudby, A. Evaluation of machine learning techniques with multiple remote sensing datasets in estimating monthly concentrations of ground-level PM2.5. Environ. Pollut. 2018, 242, 1417–1426. [Google Scholar] [CrossRef] [PubMed]
- Lasaponara, R. On the use of principal component analysis (PCA) for evaluating interannual vegetation anomalies from SPOT/VEGETATION NDVI temporal series. Ecol. Model. 2006, 194, 429–434. [Google Scholar] [CrossRef]
- Jarlan, L.; Mangiarotti, S.; Mougin, E.; Mazzega, P.; Hiernaux, P.; Le Dantec, V. Assimilation of SPOT/VEGETATION NDVI data into a sahelian vegetation dynamics model. Remote Sens. Environ. 2008, 112, 1381–1394. [Google Scholar] [CrossRef]
- Alizadeh-Choobari, O.; Adibi, P.; Irannejad, P. Impact of the El Niño–Southern Oscillation on the climate of Iran using ERA-Interim data. Clim. Dyn. 2017, 51, 2897–2911. [Google Scholar] [CrossRef]
- Berrisford, P.; Dee, D.; Fielding, K.; Fuentes, M.; Kallberg, P.; Kobayashi, S.; Uppala, S. The ERA-Interim Archive; ERA Report Series; European Centre for Medium-Range Weather Forecasts: Shinfield Park, UK, 2009; pp. 1–16. [Google Scholar]
- Rabus, B.; Eineder, M.; Roth, A.; Bamler, R. The shuttle radar topography mission—A new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens. 2003, 57, 241–262. [Google Scholar] [CrossRef]
- Farr, T.; Kobrick, M. Shuttle radar topography mission produces a wealth of data. EOS 2000, 81, 583. [Google Scholar] [CrossRef]
- Zhou, C.H.; Cheng, W.M. Research and compilation of the Geomorphological Atlas of the People’s Republic of China. Geogr. Res. 2010, 29, 970–979. (In Chinese) [Google Scholar]
- Paciorek, C.J.; Liu, Y.; Moreno-Macias, H.; Kondragunta, S. Spatiotemporal Associations between GOES Aerosol Optical Depth Retrievals and Ground-Level PM2.5. Environ. Sci. Technol. 2008, 42, 5800–5806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies. Geophys. Res. Lett. 2003, 30, 30. [Google Scholar] [CrossRef]
- Koelemeijer, R.; Homan, C.; Matthijsen, J. Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe. Atmos. Environ. 2006, 40, 5304–5315. [Google Scholar] [CrossRef]
- Qu, W.; Wang, J.; Zhang, X.; Sheng, L.; Wang, W. Opposite seasonality of the aerosol optical depth and the surface particulate matter concentration over the north China Plain. Atmos. Environ. 2016, 127, 90–99. [Google Scholar] [CrossRef]
- Sibson, R. A brief description of natural neighbour interpolation. In Interpreting Multivariate Data; John Wiley & Sons: New York, NY, USA, 1981; pp. 21–36. [Google Scholar]
- Watson, D. Contouring: A Guide to the Analysis and Display of Spatial Data; Pergamon Press: London, UK, 1992; pp. 120–123. [Google Scholar]
- Philip, G.M.; Watson, D.F. A precise method for determining contoured surfaces. APPEA J. 1982, 22, 205–212. [Google Scholar] [CrossRef]
- Watson, D.F.; Philip, G. A refinement of inverse distance weighted interpolation. Geo-Processing 1985, 2, 315–327. [Google Scholar]
- Tian, J.; Chen, N. A semi-empirical model for predicting hourly ground-level fine particulate matter (PM2.5) concentration in southern Ontario from satellite remote sensing and ground-based meteorological measurements. Remote Sens. Environ. 2010, 114, 221–229. [Google Scholar] [CrossRef]
- Chen, Z.-Y.; Zhang, T.; Zhang, R.; Zhu, Z.; Ou, C.-Q.; Guo, Y. Estimating PM2.5 concentrations based on non-linear exposure-lag-response associations with aerosol optical depth and meteorological measures. Atmos. Environ. 2018, 173, 30–37. [Google Scholar] [CrossRef]
- Liu, Y.; Paciorek, C.J.; Koutrakis, P. Estimating Regional Spatial and Temporal Variability of PM2.5 Concentrations Using Satellite Data, Meteorology, and Land Use Information. Environ. Heal. Perspect. 2009, 117, 886–892. [Google Scholar] [CrossRef] [Green Version]
- Sorek-Hamer, M.; Strawa, A.; Chatfield, R.; Esswein, R.; Cohen, A.; Broday, D. Improved retrieval of PM2.5 from satellite data products using non-linear methods. Environ. Pollut. 2013, 182, 417–423. [Google Scholar] [CrossRef]
- Lary, D.J.; Lary, T.; Sattler, B. Using Machine Learning to Estimate Global PM2.5 for Environmental Health Studies. Environ. Health Insights 2015, 9 (Suppl. 1), 41–52. [Google Scholar] [CrossRef]
- Song, W.; Jia, H.; Huang, J.; Zhang, Y. A satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China. Remote Sens. Environ. 2014, 154, 1–7. [Google Scholar] [CrossRef]
- Van Donkelaar, A.; Martin, R.V.; Park, R.J. Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing. J. Geophys. Res. Space Phys. 2006, 111, 111. [Google Scholar] [CrossRef]
- Harrison, R.M.; Deacon, A.R.; Jones, M.R.; Appleby, R.S. Sources and processes affecting concentrations of PM10 and PM2.5 particulate matter in Birmingham (U.K.). Atmos. Environ. 1997, 31, 4103–4117. [Google Scholar] [CrossRef]
- Adams, H.; Nieuwenhuijsen, M.J.; Colvile, R. Determinants of fine particle (PM2.5) personal exposure levels in transport microenvironments, London, UK. Atmos. Environ. 2001, 35, 4557–4566. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, Y.-P.; Feng, J.; Guan, J.-J.; Zhao, W.; Li, H.-J. Characteristics and influencing factors of carbonaceous aerosols in PM2.5 in Shanghai, China. Huan Jing Ke Xue Huanjing Kexue 2010, 31, 1755–1761. [Google Scholar]
- Zalakeviciute, R.; López-Villada, J.; Rybarczyk, Y.P. Contrasted Effects of Relative Humidity and Precipitation on Urban PM2.5 Pollution in High Elevation Urban Areas. Sustainability 2018, 10, 2064. [Google Scholar] [CrossRef] [Green Version]
- Seinfeld, J.H.; Pandis, S.N.; Noone, K. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Phys. Today 1998, 51, 88. [Google Scholar] [CrossRef]
- Feng, X.; Wang, S. Influence of different weather events on concentrations of particulate matter with different sizes in Lanzhou, China. J. Environ. Sci. 2012, 24, 665–674. [Google Scholar] [CrossRef]
- Dong, Z.; Yu, X.; Li, X.; Dai, J. Analysis of variation trends and causes of aerosol optical depth in Shaanxi Province using MODIS data. Chin. Sci. Bull. 2013, 58, 4486–4496. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Gao, Y.; Fu, T.; Cheng, L.; Chen, Z.; Li, M. Estimation of Ground PM2.5 Concentrations using a DEM-assisted Information Diffusion Algorithm: A Case Study in China. Sci. Rep. 2017, 7, 15556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, J.D.; Reed, M.D.; Campen, M.J.; Barrett, E.G.; Seagrave, J.; Mauderly, J.L. Health Effects of Inhaled Gasoline Engine Emissions. Inhal. Toxicol. 2007, 19, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-D.; Chen, Y.-C.; Pan, W.-C.; Zeng, Y.-T.; Chen, M.-J.; Guo, Y.-L.L.; Lung, S.-C. Land-use regression with long-term satellite-based greenness index and culture-specific sources to model PM2.5 spatial-temporal variability. Environ. Pollut. 2017, 224, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Lu, N.; Jiang, S. Artificial Neural Network (ANN) for Multi-source PM2.5 Estimation Using Surface, MODIS, and Meteorological Data. In Proceedings of the 2012 International Conference on Biomedical Engineering and Biotechnology, Washington, DC, USA, 26–29 May 2012; pp. 1228–1231. [Google Scholar]
- Ma, Z.; Xie, Y.; Jiao, J.; Li, L.; Wang, X. The Construction and Application of an Aledo-NDVI Based Desertification Monitoring Model. Procedia Environ. Sci. 2011, 10, 2029–2035. [Google Scholar] [CrossRef] [Green Version]
- Noi, P.T.; Degener, J.; Kappas, M. Comparison of Multiple Linear Regression, Cubist Regression, and Random Forest Algorithms to Estimate Daily Air Surface Temperature from Dynamic Combinations of MODIS LST Data. Remote Sens. 2017, 9, 398. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Li, E.; Wei, H.; Li, C.; Qiao, Q.; Armaghani, D. Random Forests and Cubist Algorithms for Predicting Shear Strengths of Rockfill Materials. Appl. Sci. 2019, 9, 1621. [Google Scholar] [CrossRef] [Green Version]
- Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Quinlan, J.R. Learning with continuous classes. In Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, Hobart, Australia, 16–18 November 1992; pp. 343–348. [Google Scholar]
- Houborg, R.; McCabe, M.F. A hybrid training approach for leaf area index estimation via Cubist and random forests machine-learning. ISPRS J. Photogramm. Remote Sens. 2018, 135, 173–188. [Google Scholar] [CrossRef]
- John, R.; Chen, J.; Giannico, V.; Park, H.; Xiao, J.; Shirkey, G.; Yang, Z.; Shao, C.; Lafortezza, R.; Qi, J. Grassland canopy cover and aboveground biomass in Mongolia and Inner Mongolia: Spatiotemporal estimates and controlling factors. Remote Sens. Environ. 2018, 213, 34–48. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Chen, B.; Song, Y.; Jiang, T.; Chen, Z.; Huang, B.; Xu, B. Real-Time Estimation of Population Exposure to PM2.5 Using Mobile- and Station-Based Big Data. Int. J. Environ. Res. Public Health 2018, 15, 573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234. [Google Scholar] [CrossRef]
- Geurts, M.; Box, G.E.P.; Jenkins, G.M. Time Series Analysis: Forecasting and Control. J. Mark. Res. 1977, 14, 269. [Google Scholar] [CrossRef]
- Fu, R.; Zhang, Z.; Li, L. Using LSTM and GRU neural network methods for traffic flow prediction. In Proceedings of the 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan, China, 11–13 November 2016; pp. 324–328. [Google Scholar]
- Chen, K.; Zhou, Y.; Dai, F. A LSTM-based method for stock returns prediction: A case study of China stock market. In Proceedings of the 2015 IEEE International Conference on Big Data (Big Data), Santa Clara, CA, USA, 29 October–1 November 2015; pp. 2823–2824. [Google Scholar]
- Gers, F. Learning to forget: Continual prediction with LSTM. In Proceedings of the 9th International Conference on Artificial Neural Networks: ICANN ’99, Edinburgh, UK, 7–10 September 1999. [Google Scholar]
- Zhao, R.; Yan, R.; Wang, J.; Mao, K. Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks. Sensors 2017, 17, 273. [Google Scholar] [CrossRef] [PubMed]
- Xingjian, S.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.; Woo, W.-C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In Proceedings of the Advances in Neural Information Processing Systems, Cambridge, MA, USA, 7–12 December 2015; pp. 802–810. [Google Scholar]
- Devore, J.L. Probability and Statistics for Engineering and the Sciences; Cengage Learning: Boston, MA, USA, 2011. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
Model | CV-RMSE (µg/m3) | CV-R2 |
---|---|---|
Linear | 46.69 | 0.41 |
Ridge | 49.67 | 0.33 |
LASSO | 46.71 | 0.41 |
Cubist | 52.23 | 0.17 |
XGBoost | 32.86 | 0.71 |
Parameters | G0 | G1 | G2 | G3 | G4 | G5 | G6 | G7 | G8 | G9 |
---|---|---|---|---|---|---|---|---|---|---|
p | 18 | 30 | 18 | 18 | 30 | 30 | 12 | 18 | 12 | 18 |
d | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
q | 2 | 4 | 2 | 5 | 4 | 4 | 2 | 5 | 2 | 5 |
P | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
D | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Q | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
s | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
Model | G0 | G1 | G2 | G3 | G4 | G5 | G6 | G7 | G8 | G9 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|
C | 14.78 | 15.00 | 15.60 | 15.27 | 14.85 | 15.19 | 14.88 | 14.45 | 15.09 | 14.30 | 14.94 |
S | 17.15 | 22.33 | 16.14 | 16.67 | 21.79 | 20.53 | 14.39 | 15.68 | 14.10 | 15.29 | 17.41 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Lu, H.; Dong, J.; Poslad, S.; Li, R.; Zhang, X.; Rui, X. A Framework to Predict High-Resolution Spatiotemporal PM2.5 Distributions Using a Deep-Learning Model: A Case Study of Shijiazhuang, China. Remote Sens. 2020, 12, 2825. https://doi.org/10.3390/rs12172825
Zhang G, Lu H, Dong J, Poslad S, Li R, Zhang X, Rui X. A Framework to Predict High-Resolution Spatiotemporal PM2.5 Distributions Using a Deep-Learning Model: A Case Study of Shijiazhuang, China. Remote Sensing. 2020; 12(17):2825. https://doi.org/10.3390/rs12172825
Chicago/Turabian StyleZhang, Guangyuan, Haiyue Lu, Jin Dong, Stefan Poslad, Runkui Li, Xiaoshuai Zhang, and Xiaoping Rui. 2020. "A Framework to Predict High-Resolution Spatiotemporal PM2.5 Distributions Using a Deep-Learning Model: A Case Study of Shijiazhuang, China" Remote Sensing 12, no. 17: 2825. https://doi.org/10.3390/rs12172825
APA StyleZhang, G., Lu, H., Dong, J., Poslad, S., Li, R., Zhang, X., & Rui, X. (2020). A Framework to Predict High-Resolution Spatiotemporal PM2.5 Distributions Using a Deep-Learning Model: A Case Study of Shijiazhuang, China. Remote Sensing, 12(17), 2825. https://doi.org/10.3390/rs12172825