A Method for the Estimation of Finely-Grained Temporal Spatial Human Population Density Distributions Based on Cell Phone Call Detail Records
"> Figure 1
<p>The overview of the call detail record (CDR)-driven population distribution modeler.</p> "> Figure 2
<p>An example of the spatial structure of the Tencent positioning data for the Beijing region.</p> "> Figure 3
<p>Three cases of deep convolutional generative adversarial network (DCGAN) training images mapped by Tencent positioning big data. (<b>a</b>) to (<b>c</b>) from Beijing, Nanjing and Shanghai cities on 20:00 p.m. 29 April, 2019, respectively.</p> "> Figure 4
<p>Beijing population density distribution from the government census in 2010.</p> "> Figure 5
<p>The architecture of the generator and the discriminator in a DCGAN model. FSC is the abbreviation of fractionally-strided convolution; conv is the abbreviation of convolution.</p> "> Figure 6
<p>The sample region of base station Voronoi polygon in an experiment.</p> "> Figure 7
<p>The structure of area distribution of Voronoi polygon for the: (<b>a</b>) whole of Beijing and (<b>b</b>) study sample region.</p> "> Figure 8
<p>How the loss of discriminator (d_loss) and generator (g_loss) changes with increasing epochs.</p> "> Figure 9
<p>Greyscale results of people population density distribution generated by DCGAN.</p> "> Figure 10
<p>Kernel density map of the estimated people density distribution for one example test, using different rendering results according to different sampling number points. The first one is the baseline artificial map, and the second one is the same distribution, but where the density is classified into 15 classes, to show the difference between images and raster grids map rendered by kernel density estimation (KDE). The other 10 images are the estimated results using our method when we sample different points as mobile phone users from 1000 to 10,000.</p> "> Figure 11
<p>The relationship between similarity and input images with different sampling numbers.</p> "> Figure 12
<p>The instruction of the density value computing and the relationship between it and image resolutions.</p> "> Figure 13
<p>The relationship between similarity and the resolution of input images.</p> "> Figure 14
<p>The relationship between base-station–user interaction frequency and time over a day.</p> "> Figure 15
<p>Estimated population density distribution in Beijing on 17/2/2015.</p> "> Figure 16
<p>The location of Shunyi District and Beijing Capital International Airport.</p> "> Figure 17
<p>Estimated population density distribution on 17/2/2015 for the Shunyi District in Beijing: the 4 images in the first column are the distributions at 1:00, 1:30, 2:00 and 2:30 a.m., while the next 4 images in the second column are from 09:00 to 10:30 A.M, and the 4 images in the last column are for the end of the day.</p> "> Figure 18
<p>The comparison of D1, D2 and D3 results: (<b>a</b>) shows the RMSEs (Y-axes) for three comparison: estimation and the census data, users and census data, records and census data; (<b>b</b>) shows the estimation result of population density compared to the census data; (<b>c</b>) illustrates the single-users-used result compared to the single-records-used result. (<b>b</b>) and (<b>c</b>) share the same <span class="html-italic">x</span>-axis.</p> ">
Abstract
:1. Introduction
- (1)
- We present a simple method to estimate dynamic, actual, people’s density distributions, effectively, based on CDR data.
- (2)
- We specify an experimental framework to test the robustness and accuracy of our estimation method using artificial people’s density distributions generated by a deep learning method using a deep convolutional generative adversarial network (DCGAN).
- (3)
- Our estimation method can provide a faster, simpler process to estimate and map out actual people’s density distributions at an hourly temporal resolution, which can be used to understand people’s dynamic hot-spots or crowd distributions in large, city-wide, urban areas.
2. Related Work
3. Data and Method
3.1. Data
3.1.1. Tencent Positioning Big Data
3.1.2. Call Detail Records Data from Beijing, China
3.1.3. Census Data of Beijing, China
3.2. Method
3.2.1. Part 1, Step 1: Building Artificial Distributions Based on a DCGAN
3.2.2. Part 1, Step 2: Random Sampling of CDR
3.2.3. Part 1, Step 3: Population Distribution Estimation Method
3.2.4. Part 1, Step 4: Comparison 1 of Artificial Actual and Estimated Population Distributions
3.2.5. Part 2, Steps 5 and 6: Application in Beijing
4. Results and Discussion
4.1. Part1: Results of the Process
4.1.1. Step 1: Generated Images and Baseline Distribution
4.1.2. Step 2-3: Estimation Process
4.1.3. Step 4: Comparison 1
4.2. Part2: An Application in Beijing
4.2.1. The Extraction and Analysis of Mobile Phone Users in CDRs
4.2.2. Dynamic Estimation of Half Hourly Temporal Population Density Distribution
4.2.3. Comparison 2: Results Are Compared with the Single Users/Records Number in CDRs
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Becker, R.A.; Caceres, R.; Hanson, K.; Loh, J.M.; Urbanek, S.; Varshavsky, A.; Volinsky, C. A tale of one city: Using cellular network data for urban planning. IEEE Pervasive Comput. 2011, 10, 18–26. [Google Scholar] [CrossRef]
- De Nadai, M.; Staiano, J.; Larcher, R.; Sebe, N.; Quercia, D.; Lepri, B. The death and life of great Italian cities: A mobile phone data perspective. In Proceedings of the 25th International Conference on World Wide Web, Montreal, QC, Canada, 11–15 April 2016; pp. 413–423. [Google Scholar]
- Tao, S.; Corcoran, J.; Mateo-Babiano, I.; Rohde, D. Exploring Bus Rapid Transit passenger travel behaviour using big data. Appl. Geogr. 2014, 53, 90–104. [Google Scholar] [CrossRef]
- Traag, V.A.; Browet, A.; Calabrese, F.; Morlot, F. Social event detection in massive mobile phone data using probabilistic location inference. In Proceedings of the 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing, Boston, MA, USA, 9–11 October 2011; pp. 625–628. [Google Scholar]
- Li, Q.; Xu, B.; Ma, Y.; Chung, T. Real-time monitoring and forecast of active population density using mobile phone data. In Proceedings of the National Conference on Big Data Technology and Applications, Harbin, China, 25–26 December 2015; pp. 116–129. [Google Scholar]
- Zhou, J.; Pei, H.; Wu, H. Early Warning of Human Crowds Based on Query Data from Baidu Maps: Analysis Based on Shanghai Stampede. In Big Data Support of Urban Planning and Management; Springer: Berlin/Heidelberg, Germany, 2018; pp. 19–41. [Google Scholar]
- Bengtsson, L.; Lu, X.; Thorson, A.; Garfield, R.; Von Schreeb, J. Improved response to disasters and outbreaks by tracking population movements with mobile phone network data: A post-earthquake geospatial study in Haiti. PLoS Med. 2011, 8, e1001083. [Google Scholar] [CrossRef] [PubMed]
- Min, G.Y.; Jeong, D.H. Research on assessment of impact of big data attributes to disaster response decision-making process. J. Soc. e-Bus. Stud. 2013, 18. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.; zu Erbach-Schoenberg, E.; Albert, M.; Power, D.; Tudge, S.; Gonzalez, M.; Guthrie, S.; Chamberlain, H.; Brooks, C.; Hughes, C. Rapid and near real-time assessments of population displacement using mobile phone data following disasters: The 2015 Nepal Earthquake. PLoS Curr. 2016, 8. [Google Scholar] [CrossRef]
- Järv, O.; Ahas, R.; Witlox, F. Understanding monthly variability in human activity spaces: A twelve-month study using mobile phone call detail records. Trans. Res. Part C Emerg. Technol. 2014, 38, 122–135. [Google Scholar] [CrossRef]
- Burkhard, O.; Ahas, R.; Saluveer, E.; Weibel, R. Extracting regular mobility patterns from sparse CDR data without a priori assumptions. J. Locat. Based Serv. 2017, 11, 78–97. [Google Scholar] [CrossRef] [Green Version]
- Vespignani, A. Predicting the behavior of techno-social systems. Science 2009, 325, 425–428. [Google Scholar] [CrossRef]
- Faria, N.R.; Rambaut, A.; Suchard, M.A.; Baele, G.; Bedford, T.; Ward, M.J.; Tatem, A.J.; Sousa, J.D.; Arinaminpathy, N.; Pépin, J. The early spread and epidemic ignition of HIV-1 in human populations. Science 2014, 346, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, C.T.; Sorichetta, A.; Tatem, A.J. High resolution global gridded data for use in population studies. Sci. Data 2017, 4, 170001. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Ma, T.; Du, Y.; Tao, P.; Yi, J.; Hui, P. Mapping hourly dynamics of urban population using trajectories reconstructed from mobile phone records. Trans. Gis 2018, 22, 494–513. [Google Scholar]
- Zhang, G.; Rui, X.; Poslad, S.; Song, X.; Fan, Y.; Ma, Z. Large-Scale, Fine-Grained, Spatial, and Temporal Analysis, and Prediction of Mobile Phone Users’ Distributions Based upon a Convolution Long Short-Term Model. Sensors 2019, 19, 2156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lifan, D.; Yonghong, X.; Dingxi, H. Bicycle-sharing Facility Planning Base on Riding Spatio-temporal Data. Planners 2017, 10, 13. [Google Scholar]
- Davis, B.; Lockwood, A.; Alcott, P.; Pantelidis, I.S. Food and Beverage Management; Routledge: London, UK, 2018. [Google Scholar]
- Nations, U. Principles and Recommendations for Population and Housing Censuses: Revision 3. In New York New York United Nations; Department of International Economic and Social Affairs, Statistical Office: New York, NY, USA, 2015. [Google Scholar]
- Pui, D.Y.; Chen, S.-C.; Zuo, Z. PM2. 5 in China: Measurements, sources, visibility and health effects, and mitigation. Particuology 2014, 13, 1–26. [Google Scholar] [CrossRef]
- Deville, P.; Linard, C.; Martin, S.; Gilbert, M.; Stevens, F.R.; Gaughan, A.E.; Blondel, V.D.; Tatem, A.J. Dynamic population mapping using mobile phone data. Proce. Natl. Acad. Sci. USA 2014, 111, 15888–15893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricciato, F.; Widhalm, P.; Pantisano, F.; Craglia, M. Beyond the “single-operator, CDR-only” paradigm: An interoperable framework for mobile phone network data analyses and population density estimation. Pervasive Mob. Comput. 2017, 35, 65–82. [Google Scholar] [CrossRef]
- Jia, Y.; Ge, Y.; Ling, F.; Guo, X.; Wang, J.; Wang, L.; Chen, Y.; Li, X. Urban land use mapping by combining remote sensing imagery and mobile phone positioning data. Remote Sens. 2018, 10, 446. [Google Scholar] [CrossRef] [Green Version]
- Ahas, R.; Aasa, A.; Yuan, Y.; Raubal, M.; Smoreda, Z.; Liu, Y.; Ziemlicki, C.; Tiru, M.; Zook, M. Everyday space–time geographies: Using mobile phone-based sensor data to monitor urban activity in Harbin, Paris, and Tallinn. Int. J. Geogr. Inf. Sci. 2015, 29, 2017–2039. [Google Scholar] [CrossRef]
- Wu, S.-S.; Qiu, X.; Wang, L. Population estimation methods in GIS and remote sensing: A review. GIScience Remote Sens. 2005, 42, 80–96. [Google Scholar] [CrossRef]
- Stevens, F.R.; Gaughan, A.E.; Linard, C.; Tatem, A.J. Disaggregating census data for population mapping using random forests with remotely-sensed and ancillary data. PLoS ONE 2015, 10, e0107042. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Tong, X.; Wang, L.; Zhao, C.; Prishchepov, A.V. Monitoring finer-scale population density in urban functional zones: A remote sensing data fusion approach. Landsc. Urban Plan. 2019, 190, 103580. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, M.; Geng, X. Crowd counting in public video surveillance by label distribution learning. Neurocomputing 2015, 166, 151–163. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, D.; Chen, S.; Gao, S.; Ma, Y. Single-image crowd counting via multi-column convolutional neural network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 589–597. [Google Scholar]
- Drummond, J.; Billen, R.; João, E.; Forrest, D. Dynamic and Mobile GIS; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2007. [Google Scholar]
- Bakillah, M.; Liang, S.; Mobasheri, A.; Jokar Arsanjani, J.; Zipf, A. Fine-resolution population mapping using OpenStreetMap points-of-interest. Int. J. Geogr. Inf. Sci. 2014, 28, 1940–1963. [Google Scholar] [CrossRef]
- Liu, X.; Pöllmann, P. Dynamic Population Estimation Using Anonymized Mobility Data. arXiv 2020, arXiv:2006.13786. [Google Scholar]
- Benenson, I. Multi-agent simulations of residential dynamics in the city. Comput. Environ. Urban Syst. 1998, 22, 25–42. [Google Scholar] [CrossRef]
- Bonabeau, E. Agent-based modeling: Methods and techniques for simulating human systems. Proc. Natl. Acad. Sci. USA 2002, 99, 7280–7287. [Google Scholar] [CrossRef] [Green Version]
- Le, Q.B.; Park, S.J.; Vlek, P.L.; Cremers, A.B. Land-Use Dynamic Simulator (LUDAS): A multi-agent system model for simulating spatio-temporal dynamics of coupled human–landscape system. I. Structure and theoretical specification. Ecol. Inf. 2008, 3, 135–153. [Google Scholar] [CrossRef]
- Kniveton, D.; Smith, C.; Wood, S. Agent-based model simulations of future changes in migration flows for Burkina Faso. Glob. Environ. Chang. 2011, 21, S34–S40. [Google Scholar] [CrossRef]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv 2015, arXiv:preprint/1511.06434. [Google Scholar]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Routledge: New York, NY, USA, 2018. [Google Scholar]
- Batty, M.; Longley, P.A. Fractal Cities: A Geometry of Form and Function; Academic Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Brassel, K.E.; Reif, D. A procedure to generate Thiessen polygons. Geogr. Anal. 1979, 11, 289–303. [Google Scholar] [CrossRef]
- Parzen, E. On estimation of a probability density function and mode. Ann. Math. Stat. 1962, 33, 1065–1076. [Google Scholar] [CrossRef]
- Rosenblatt, M. Curve estimates. Ann. Math. Stat. 1971, 42, 1815–1842. [Google Scholar] [CrossRef]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Luo, R.; Wang, D. An Analysis on Characteristics of Floating Population Distribution in Shanghai by Means of Accumulation Index. Urban Plan. Forum 2008, 4, 81–86. [Google Scholar]
ID | Name | Description |
---|---|---|
1 | Timestamp | Interactive time of users and base station |
2 | CI | Corresponding base station’s id |
3 | IMSI | Encrypted ID of users |
ID | Name | Description |
---|---|---|
1 | CI | Unique ID of base station |
2 | Lat, Lon | Latitude and longitude of base-station location |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Rui, X.; Poslad, S.; Song, X.; Fan, Y.; Wu, B. A Method for the Estimation of Finely-Grained Temporal Spatial Human Population Density Distributions Based on Cell Phone Call Detail Records. Remote Sens. 2020, 12, 2572. https://doi.org/10.3390/rs12162572
Zhang G, Rui X, Poslad S, Song X, Fan Y, Wu B. A Method for the Estimation of Finely-Grained Temporal Spatial Human Population Density Distributions Based on Cell Phone Call Detail Records. Remote Sensing. 2020; 12(16):2572. https://doi.org/10.3390/rs12162572
Chicago/Turabian StyleZhang, Guangyuan, Xiaoping Rui, Stefan Poslad, Xianfeng Song, Yonglei Fan, and Bang Wu. 2020. "A Method for the Estimation of Finely-Grained Temporal Spatial Human Population Density Distributions Based on Cell Phone Call Detail Records" Remote Sensing 12, no. 16: 2572. https://doi.org/10.3390/rs12162572
APA StyleZhang, G., Rui, X., Poslad, S., Song, X., Fan, Y., & Wu, B. (2020). A Method for the Estimation of Finely-Grained Temporal Spatial Human Population Density Distributions Based on Cell Phone Call Detail Records. Remote Sensing, 12(16), 2572. https://doi.org/10.3390/rs12162572