Synergistic Use of Radar and Optical Satellite Data for Improved Monsoon Cropland Mapping in India
"> Figure 1
<p>Maps of the study area showing: (<b>a</b>) Agro-Ecological Regions (AER) selected for this study; (<b>b</b>) ten AER sub-regions within five AER; (<b>c</b>) spatial variation in annual mean precipitation from the year 2000 to 2018, derived from the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) data; and (<b>d</b>) Digital Elevation Model (DEM) obtained from the Shuttle Radar Topography Mission (SRTM) dataset.</p> "> Figure 2
<p>Overall workflow followed in this study detailing the steps for: (<b>a</b>) Collecting the training and testing points and the classes used for set-1 and set-2; (<b>b</b>) Performing the classification using set-1 reference data to obtain Radar Optical cross Masking (ROM) and using set-2 reference data to obtain crop map; and (<b>c</b>) For S1+S2 combined classification using set-2 reference data.</p> "> Figure 3
<p>(<b>a</b>) Sentinel-1 (S1) mean temporal backscattering profile with VH polarization obtained from 10 points each for land cover features, collected from monsoon crops and other land use/cover classes during the monsoon season (June–November 2018). Urban and vegetation class shows constantly high backscattering intensities throughout the monsoon season, water shows very low backscattering intensities and monsoon crops and bare soil has backscattering values between urban/vegetation and water; (<b>b</b>) Representative reference points along with its coordinates on the high-resolution google earth imagery.</p> "> Figure 4
<p>(<b>a</b>) Spatial distribution of training and testing points across the agro-ecological regions (AER). The five land use/cover classes used for this study are vegetation (forest/plantation/grass), urban, water, bare soil, and monsoon crop; (<b>b</b>) Representative reference points on the high resolution google earth imagery for monsoon crop (white hollow circle) and bare soil (white solid circle); (<b>c</b>) The same representative reference points as shown in (<b>b</b>) confirmed using Sentinel-1 monthly median false color composite imagery (red—June, green—July, and blue—August).</p> "> Figure 5
<p>Temporal aggregation of normalized difference vegetation index (NDVI) derived from seasonal sentinel-2 (S2) data to obtain the maxNDVI during the monsoon season.</p> "> Figure 6
<p>Steps for obtaining high-resolution (10m) non-crop mask using the ROM technique: (<b>a</b>) High-resolution google earth imagery showing forest class mixed with monsoon crops in white square box and plantation mixed with monsoon crops in yellow square box; (<b>b</b>) False Color Composite VH polarization Sentinel 1 (S1) imagery for the same region; (<b>c</b>) maxNDVI for plantation region before applying ROM; (<b>d</b>) NDVImask obtained after applying ROM for plantation; the plantation regions are masked out from monsoon crop and is shown in the dark grey color; (<b>e</b>) maxNDVI for forest region before applying ROM; and (<b>f</b>) NDVImask obtained after applying ROM for forest region. It can be observed that regions of hill shadows are not masked completely.</p> "> Figure 7
<p>Monsoon cropland map obtained using S1+S2 combination and training and testing set-2.</p> "> Figure 8
<p>Zoom-in view of the monsoon cropland map generated from the combination of S1+S2 for the agro-ecological regions (AER) at various scales and its comparison with high resolution imagery: (<b>a</b>) Northern Plain (AER-1); (<b>b</b>) Deccan plateau (AER-3); (<b>c</b>) Central Highlands (AER-2); and (<b>d</b>) Deccan Plateau, Eastern Ghats and Eastern coastal plains (AER-4 and 5).</p> ">
Abstract
:1. Introduction
- (1)
- Evaluating Sentinel-1 (S1) SAR and a combination of SAR and Sentinel-2 (S2) optical data in terms of providing greater accuracy for monsoon cropland mapping.
- (2)
- Developing a high resolution, all weather applicable non-crop mask for segregating monsoon cropland from other land use/land cover (LULC) features with similar signatures (plantation and forest).
2. Materials and Methods
2.1. Study Area
2.2. Overall Workflow
2.2.1. Satellite Data Pre-Preprocessing
2.2.2. SAR Temporal Backscattering
2.2.3. Training and Testing the Classifiers
2.2.4. Classification Based on Sentinel-1
2.2.5. Seasonal Normalized Difference Vegetation Index (NDVI)
2.2.6. Radar Optical cross Masking (ROM)
2.2.7. Classification Based on Combined Sentinel-1 and Sentinel-2
2.2.8. Accuracy Assessment
3. Results
3.1. Accuracy of S1 Only Classification
3.2. Accuracy of Binary Crop Maps from S1 Only and Combined S1 and S2
3.3. Accuracy of Binary Crop Maps for Each AER
4. Discussion
4.1. Monsoon Crop Mapping by Combining S1 and NDVImask
4.2. ROM Uncertainty
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Madhusudhan, L. Agriculture Role on Indian Economy. Bus. Econ. J. 2015, 6, 1. [Google Scholar]
- Gadgil, S.; Gadgil, S. The Indian monsoon, GDP and agriculture. Econ. Political Wkly. 2006, 41, 4887–4895. [Google Scholar]
- Gadgil, S.; Rupa Kumar, K. The Asian monsoon—Agriculture and economy. In The Asian Monsoon; Springer: Berlin/Heidelberg, Germany, 2006; pp. 651–683. [Google Scholar]
- Krishna Kumar, K.; Rupa Kumar, K.; Ashrit, R.G.; Deshpande, N.R.; Hansen, J.W. Climate impacts on Indian agriculture. Int. J. Climatol. 2004, 24, 1375–1393. [Google Scholar] [CrossRef]
- Fritz, S.; See, L.; Bayas, J.C.L.; Waldner, F.; Jacques, D.; Becker-Reshef, I.; Whitcraft, A.; Baruth, B.; Bonifacio, R.; Crutchfield, J.; et al. A comparison of global agricultural monitoring systems and current gaps. Agric. Syst. 2019, 168, 258–272. [Google Scholar] [CrossRef]
- Ramaswami, B.; Ravi, S.; Chopra, S.D. Risk management in agriculture. In Discussion Papers; Indian Statistical Institute: Delhi unit, India, 2003. [Google Scholar]
- Venkateswarlu, B.; Prasad, J. Carrying capacity of Indian agriculture: Issues related to rainfed agriculture. Curr. Sci. 2012, 102, 882–888. [Google Scholar]
- Suresh, A.; Raju, S.S.; Chauhan, S.; Chaudhary, K.R. Rainfed agriculture in India: An analysis of performance and implications. Indian J. Agric. Sci. 2014, 84, 1415–1422. [Google Scholar]
- Srinivasarao, C.; Venkateswarlu, B.; Lal, R.; Singh, A.K.; Kundu, S. Sustainable management of soils of dryland ecosystems of india for enhancing agronomic productivity and sequestering carbon. In Advances in Agronomy; Academic Press Inc.: Cambridge, MA, USA, 2013; Volume 121, pp. 253–329. [Google Scholar]
- Department of Agriculture Cooperation and Farmers Welfare, Government of India. Annual Report. Available online: http://agricoop.nic.in/annual-report (accessed on 30 August 2019).
- Division, A.I. District Wise Land Use Statistics. Available online: http://aps.dac.gov.in/APY/Index.htm (accessed on 30 August 2019).
- Craig, M.; Atkinson, D. A Literature Review of Crop Area Estimation; UN-FAO Report. 2013. Available online: http://www.fao.org/fileadmin/templates/ess/documents/meetings_and_workshops/GS_SAC_2013/Improving_methods_for_crops_estimates/Crop_Area_Estimation_Lit_review.pdf (accessed on 20 October 2019).
- Laamrani, A.; Pardo Lara, R.; Berg, A.A.; Branson, D.; Joosse, P. Using a Mobile Device “App” and Proximal Remote Sensing Technologies to Assess Soil Cover Fractions on Agricultural Fields. Sensors 2018, 18, 708. [Google Scholar] [CrossRef] [Green Version]
- Strengthening Agricultural Support Services for Small Farmers, Report of the APO Seminar on Strengthening Agricultural Support Services for Small Farmers Held in Japan. 2001. Available online: https://www.apo-tokyo.org/publications/wp-content/uploads/sites/5/pjrep-sem-28-01.pdf (accessed on 30 August 2019).
- Dadhwal, V.K.; Singh, R.P.; Dutta, S.; Parihar, J.S. Remote sensing based crop inventory: A review of Indian experience. Trop. Ecol. 2002, 43, 107–122. [Google Scholar]
- Parihar, J.S.; Oza, M.P. FASAL: An integrated approach for crop assessment and production forecasting. In Agriculture and Hydrology Applications of Remote Sensing, Proceedings of the SPIE Asia-Pacific Remote Sensing, Goa, India, 13–17 November 2006; Kuligowski, R.J., Parihar, J.S., Saito, G., Eds.; SPIE: Bellingham, WA, USA, 2006; Volume 6411, p. 641101. [Google Scholar]
- Deschamps, B.; McNairn, H.; Shang, J.; Jiao, X. Towards operational radar-only crop type classification: Comparison of a traditional decision tree with a random forest classifier. Can. J. Remote Sens. 2012, 38, 60–68. [Google Scholar] [CrossRef]
- Shanahan, J. Use of Remote-Sensing Imagery to Estimate Corn Grain Yield Agronomy—Faculty Publications Use of Remote-Sensing Imagery to Estimate Corn Grain Yield. Agron. J. 2001, 93, 583–589. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.W.; Antle, J.M.; Basso, B.; Boote, K.J.; Conant, R.T.; Foster, I.; Godfray, H.C.J.; Herrero, M.; Howitt, R.E.; Janssen, S.; et al. Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agric. Syst. 2017, 155, 269–288. [Google Scholar] [CrossRef] [PubMed]
- Pittman, K.; Hansen, M.C.; Becker-Reshef, I.; Potapov, P.V.; Justice, C.O. Estimating global cropland extent with multi-year MODIS data. Remote Sens. 2010, 2, 1844–1863. [Google Scholar] [CrossRef] [Green Version]
- Granados-Ramírez, R.; Reyna-Trujillo, T.; Gómez-Rodríguez, G.; Soria-Ruiz, J. Analysis of NOAA-AVHRR-NDVI images for crops monitoring. Int. J. Remote Sens. 2004, 25, 1615–1627. [Google Scholar] [CrossRef]
- Jiang, D.; Wang, N.B.; Yang, X.H.; Wang, J.H. Study on the interaction between NDVI profile and the growing status of crops. Chin. Geogr. Sci. 2003, 13, 62–65. [Google Scholar] [CrossRef]
- Delrue, J.; Bydekerke, L.; Eerens, H.; Gilliams, S.; Piccard, I.; Swinnen, E. Crop mapping in countries with small-scale farming: A case study for West Shewa, Ethiopia. Int. J. Remote Sens. 2013, 34, 2566–2582. [Google Scholar] [CrossRef]
- Jain, M.; Mondal, P.; DeFries, R.S.; Small, C.; Galford, G.L. Mapping cropping intensity of smallholder farms: A comparison of methods using multiple sensors. Remote Sens. Environ. 2013, 134, 210–223. [Google Scholar] [CrossRef] [Green Version]
- Debats, S.R.; Luo, D.; Estes, L.D.; Fuchs, T.J.; Caylor, K.K. A generalized computer vision approach to mapping crop fields in heterogeneous agricultural landscapes. Remote Sens. Environ. 2016, 179, 210–221. [Google Scholar] [CrossRef] [Green Version]
- Whitcraft, A.K.; Vermote, E.F.; Becker-Reshef, I.; Justice, C.O. Cloud cover throughout the agricultural growing season: Impacts on passive optical earth observations. Remote Sens. Environ. 2015, 156, 438–447. [Google Scholar] [CrossRef]
- Becker-Reshef, I.; Justice, C.; Sullivan, M.; Vermote, E.; Tucker, C.; Anyamba, A.; Small, J.; Pak, E.; Masuoka, E.; Schmaltz, J.; et al. Monitoring Global Croplands with Coarse Resolution Earth Observations: The Global Agriculture Monitoring (GLAM) Project. Remote Sens. 2010, 2, 1589–1609. [Google Scholar] [CrossRef] [Green Version]
- Quarmby, N.A.; Milnes, M.; Hindle, T.L.; Silleos, N. The use of multi-temporal NDVI measurements from AVHRR data for crop yield estimation and prediction. Int. J. Remote Sens. 1993, 14, 199–210. [Google Scholar] [CrossRef]
- Shang, R.; Liu, R.; Xu, M.; Liu, Y.; Dash, J.; Ge, Q. Determining the start of the growing season from MODIS data in the Indian Monsoon Region: Identifying available data in the rainy season and modeling the varied vegetation growth trajectories. Remote Sens. 2018, 11, 939. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, A.; Seshasai, M.V.R.; Dadhwal, V.K. Geo-spatial analysis of the temporal trends of kharif crop phenology metrics over India and its relationships with rainfall parameters. Environ. Monit. Assess. 2014, 186, 4531–4542. [Google Scholar] [CrossRef] [PubMed]
- Singha, M.; Dong, J.; Zhang, G.; Xiao, X. High resolution paddy rice maps in cloud-prone Bangladesh and Northeast India using Sentinel-1 data. Sci. Data 2019, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Singha, M.; Wu, B.; Zhang, M. An object-based paddy rice classification using multi-spectral data and crop phenology in Assam, Northeast India. Remote Sens. 2016, 8, 479. [Google Scholar] [CrossRef] [Green Version]
- Mercier, A.; Betbeder, J.; Rumiano, F.; Baudry, J.; Gond, V.; Blanc, L.; Bourgoin, C.; Cornu, G.; Ciudad, C.; Marchamalo, M.; et al. Evaluation of Sentinel-1 and 2 Time Series for Land Cover Classification of Forest–Agriculture Mosaics in Temperate and Tropical Landscapes. Remote Sens. 2019, 11, 979. [Google Scholar] [CrossRef] [Green Version]
- Haldar, D.; Patnaik, C.; Chakraborty, M. Jute Crop Discrimination and Biophysical Parameter Monitoring Using Multi-Parametric SAR Data in West Bengal, India. Open Access Lib. J. 2014, 1, 1. [Google Scholar] [CrossRef]
- Maity, S.; Patnaik, C.; Chakraborty, M.; Panigrahy, S. Analysis of temporal backscattering of cotton crops using a semiempirical model. IEEE Trans. Geosci. Remote Sens. 2004, 42, 577–587. [Google Scholar] [CrossRef]
- Lone, J.M.; Sivasankar, T.; Sarma, K.K.; Qadir, A.; Raju, P.L.N. Influence of Slope Aspect on above Ground Biomass Estimation using ALOS-2 Data. Int. J. Sci. Res. 2017, 6, 1422–1428. [Google Scholar]
- Alonso-González, A.; Hajnsek, I. Radar Remote Sensing of Land Surface Parameters. In Observation and Measurement of Ecohydrological Processes. Ecohydrology; Li, X., Vereecken, H., Eds.; Springer: Berlin, Germany, 2018; pp. 1–38. [Google Scholar]
- Woodhouse, I.H. Introduction to Microwave Remote Sensing; Taylor & Francis: Didcot, UK, 2006; ISBN 9780415271233. [Google Scholar]
- Orynbaikyzy, A.; Gessner, U.; Conrad, C. Crop type classification using a combination of optical and radar remote sensing data: A review. Int. J. Remote Sens. 2019, 40, 6553–6595. [Google Scholar] [CrossRef]
- Van Tricht, K.; Gobin, A.; Gilliams, S.; Piccard, I. Synergistic use of radar sentinel-1 and optical sentinel-2 imagery for crop mapping: A case study for Belgium. Remote Sens. 2018, 10, 1642. [Google Scholar] [CrossRef] [Green Version]
- Clevers, J.G.P.W.; Van Leeuwen, H.J.C. Combined use of optical and microwave remote sensing data for crop growth monitoring. Remote Sens. Environ. 1996, 56, 42–51. [Google Scholar] [CrossRef]
- Susan Moran, M.; Alonso, L.; Moreno, J.F.; Cendrero Mateo, M.P.; Fernando De La Cruz, D.; Montoro, A. A RADARSAT-2 quad-polarized time series for monitoring crop and soil conditions in Barrax, Spain. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1057–1070. [Google Scholar] [CrossRef]
- Larrañaga, A.; Álvarez-Mozos, J. On the Added Value of Quad-Pol Data in a Multi-Temporal Crop Classification Framework Based on RADARSAT-2 Imagery. Remote Sens. 2016, 8, 335. [Google Scholar] [CrossRef] [Green Version]
- Useya, J.; Chen, S. Exploring the Potential of Mapping Cropping Patterns on Smallholder Scale Croplands Using Sentinel-1 SAR Data. Chin. Geogr. Sci. 2019, 29, 626–639. [Google Scholar] [CrossRef] [Green Version]
- Skakun, S.; Kussul, N.; Shelestov, A.Y.; Lavreniuk, M.; Kussul, O. Efficiency Assessment of Multitemporal C-Band Radarsat-2 Intensity and Landsat-8 Surface Reflectance Satellite Imagery for Crop Classification in Ukraine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3712–3719. [Google Scholar] [CrossRef]
- Kussul, N.; Mykola, L.; Shelestov, A.; Skakun, S. Crop inventory at regional scale in Ukraine: Developing in season and end of season crop maps with multi-temporal optical and SAR satellite imagery. Eur. J. Remote Sens. 2018, 51, 627–636. [Google Scholar] [CrossRef] [Green Version]
- Skriver, H.; Mattia, F.; Satalino, G.; Balenzano, A.; Pauwels, V.R.N.; Verhoest, N.E.C.; Davidson, M. Crop Classification Using Short-Revisit Multitemporal SAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 423–431. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, D.; Zhou, Q. Dryland crop recognition based on multi-temporal polarization SAR data. In Proceedings of the 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Istanbul, Turkey, 16–19 July 2019; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019. [Google Scholar]
- Wang, D.; Su, Y.; Zhou, Q.; Chen, Z. Advances in research on crop identification using SAR. In Proceedings of the 2015 4th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Istanbul, Turkey, 20–24 July 2015; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015; pp. 312–317. [Google Scholar]
- Sirro, L.; Häme, T.; Rauste, Y.; Kilpi, J.; Hämäläinen, J.; Gunia, K.; de Jong, B.; Pellat, F.P. Potential of different optical and SAR data in forest and land cover classification to support REDD+ MRV. Remote Sens. 2018, 10, 942. [Google Scholar] [CrossRef] [Green Version]
- Tavares, P.A.; Beltrão, N.E.S.; Guimarães, U.S.; Teodoro, A.C. Integration of sentinel-1 and sentinel-2 for classification and LULC mapping in the urban area of Belém, eastern Brazilian Amazon. Sensors 2019, 19, 1140. [Google Scholar] [CrossRef] [Green Version]
- McNairn, H.; Champagne, C.; Shang, J.; Holmstrom, D.; Reichert, G. Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories. ISPRS J. Photogramm. Remote Sens. 2009, 64, 434–449. [Google Scholar] [CrossRef]
- Ranjan, A.K.; Parida, B.R. Paddy acreage mapping and yield prediction using sentinel-based optical and SAR data in Sahibganj district, Jharkhand (India). Spat. Inf. Res. 2019, 27, 399–410. [Google Scholar] [CrossRef]
- Monitoring Cotton (Gossypium sps.) Crop Condition through Synergy of Optical and Radar Remote Sensing | Publons. Available online: https://publons.com/publon/2200411/ (accessed on 26 December 2019).
- Gu, L.; He, F.; Yang, S. Crop classification based on deep learning in northeast China using sar and optical imagery. In Proceedings of the 2019 SAR in Big Data Era (BIGSARDATA), Beijing, China, 5–6 August 2019; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019. [Google Scholar]
- Verma, A.; Kumar, A.; Lal, K. Kharif crop characterization using combination of SAR and MSI Optical Sentinel Satellite datasets. J. Earth Syst. Sci. 2019, 128, 230. [Google Scholar] [CrossRef] [Green Version]
- Kumari, M.; Murthy, C.S.; Pandey, V.; Bairagi, G.D. Soybean Cropland mapping using Multi-Temporal Sentinel-1 data. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-3/W6, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Gajbhiye, K.S.; Mandal, C. Agro-Ecological Zones, Their Soil Resource and Cropping Systems; National Bureau of Soil Survey and Land Use Planning: Nagpur, India, 2000; Available online: http://www.indiawaterportal.org/sites/indiawaterportal.org/files/01jan00sfm1.pdf (accessed on 11 July 2019).
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future köppen-geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NFSM: National Food Security Mission. Available online: https://www.nfsm.gov.in/ (accessed on 31 October 2019).
- Land Use Statistics Information System. Available online: https://aps.dac.gov.in/APY/Index.htm (accessed on 30 June 2019).
- Google Developers Image Collection Reductions. Available online: https://developers.google.com/earth-engine/reducers_image_collection (accessed on 19 July 2019).
- Liu, D.; Xia, F. Assessing object-based classification: Advantages and limitations. Remote Sens. Lett. 2010, 1, 187–194. [Google Scholar] [CrossRef]
- Memarian, H.; Balasundram, S.K.; Khosla, R. Comparison between pixel- and object-based image classification of a tropical landscape using Système Pour l’Observation de la Terre-5 imagery. J. Appl. Remote Sens. 2013, 7, 073512. [Google Scholar] [CrossRef] [Green Version]
- Tian, F.; Wu, B.; Zeng, H.; Zhang, X.; Xu, J. Efficient Identification of Corn Cultivation Area with Multitemporal Synthetic Aperture Radar and Optical Images in the Google Earth Engine Cloud Platform. Remote Sens. 2019, 11, 629. [Google Scholar] [CrossRef] [Green Version]
- Tutorials-Sentinel-1 Toolbox-Sentinel Online. Available online: https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-1/tutorials (accessed on 30 June 2019).
- Gatti, A.; Bertolini, A. Sentinel-2 Products Specification Document. 2015. Available online: https://sentinel.esa.int/documents/247904/349490/S2_MSI_Product_Specification.pdf (accessed on 30 June 2019).
- Carrasco, L.; O’Neil, A.W.; Daniel Morton, R.; Rowland, C.S. Evaluating combinations of temporally aggregated Sentinel-1, Sentinel-2 and Landsat 8 for land cover mapping with Google Earth Engine. Remote Sens. 2019, 11, 288. [Google Scholar] [CrossRef] [Green Version]
- Scanlon, T.M.; Albertson, J.D.; Caylor, K.K.; Williams, C.A. Determining land surface fractional cover from NDVI and rainfall time series for a savanna ecosystem. Remote Sens. Environ. 2002, 82, 376–388. [Google Scholar] [CrossRef]
- De Alban, J.D.T.; Connette, G.M.; Oswald, P.; Webb, E.L. Combined Landsat and L-band SAR data improves land cover classification and change detection in dynamic tropical landscapes. Remote Sens. 2018, 10, 306. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Machine Learning; Statistics Department, University of Berkeley: Berkeley, CA, USA, 2001; Volume 45, pp. 5–32. [Google Scholar]
- Liaw Merck, A.; Liaw, A.; Wiener, M. Classification and Regression by RandomForest. R News 2002, 2, 18–22. Available online: http://cogns.northwestern.edu/cbmg/LiawAndWiener2002.pdf (accessed on 10 October 2019).
- Rodriguez-Galiano, V.F.; Chica-Olmo, M.; Abarca-Hernandez, F.; Atkinson, P.M.; Jeganathan, C. Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sens. Environ. 2012, 121, 93–107. [Google Scholar] [CrossRef]
- Mondal, P.; McDermid, S.S.; Qadir, A. A reporting framework for Sustainable Development Goal 15: Multi-scale monitoring of forest degradation using MODIS, Landsat and Sentinel data. Remote Sens. Environ. 2020, 237, 111592. [Google Scholar] [CrossRef]
- Kamusoko, C.; Gamba, J.; Murakami, H. Mapping Woodland Cover in the Miombo Ecosystem: A Comparison of Machine Learning Classifiers. Land 2014, 3, 524–540. [Google Scholar] [CrossRef] [Green Version]
- Toosi, N.B.; Soffianian, A.R.; Fakheran, S.; Pourmanafi, S.; Ginzler, C.; Waser, L.T. Comparing different classification algorithms for monitoring mangrove cover changes in southern Iran. Glob. Ecol. Conserv. 2019, 19, e00662. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Akar, Ö.; Güngör, O. Classification of multispectral images using Random Forest algorithm. J. Geodesy Geoinf. 2012, 1, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Benedetti, R.; Rossini, P. On the use of NDVI profiles as a tool for agricultural statistics: The case study of wheat yield estimate and forecast in Emilia Romagna. Remote Sens. Environ. 1993, 45, 311–326. [Google Scholar] [CrossRef]
- Pericak, A.A.; Thomas, C.J.; Kroodsma, D.A.; Wasson, M.F.; Ross, M.R.V.; Clinton, N.E.; Campagna, D.J.; Franklin, Y.; Bernhardt, E.S.; Amos, J.F. Mapping the yearly extent of surface coal mining in central appalachia using landsat and google earth engine. PLoS ONE 2018, 13, e0197758. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Li, W.; Tian, Y. Automatic Thresholding of Gray-Level Pictures Using Two-Dimension Otsu Method; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2002; pp. 325–327. [Google Scholar]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Powers, D.M. Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness and Correlation. J. Mach. Learn. Technol. 2011, 1, 37–63. [Google Scholar]
- Gumma, M.K.; Thenkabail, P.S.; Teluguntla, P.G.; Oliphant, A.; Xiong, J.; Giri, C.; Pyla, V.; Dixit, S.; Whitbread, A.M. Agricultural cropland extent and areas of South Asia derived using Landsat satellite 30-m time-series big-data using random forest machine learning algorithms on the Google Earth Engine cloud. GISci. Remote Sens. 2019, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Defourny, P.; Bontemps, S.; Bellemans, N.; Cara, C.; Dedieu, G.; Guzzonato, E.; Hagolle, O.; Inglada, J.; Nicola, L.; Rabaute, T.; et al. Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems around the world. Remote Sens. Environ. 2019, 221, 551–568. [Google Scholar] [CrossRef]
- Inglada, J.; Arias, M.; Tardy, B.; Hagolle, O.; Valero, S.; Morin, D.; Dedieu, G.; Sepulcre, G.; Bontemps, S.; Defourny, P.; et al. Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite Optical Imagery. Remote Sens. 2015, 7, 12356–12379. [Google Scholar] [CrossRef] [Green Version]
- Roy, P.S.; Sharma, K.P.; Jain, A. Stratification of density in dry deciduous forest using satellite remote sensing digital data—An approach based on spectral indices. J. Biosci. 1996, 21, 723–734. [Google Scholar] [CrossRef]
- Massey, R.; Sankey, T.T.; Yadav, K.; Congalton, R.G.; Tilton, J.C. Integrating cloud-based workflows in continental-scale cropland extent classification. Remote Sens. Environ. 2018, 219, 162–179. [Google Scholar] [CrossRef]
- Rußwurm, M.; Korner, M. Temporal Vegetation Modelling Using Long Short-Term Memory Networks for Crop Identification from Medium-Resolution Multi-spectral Satellite Images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2017; pp. 1496–1504. [Google Scholar]
Agro-Ecological Region | Major Crops | |
---|---|---|
1 | Northern Plain | black gram, millet, sesame, rice |
2 | Central Highlands | soybean, rice, cotton |
3 | Deccan Plateau | cotton, soybean, sorghum |
4 | Deccan Plateau and Eastern Ghats, Eastern Coastal Plains | rice, cotton, chili, maize |
Land Cover Type | S1 Only (VH + VV) | ||
---|---|---|---|
UA | PA | F-Score | |
Water | 0.96 | 0.96 | 0.96 |
Bare soil | 0.79 | 0.8 | 0.79 |
Urban | 0.78 | 0.54 | 0.64 |
Vegetation | 0.68 | 0.75 | 0.71 |
Monsoon crop | 0.81 | 0.87 | 0.84 |
OA | 0.80 | ||
Kappa | 0.74 |
User’s Accuracy | Producer’s Accuracy | Overall Accuracy | Kappa | F-Score | ||
---|---|---|---|---|---|---|
S1 Only Classification | cropland | 0.82 | 0.88 | 0.90 + 0.017 | 0.77 + 0.039 | 0.85 |
non-cropland | 0.94 | 0.91 | 0.92 | |||
S1+S2 Classification | cropland | 0.88 | 0.9 | 0.93 + 0.015 | 0.83 + 0.033 | 0.89 |
non-cropland | 0.95 | 0.94 | 0.95 |
S1 Classification | S1+S2 Classification | ||||
---|---|---|---|---|---|
OA | Kappa | OA | Kappa | ||
AER-1 | 0.90 | 0.81 | AER-1 | 0.94 | 0.88 |
AER-2 | 0.89 | 0.76 | AER-2 | 0.94 | 0.86 |
AER-3 | 0.92 | 0.79 | AER-3 | 0.93 | 0.83 |
AER-4 and 5 | 0.85 | 0.67 | AER-4 and 5 | 0.90 | 0.77 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qadir, A.; Mondal, P. Synergistic Use of Radar and Optical Satellite Data for Improved Monsoon Cropland Mapping in India. Remote Sens. 2020, 12, 522. https://doi.org/10.3390/rs12030522
Qadir A, Mondal P. Synergistic Use of Radar and Optical Satellite Data for Improved Monsoon Cropland Mapping in India. Remote Sensing. 2020; 12(3):522. https://doi.org/10.3390/rs12030522
Chicago/Turabian StyleQadir, Abdul, and Pinki Mondal. 2020. "Synergistic Use of Radar and Optical Satellite Data for Improved Monsoon Cropland Mapping in India" Remote Sensing 12, no. 3: 522. https://doi.org/10.3390/rs12030522