Combined Landsat and L-Band SAR Data Improves Land Cover Classification and Change Detection in Dynamic Tropical Landscapes
<p>(<b>a</b>) Location of the Tanintharyi Region, southern Myanmar with regions of interest based on ground truth data highlighted in red and interpreted from high resolution imagery in blue. The satellite images shown are (<b>b</b>) 2015 Landsat 8 OLI (false color, RGB = 543); (<b>c</b>) 1995 JERS-1 SAR (grayscale, HH); and (<b>d</b>) 2015 ALOS-2/PALSAR-2 (false colour, RGB = HH/HV/HH-HV).</p> "> Figure 2
<p>Overall workflow of land cover/use change mapping and analysis.</p> "> Figure 3
<p>Land cover maps in (<b>a</b>) 1995 and (<b>b</b>) 2015, and (<b>c</b>) areas of land cover change within the 20-year period in Tanintharyi Region, Myanmar.</p> "> Figure 4
<p>Sankey diagram of the land cover transitions from 1995 to 2015 in Tanintharyi Region, Myanmar. Numbers beside boxes indicate percentage of land cover type to total landscape.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Satellite Data
2.2.2. Reference Data and Classification Scheme
2.3. Overall Workflow and Data Organisation
2.4. Image Pre-Processing
2.4.1. Pre-Processing of Landsat Images
2.4.2. Pre-Processing of JERS-1 SAR and ALOS-2/PALSAR-2 Mosaics
2.5. Image Classification
2.5.1. Creation of Image Stacks
2.5.2. Delineation of Regions of Interest
2.5.3. Sampling Design
2.5.4. Classification Using Random Forests
2.6. Accuracy Assessment
2.7. Change Analysis
3. Results
3.1. Comparison of Combined versus Individual Sensor Data for Land Cover Classification
3.2. Land Cover Change in Tanintharyi Region, 1995–2015
4. Discussion
4.1. Twenty-Year Land and Forest Cover Change in Tanintharyi Region
4.2. Comparison of Combined Landsat and SAR Sensors versus Individual Sensors
4.3. Potential Applications and Future Work
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination of Earth’s ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Ramankutty, N.; Evan, A.T.; Monfreda, C.; Foley, J.A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 2008, 22, GB1003. [Google Scholar] [CrossRef]
- Ziegler, A.D.; Fox, J.M.; Xu, J. The rubber juggernaut. Science 2009, 324, 1024–1025. [Google Scholar] [CrossRef] [PubMed]
- Wicke, B.; Sikkema, R.; Dornburg, V.; Faaij, A. Exploring land use changes and the role of palm oil production in Indonesia and Malaysia. Land Use Policy 2011, 28, 193–206. [Google Scholar] [CrossRef]
- Li, Z.; Fox, J.M. Mapping rubber tree growth in mainland Southeast Asia using time-series MODIS 250 m NDVI and statistical data. Appl. Geogr. 2012, 32, 420–432. [Google Scholar] [CrossRef]
- Ahrends, A.; Hollingsworth, P.M.; Ziegler, A.D.; Fox, J.M.; Chen, H.; Su, Y.; Xu, J. Current trends of rubber plantation expansion may threaten biodiversity and livelihoods. Glob. Environ. Chang. 2015, 34, 48–58. [Google Scholar] [CrossRef]
- Vijay, V.; Pimm, S.L.; Jenkins, C.N.; Smith, S.J. The impacts of oil palm on recent deforestation and biodiversity loss. PLoS ONE 2016, 11, e0159668. [Google Scholar] [CrossRef] [PubMed]
- FAO FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 2 August 2017).
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed]
- Phalan, B.; Bertzky, M.; Butchart, S.H.M.; Donald, P.F.; Scharlemann, J.P.W.; Stattersfield, A.J.; Balmford, A. Crop expansion and conservation priorities in tropical countries. PLoS ONE 2013, 8, e51759. [Google Scholar] [CrossRef] [PubMed]
- Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of land-use and land-cover change in tropical regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef]
- DeFries, R.S.; Foley, J.A.; Asner, G.P. Land-use choices: Balancing human needs and ecosystem function. Front. Ecol. Environ. 2004, 2, 249–257. [Google Scholar] [CrossRef]
- Moran, E.F.; Skole, D.L.; Turner, B.L. The Development of the International Land Use and Land Cover Change (LUCC) Research Program and Its Links to NASA’s Land Cover and Land Use Change (LCLUC) Initiative. In Land Change Science: Observing, Monitoring and Understanding Trajectories of Change on the Earth’s Surface, 2004 ed.; Gutman, G., Janetos, A.C., Justice, C.O., Moran, E.F., Mustard, J.F., Rindfuss, R.R., Skole, D., Turner, B.L., Cochrane, M.A., Eds.; Springer: Dordrecht, The Netherlands; New York, NY, USA, 2012. [Google Scholar]
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [PubMed]
- Rose, R.A.; Byler, D.; Eastman, J.R.; Fleishman, E.; Geller, G.; Goetz, S.; Guild, L.; Hamilton, H.; Hansen, M.; Headley, R.; et al. Ten ways remote sensing can contribute to conservation. Conserv. Biol. 2015, 29, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Turner, W.; Rondinini, C.; Pettorelli, N.; Mora, B.; Leidner, A.K.; Szantoi, Z.; Buchanan, G.; Dech, S.; Dwyer, J.; Herold, M.; et al. Free and open-access satellite data are key to biodiversity conservation. Biol. Conserv. 2015, 182, 173–176. [Google Scholar] [CrossRef]
- Giri, C. Remote Sensing of Land Use and Land Cover: Principles and Applications; Remote Sensing Applications Series; CRC Press: Hoboken, NJ, USA, 2012; Volume 20120991. [Google Scholar]
- Lehmann, E.A.; Caccetta, P.; Lowell, K.; Mitchell, A.; Zhou, Z.-S.; Held, A.; Milne, T.; Tapley, I. SAR and optical remote sensing: Assessment of complementarity and interoperability in the context of a large-scale operational forest monitoring system. Remote Sens. Environ. 2015, 156, 335–348. [Google Scholar] [CrossRef]
- Reiche, J.; Lucas, R.; Mitchell, A.L.; Verbesselt, J.; Hoekman, D.H.; Haarpaintner, J.; Kellndorfer, J.M.; Rosenqvist, A.; Lehmann, E.A.; Woodcock, C.E.; et al. Combining satellite data for better tropical forest monitoring. Nat. Clim. Chang. 2016, 6, 120–122. [Google Scholar] [CrossRef]
- Wijaya, A.; Gloaguen, R. Fusion of ALOS PALSAR and Landsat ETM data for land cover classification and biomass modeling using non-linear methods. In Proceedings of the 2009 International Geoscience and Remote Sensing Symposium (IGARSS), Cape Town, South Africa, 12–17 July 2009; Volume 3, pp. 581–584. [Google Scholar]
- Vaglio Laurin, G.; Liesenberg, V.; Chen, Q.; Guerriero, L.; Del Frate, F.; Bartolini, A.; Coomes, D.; Wilebore, B.; Lindsell, J.; Valentini, R. Optical and SAR sensor synergies for forest and land cover mapping in a tropical site in West Africa. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 7–16. [Google Scholar] [CrossRef]
- Jhonnerie, R.; Siregar, V.P.; Nababan, B.; Prasetyo, L.B.; Wouthuyzen, S. Random Forest classification for mangrove land cover mapping using Landsat 5 TM and ALOS PALSAR imageries. Procedia Environ. Sci. 2015, 24, 215–221. [Google Scholar] [CrossRef]
- Torbick, N.; Ledoux, L.; Salas, W.; Zhao, M. Regional mapping of plantation extent using multisensor imagery. Remote Sens. 2016, 8, 236. [Google Scholar] [CrossRef]
- Reiche, J.; Souza, C.M.; Hoekman, D.H.; Verbesselt, J.; Persaud, H.; Herold, M. Feature level fusion of multi-temporal ALOS PALSAR and Landsat data for mapping and monitoring of tropical deforestation and forest degradation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2159–2173. [Google Scholar] [CrossRef]
- Reiche, J.; Verbesselt, J.; Hoekman, D.; Herold, M. Fusing Landsat and SAR time series to detect deforestation in the tropics. Remote Sens. Environ. 2015, 156, 276–293. [Google Scholar] [CrossRef]
- Kou, W.; Xiao, X.; Dong, J.; Gan, S.; Zhai, D.; Zhang, G.; Qin, Y.; Li, L. Mapping deciduous rubber plantation areas and stand ages with PALSAR and Landsat images. Remote Sens. 2015, 7, 1048–1073. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Chen, B.; Torbick, N.; Jin, C.; Zhang, G.; Biradar, C. Mapping deciduous rubber plantations through integration of PALSAR and multi-temporal Landsat imagery. Remote Sens. Environ. 2013, 134, 392–402. [Google Scholar] [CrossRef]
- Chen, B.; Li, X.; Xiao, X.; Zhao, B.; Dong, J.; Kou, W.; Qin, Y.; Yang, C.; Wu, Z.; Sun, R.; et al. Mapping tropical forests and deciduous rubber plantations in Hainan Island, China by integrating PALSAR 25-m and multi-temporal Landsat images. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 117–130. [Google Scholar] [CrossRef]
- Joshi, N.; Baumann, M.; Ehammer, A.; Fensholt, R.; Grogan, K.; Hostert, P.; Jepsen, M.R.; Kuemmerle, T.; Meyfroidt, P.; Mitchard, E.T.A.; et al. A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sens. 2016, 8, 70. [Google Scholar] [CrossRef]
- Qin, Y.; Xiao, X.; Dong, J.; Chen, B.; Liu, F.; Zhang, G.; Zhang, Y.; Wang, J.; Wu, X. Quantifying annual changes in built-up area in complex urban-rural landscapes from analyses of PALSAR and Landsat images. ISPRS J. Photogramm. Remote Sens. 2017, 124, 89–105. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Tordoff, A.W.; Tordoff, A.W.; Baltzer, M.C.; Fellowes, J.R.; Pilgrim, J.D.; Langhammer, P.F. Key Biodiversity Areas in the Indo-Burma Hotspot: Process, progress, and future directions. J. Threat. Taxa 2012, 4, 2779–2787. [Google Scholar] [CrossRef]
- Lim, C.L.; Prescott, G.W.; De Alban, J.D.T.; Ziegler, A.D.; Webb, E.L. Untangling the proximate causes and underlying drivers of deforestation and forest degradation in Myanmar. Conserv. Biol. 2017, 31, 1362–1372. [Google Scholar] [CrossRef] [PubMed]
- Webb, E.L.; Phelps, J.; Friess, D.A.; Rao, M.V.; Ziegler, A.D. Environment-friendly reform in Myanmar. Science 2012, 336, 295. [Google Scholar] [CrossRef] [PubMed]
- Webb, E.L.; Jachowski, N.R.A.; Phelps, J.; Friess, D.A.; Than, M.M.; Ziegler, A.D. Deforestation in the Ayeyarwady Delta and the conservation implications of an internationally-engaged Myanmar. Glob. Environ. Chang. 2014, 24, 321–333. [Google Scholar] [CrossRef]
- Prescott, G.W.; Sutherland, W.J.; Aguirre, D.; Baird, M.; Bowman, V.; Brunner, J.; Connette, G.M.; Cosier, M.; Dapice, D.; De Alban, J.D.T.; et al. Political transition and emergent forest-conservation issues in Myanmar. Conserv. Biol. 2017, 31, 1257–1270. [Google Scholar] [CrossRef] [PubMed]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Climate-Data.org Climate: Tanintharyi. Available online: https://en.climate-data.org/region/2317/ (accessed on 5 June 2017).
- Rao, M.; Htun, S.; Platt, S.G.; Tizard, R.; Poole, C.; Myint, T.; Watson, J.E.M. Biodiversity conservation in a changing climate: A review of threats and implications for conservation planning in Myanmar. Ambio 2013, 42, 789–804. [Google Scholar] [CrossRef] [PubMed]
- Connette, G.; Oswald, P.; Songer, M.; Leimgruber, P. Mapping distinct forest types improves overall forest identification based on multi-spectral Landsat imagery for Myanmar’s Tanintharyi Region. Remote Sens. 2016, 8, 882. [Google Scholar] [CrossRef]
- Donald, P.F.; Round, P.D.; Dai We Aung, T.; Grindley, M.; Steinmetz, R.; Shwe, N.M.; Buchanan, G.M. Social reform and a growing crisis for southern Myanmar’s unique forests. Conserv. Biol. 2015, 29, 1485–1488. [Google Scholar] [CrossRef] [PubMed]
- Eames, J.C.; Hla, H.; Leimgruber, P.; Kelly, D.S.; Aung, S.M.; Moses, S.; Tin, U.S.N. The rediscovery of Gurney’s Pitta Pitta gurneyi in Myanmar and an estimate of its population size based on remaining forest cover. Bird Conserv. Int. 2005, 15, 3–26. [Google Scholar] [CrossRef]
- Lynam, A.J.; Khaing, S.T.; Zaw, K.M. Developing a national tiger action plan for the Union of Myanmar. Environ. Manag. 2005, 37, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Donald, P.F.; Hla, H.; Win, L.; Aung, T.D.; Moses, S.; Zaw, S.M.; Ag, T.T.; Oo, K.N.; Eames, J.C. The distribution and conservation of Gurney’s Pitta Pitta gurneyi in Myanmar. Bird Conserv. Int. 2014, 24, 354–363. [Google Scholar] [CrossRef]
- Aung, S.S.; Shwe, N.M.; Frechette, J.; Grindley, M.; Connette, G. Surveys in southern Myanmar indicate global importance for tigers and biodiversity. Oryx 2017, 51, 13. [Google Scholar] [CrossRef]
- Scurrah, N.; Hirsch, P.; Woods, K. The Political Economy of Land Governance in Myanmar; Mekong Region Land Governance and University of Sydney: Vientiane, Lao People’s Democratic Republic, 2015; p. 27. [Google Scholar]
- National Economic and Social Advisory Council (NESAC). From Rice Bowl to Food Basket: Three Pillars for Modernising Myanmar’s Agricultural and Food Sector; National Economic and Social Advisory Council: Yangon, Myanmar, 2016. [Google Scholar]
- Bhagwat, T.; Hess, A.; Horning, N.; Khaing, T.; Thein, Z.M.; Aung, K.M.; Aung, K.H.; Phyo, P.; Tun, Y.L.; Oo, A.H.; et al. Losing a jewel—Rapid declines in Myanmar’s intact forests from 2002-2014. PLoS ONE 2017, 12, e0176364. [Google Scholar] [CrossRef] [PubMed]
- Woods, K. Commercial Agriculture Expansion in Myanmar: Links to Deforestation, Conversion Timber, and Land Conflicts; Forest Trends: Washington, DC, USA; UKAID: London, UK, 2015. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Rosenqvist, A.; Shimada, M.; Chapman, B.D.; Freeman, A.; De Grandi, G.; Saatchi, S.S.; Rauste, Y. The Global Rain Forest Mapping project—A review. Int. J. Remote Sens. 2000, 21, 1375–1387. [Google Scholar] [CrossRef]
- Rosenqvist, A.; Shimada, M.; Suzuki, S.; Ohgushi, F.; Tadono, T.; Watanabe, M.; Tsuzuku, K.; Watanabe, T.; Kamijo, S.; Aoki, E. Operational performance of the ALOS global systematic acquisition strategy and observation plans for ALOS-2 PALSAR-2. Remote Sens. Environ. 2014, 155, 3–12. [Google Scholar] [CrossRef]
- Japan Aerospace Exploration Agency (JAXA); Earth Observation Research Center (EORC). Global 25 m Resolution PALSAR-2/PALSAR Mosaic and Forest/Non-Forest Map (FNF); Dataset Description 2017; JAXA EORC: Tsukuba, Japan, 2017. [Google Scholar]
- Shimada, M.; Ohtaki, T. Generating large-scale high-quality SAR mosaic datasets: Application to PALSAR data for global monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 637–656. [Google Scholar] [CrossRef]
- Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing, 5th ed.; The Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 2012, 122, 66–74. [Google Scholar] [CrossRef]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Griffiths, P.; van der Linden, S.; Kuemmerle, T.; Hostert, P. A pixel-based Landsat compositing algorithm for large area land cover mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2088–2101. [Google Scholar] [CrossRef]
- White, J.C.; Wulder, M.A.; Hobart, G.W.; Luther, J.E.; Hermosilla, T.; Griffiths, P.; Coops, N.C.; Hall, R.J.; Hostert, P.; Dyk, A.; et al. Pixel-based image compositing for large-area dense time series applications and science. Can. J. Remote Sens. 2014, 40, 192–212. [Google Scholar] [CrossRef]
- Google Developers ImageCollection Reductions. Available online: https://developers.google.com/earth-engine/reducers_image_collection (accessed on 6 July 2017).
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS; National Aeronautics and Space Administration (NASA): Houston, TX, USA, 1974.
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.Q.; Batchily, K.; van Leeuwen, W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Marsett, R.C.; Qi, J.; Heilman, P.; Biedenbender, S.H.; Carolyn Watson, M.; Amer, S.; Weltz, M.; Goodrich, D.; Marsett, R. Remote sensing for grassland management in the arid Southwest. Rangel. Ecol. Manag. 2006, 59, 530–540. [Google Scholar] [CrossRef]
- Hagen, S.C.; Heilman, P.; Marsett, R.; Torbick, N.; Salas, W.; van Ravensway, J.; Qi, J. Mapping total vegetation cover across western rangelands with Moderate-Resolution Imaging Spectroradiometer data. Rangel. Ecol. Manag. 2012, 65, 456–467. [Google Scholar] [CrossRef]
- Van Deventer, A.P.; Ward, A.D.; Gowda, P.H.; Lyon, J.G. Using Thematic Mapper data to identify contrasting soil plains and tillage practices. Photogramm. Eng. Remote Sens. 1997, 63, 87–93. [Google Scholar]
- Gao, B. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Jurgens, C. The modified normalized difference vegetation index (mNDVI) a new index to determine frost damages in agriculture based on Landsat TM data. Int. J. Remote Sens. 1997, 18, 3583–3594. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Frolking, S.; Salas, W.; III, B.M.; Li, C.; He, L.; Zhao, R. Landscape-scale characterization of cropland in China using Vegetation and Landsat TM images. Int. J. Remote Sens. 2002, 23, 3579–3594. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Sheldon, S.; Biradar, C.; Xie, G. Mapping tropical forests and rubber plantations in complex landscapes by integrating PALSAR and MODIS imagery. ISPRS J. Photogramm. Remote Sens. 2012, 74, 20–33. [Google Scholar] [CrossRef]
- Lee, J.S.; Jurkevich, L.; Dewaele, P.; Wambacq, P.; Oosterlinck, A. Speckle filtering of synthetic aperture radar images: A review. Remote Sens. Rev. 1994, 8, 313–340. [Google Scholar] [CrossRef]
- Van der Sanden, J.J.; Hoekman, D.H. Potential of airborne radar to support the assessment of land cover in a tropical rain forest environment. Remote Sens. Environ. 1999, 68, 26–40. [Google Scholar] [CrossRef]
- Longépé, N.; Rakwatin, P.; Isoguchi, O.; Shimada, M. Assessment of ALOS PALSAR 50 m orthorectified FBD data for regional land cover classification by support vector machines. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2135–2150. [Google Scholar] [CrossRef]
- Li, G.; Lu, D.; Moran, E.; Dutra, L.; Batistella, M. A comparative analysis of ALOS PALSAR L-band and RADARSAT-2 C-band data for land-cover classification in a tropical moist region. ISPRS J. Photogramm. Remote Sens. 2012, 70, 26–38. [Google Scholar] [CrossRef]
- Rakwatin, P.; Longépé, N.; Isoguchi, O.; Shimada, M.; Uryu, Y.; Takeuchi, W. Using multiscale texture information from ALOS PALSAR to map tropical forest. Int. J. Remote Sens. 2012, 33, 7727–7746. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef]
- Gallardo-Cruz, J.A.; Meave, J.A.; González, E.J.; Lebrija-Trejos, E.E.; Romero-Romero, M.A.; Pérez-García, E.A.; Gallardo-Cruz, R.; Hernández-Stefanoni, J.L.; Martorell, C. Predicting tropical dry forest successional attributes from space: Is the key hidden in image texture? PLoS ONE 2012, 7, e30506. [Google Scholar] [CrossRef] [PubMed]
- Conners, R.W.; Trivedi, M.M.; Harlow, C.A. Segmentation of a high-resolution urban scene using texture operators. Comput. Vis. Graph. Image Process. 1984, 25, 273–310. [Google Scholar] [CrossRef]
- Estomata, M.T. Forest Cover Classification and Change Detection Analysis Using ALOS PALSAR Mosaic Data to Support the Establishment of a Pilot MRV System for REDD-Plus on Leyte Island; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH: Quezon City, Philippines, 2014; pp. 1–18. [Google Scholar]
- Dong, J.; Xiao, X.; Sheldon, S.; Biradar, C.; Duong, N.D.; Hazarika, M. A comparison of forest cover maps in Mainland Southeast Asia from multiple sources: PALSAR, MERIS, MODIS and FRA. Remote Sens. Environ. 2012, 127, 60–73. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Sheldon, S.; Biradar, C.; Zhang, G.; Dinh Duong, N.; Hazarika, M.; Wikantika, K.; Takeuhci, W.; Moore, B., III. A 50-m forest cover map in Southeast Asia from ALOS/PALSAR and its application on forest fragmentation assessment. PLoS ONE 2014, 9, e85801. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Xiao, X.; Dong, J.; Zhang, G.; Shimada, M.; Liu, J.; Li, C.; Kou, W.; Moore, B., III. Forest cover maps of China in 2010 from multiple approaches and data sources: PALSAR, Landsat, MODIS, FRA, and NFI. ISPRS J. Photogramm. Remote Sens. 2015, 109, 1–16. [Google Scholar] [CrossRef]
- Miettinen, J.; Liew, S.C. Separability of insular Southeast Asian woody plantation species in the 50 m resolution ALOS PALSAR mosaic product. Remote Sens. Lett. 2011, 2, 299–307. [Google Scholar] [CrossRef]
- Almeida-Filho, R.; Shimabukuro, Y.E.; Rosenqvist, A.; Sánchez, G.A. Using dual-polarized ALOS PALSAR data for detecting new fronts of deforestation in the Brazilian Amazônia. Int. J. Remote Sens. 2009, 30, 3735–3743. [Google Scholar] [CrossRef]
- Storey, J.; Choate, M.; Lee, K. Landsat 8 Operational Land Imager on-orbit geometric calibration and performance. Remote Sens. 2014, 6, 11127. [Google Scholar] [CrossRef]
- Wickham, H.; Chang, W. ggplot2: An Implementation of the Grammar of Graphics. 2015. Available online: https://github.com/tidyverse/ggplot2 (accessed on 15 February 2017).
- Ripley, B. Tree: Classification and Regression Trees. 2016. Available online: https://cran.r-project.org/web/package/tree (accessed on 15 February 2017).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Cochran, W.G. Sampling Techniques, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1977. [Google Scholar]
- Zhen, Z.; Quackenbush, L.J.; Stehman, S.V.; Zhang, L. Impact of training and validation sample selection on classification accuracy and accuracy assessment when using reference polygons in object-based classification. Int. J. Remote Sens. 2013, 34, 6914–6930. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Lee, J.S.H.; Wich, S.; Widayati, A.; Koh, L.P. Detecting industrial oil palm plantations on Landsat images with Google Earth Engine. Remote Sens. Appl. Soc. Environ. 2016, 4, 219–224. [Google Scholar] [CrossRef]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Fernández-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D. Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 2014, 15, 3133–3181. [Google Scholar]
- Liaw, A.; Wiener, M. RandomForest: Breiman and Cutler’s Random Forests for Classification and Regression. 2015. Available online: https://cran.r-project.org/web/packages/randomForest/index.html (accessed on 15 February 2017).
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Card, D.H. Using known map category marginal frequencies to improve estimates of thematic map accuracy. Photogramm. Eng. Remote Sens. 1982, 48, 431–439. [Google Scholar]
- Van Rijsbergen, C.J. Information Retrieval, 2nd ed.; Butterworth-Heinemann: London, UK; Boston, MA, USA, 1979. [Google Scholar]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Foody, G.M. Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy. Photogramm. Eng. Remote Sens. 2004, 70, 627–633. [Google Scholar] [CrossRef]
- Fay, M.P.; Hunsberger, S.A. exact2x2: Exact Tests and Confidence Intervals for 2x2 Tables. 2017. Available online: https://cran.r-project.org/web/packages/exact2x2 (accessed on 17 February 2017).
- Pontius, R.G.; Cheuk, M.L. A generalized cross-tabulation matrix to compare soft-classified maps at multiple resolutions. Int. J. Geogr. Inf. Sci. 2006, 20, 1–30. [Google Scholar] [CrossRef]
- Congedo, L. Semi-Automatic Classification Plugin Documentation. Available online: http://semiautomaticclassificationmanual-v5.readthedocs.io/en/latest/index.html (accessed on 15 February 2017).
- Cuba, N. Research note: Sankey diagrams for visualizing land cover dynamics. Landsc. Urban Plan. 2015, 139, 163–167. [Google Scholar] [CrossRef]
- Leimgruber, P.; Kelly, D.S.; Steininger, M.K.; Brunner, J.; Müller, T.; Songer, M. Forest cover change patterns in Myanmar (Burma) 1990–2000. Environ. Conserv. 2005, 356–364. [Google Scholar] [CrossRef]
- Baskett, J.P. Myanmar Oil Palm Plantations: A Productivity and Sustainability Review; Fauna & Flora International: Yangon, Myanmar, 2016; p. 84. [Google Scholar]
- Miettinen, J.; Shi, C.; Liew, S.C. Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Glob. Ecol. Conserv. 2016, 6, 67–78. [Google Scholar] [CrossRef]
- Carlson, K.M.; Curran, L.M.; Asner, G.P.; Pittman, A.M.; Trigg, S.N.; Marion Adeney, J. Carbon emissions from forest conversion by Kalimantan oil palm plantations. Nat. Clim. Chang. 2013, 3, 283–287. [Google Scholar] [CrossRef]
- Abood, S.A.; Lee, J.S.H.; Burivalova, Z.; Garcia-Ulloa, J.; Koh, L.P. Relative contributions of the logging, fiber, oil palm, and mining industries to forest loss in Indonesia. Conserv. Lett. 2015, 8, 58–67. [Google Scholar] [CrossRef]
- Furumo, P.R.; Aide, T.M. Characterizing commercial oil palm expansion in Latin America: Land use change and trade. Environ. Res. Lett. 2017, 12, 024008. [Google Scholar] [CrossRef]
- Nkongho, R.N.; Feintrenie, L.; Levang, P. Strengths and weaknesses of the smallholder oil palm sector in Cameroon. Oilseeds Fats Crops Lipids 2014, 21, D208. [Google Scholar] [CrossRef]
- Li, H.; Aide, T.M.; Ma, Y.; Liu, W.; Cao, M. Demand for rubber is causing the loss of high diversity rain forest in SW China. Biodivers. Conserv. 2007, 16, 1731–1745. [Google Scholar] [CrossRef]
- Li, H.; Ma, Y.; Aide, T.M.; Liu, W. Past, present and future land-use in Xishuangbanna, China and the implications for carbon dynamics. For. Ecol. Manag. 2008, 255, 16–24. [Google Scholar] [CrossRef]
- Qiu, J. Where the rubber meets the garden. Nat. News 2009, 457, 246–247. [Google Scholar] [CrossRef] [PubMed]
- Zhai, D.-L.; Cannon, C.H.; Slik, J.W.F.; Zhang, C.-P.; Dai, Z.-C. Rubber and pulp plantations represent a double threat to Hainan’s natural tropical forests. J. Environ. Manag. 2012, 96, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.; McMahon, D.; Poffenberger, M.; Vogler, J. Land for My Grandchildren: Land Use and Tenure Change in Ratanakiri: 1989–2007; Community Forestry International (CFI), California, USA and the East West Center: Honolulu, HI, USA, 2008. [Google Scholar]
- Koh, L.P.; Wilcove, D.S. Cashing in palm oil for conservation. Nature 2007, 448, 993–994. [Google Scholar] [CrossRef] [PubMed]
- Manivong, V.; Cramb, R.A. Economics of smallholder rubber expansion in Northern Laos. Agrofor. Syst. 2008, 74, 113. [Google Scholar] [CrossRef]
- Corley, R.H.V. How much palm oil do we need? Environ. Sci. Policy 2009, 12, 134–139. [Google Scholar] [CrossRef]
- Bissonnette, J.-F.; Koninck, R.D. The return of the plantation? Historical and contemporary trends in the relation between plantations and smallholdings in Southeast Asia. J. Peasant Stud. 2017, 1–21. [Google Scholar] [CrossRef]
- Fitzherbert, E.B.; Struebig, M.J.; Morel, A.; Danielsen, F.; Brühl, C.A.; Donald, P.F.; Phalan, B. How will oil palm expansion affect biodiversity? Trends Ecol. Evol. 2008, 23, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.; Castella, J.-C.; Ziegler, A.D.; Westley, S.B. Rubber Plantations Expand in Mountainous Southeast Asia: What Are the Consequences for the Environment? East-West Center: Honolulu, HI, USA, 2014. [Google Scholar]
- Laurance, W.F.; Sayer, J.; Cassman, K.G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 2014, 29, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Rosenqvist, A. Evaluation of JERS-1, ERS-1 and Almaz SAR backscatter for rubber and oil palm stands in West Malaysia. Int. J. Remote Sens. 1996, 17, 3219–3231. [Google Scholar] [CrossRef]
- Santos, C.; Messina, J.P. Multi-sensor data fusion for modeling African palm in the Ecuadorian Amazon. Photogramm. Eng. Remote Sens. 2008, 74, 711–723. [Google Scholar] [CrossRef]
- Gutiérrez-Vélez, V.H.; DeFries, R. Annual multi-resolution detection of land cover conversion to oil palm in the Peruvian Amazon. Remote Sens. Environ. 2013, 129, 154–167. [Google Scholar] [CrossRef]
- Walker, W.S.; Stickler, C.M.; Kellndorfer, J.M.; Kirsch, K.M.; Nepstad, D.C. Large-area classification and mapping of forest and land cover in the Brazilian Amazon: A comparative analysis of ALOS/PALSAR and Landsat data sources. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 594–604. [Google Scholar] [CrossRef]
- Castelluccio, M.; Poggi, G.; Sansone, C.; Verdoliva, L. Land use classification in remote sensing images by convolutional neural networks. ArXiv, 2015; arXiv:1508.00092. [Google Scholar]
- Zhang, L.; Zhang, L.; Du, B. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [Google Scholar] [CrossRef]
- Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [Google Scholar] [CrossRef]
- Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Convolutional neural networks for large-scale remote-sensing image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 645–657. [Google Scholar] [CrossRef]
Code | Land Cover Class | Description |
---|---|---|
FOR | Forest | Forest with tree canopy cover >80% |
MNG | Mangrove | Mangrove cover along coastal areas; tree canopy cover >80% |
OPM | Oil Palm Mature | Plantation of mature oil palm with coverage >50% |
RBM | Rubber Mature | Plantation of mature rubber trees with coverage >50% |
SHB | Shrub/Orchard | Degraded woody vegetation; cultivated land such as cashew, betel nut |
RPD | Rice Paddy | Paddy fields with planted rice |
BUA | Built-Up Area | Developed land such as buildings, roads, human settlements |
BSG | Bare Soil/Ground | Areas of exposed soil or ground; with grass or minimal vegetation |
WTR | Water Body | Bodies of fresh/saltwater such as oceans, lakes, rivers; flooded areas |
Sensor Type | Set A | Set B | ||
---|---|---|---|---|
1995 | 2015 | 2015 | ||
Landsat | Landsat-5 TM
| Landsat-8 OLI
| Landsat-8 OLI
| |
L-band SAR | JERS-1 SAR
| ALOS/PALSAR-2
| ALOS/PALSAR-2
| |
Total number of layers per data group | ||||
Landsat data | 12 | 12 | 12 | |
SAR data | 9 | 9 | 24 | |
Landsat + SAR | 21 | 21 | 36 |
Set A 1995 | Set A 2015; Set B 2015 | |||||
---|---|---|---|---|---|---|
L | J | L + J | L | P | L + P | |
Training | 1490 | 2112 | 1490 | 1441 | 2065 | 1426 |
Testing | 632 | 906 | 632 | 606 | 868 | 606 |
Total | 2122 | 3018 | 2122 | 2047 | 2933 | 2032 |
Image Group | Set A | Set B | |
---|---|---|---|
1995 | 2015 | 2015 | |
Overall accuracies | |||
Landsat-only | 91.20 | 91.93 | 91.93 |
SAR-only | 64.78 | 56.01 | 71.43 |
Landsat + SAR | 93.83 | 92.96 | 93.79 |
McNemar's tests | |||
(a) Landsat-only vs. Landsat + SAR within each year | 2.00 (0.1573) | 28.90 (0.00000008) | 34.78 (0.000000004) |
(b) Landsat + SAR, Set A vs. Set B | 3.00 (0.08326) |
Land Cover Type | Set A | Set B | ||||
---|---|---|---|---|---|---|
1995 | 2015 | 2015 | ||||
UA | PA | UA | PA | UA | PA | |
Landsat + SAR | ||||||
Forest | 0.9898 | 0.9661 | 0.9909 | 0.9375 | 0.9928 | 0.9000 |
Mangrove | 0.6616 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Oil Palm Mature | 1.0000 | 0.9136 | 0.7012 | 0.8393 | 0.6851 | 0.8545 |
Rubber Mature | 1.0000 | 1.0000 | 0.6600 | 0.9184 | 0.6796 | 0.9375 |
Shrub/Orchard | 0.9722 | 0.7778 | 0.8282 | 0.7143 | 0.8618 | 0.7714 |
Rice Paddy | 0.6905 | 0.7465 | 0.9731 | 0.8553 | 0.9334 | 0.9041 |
Built-Up Area | 0.8603 | 0.9348 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Bare Soil/Ground | 0.6963 | 0.9239 | 0.8765 | 0.9518 | 0.9453 | 0.9625 |
Water Body | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Difference (Landsat + SAR - Landsat-only) | ||||||
Forest | 0.0006 | 0.0317 | –0.0091 | –0.0208 | –0.0072 | –0.0583 |
Mangrove | 0.0682 | 0 | 0.0597 | 0 | 0.0597 | 0 |
Oil Palm Mature | 0 | 0 | 0.0460 | 0.0029 | 0.0299 | 0.0182 |
Rubber Mature | 0 | 0 | –0.0131 | 0.0093 | 0.0065 | 0.0284 |
Shrub/Orchard | –0.0157 | 0.1256 | 0.0689 | 0.0621 | 0.1025 | 0.1193 |
Rice Paddy | 0.0646 | –0.0414 | –0.0232 | 0.0504 | –0.0629 | 0.0992 |
Built-Up Area | 0.2987 | 0.0098 | 0.0995 | 0.4921 | 0.0995 | 0.4921 |
Bare Soil/Ground | 0.1098 | 0.0552 | 0.1719 | –0.0112 | 0.2407 | –0.0005 |
Water Body | 0 | 0 | 0 | 0 | 0 | 0 |
Set A | Set B | |||||||
---|---|---|---|---|---|---|---|---|
1995 | 2015 | 2015 | ||||||
L | J | L + J | L | P | L + P | L | P | L + P |
SATVI (17.09) | HH AVG (38.63) | HH AVG (18.05) | SATVI (15.75) | HH AVG (40.31) | SATVI (13.85) | SATVI (16.18) | HV (21.01) | SWIR1 (12.93) |
NIR (16.77) | HH (22.57) | NIR (13.18) | TIR (15.28) | HH (21.28) | GREEN (13.82) | TIR (13.81) | HH AVG (15.47) | GREEN (10.79) |
TIR (15.79) | HH VAR (15.25) | EVI (12.42) | EVI (13.39) | HH VAR (19.28) | HH AVG (12.53) | NDVI (13.79) | HV AVG (14.59) | TIR (10.57) |
EVI (14.98) | HH DIS (13.83) | SATVI (12.41) | NDVI (13.20) | HH DIS (15.62) | SWIR1 (11.71) | EVI (13.73) | HH VAR (13.39) | SATVI (10.05) |
SWIR1 (14.88) | HH IDM (13.58) | SWIR1 (11.46) | RED (12.30) | HH CON (15.31) | EVI (11.28) | GREEN (12.89) | NLI (13.28) | SWIR2 (9.74) |
NDVI (14.28) | HH CON (13.33) | HH (11.17) | SWIR1 (11.96) | HH IDM (11.85) | NDVI (10.63) | NIR (12.01) | AVE (12.84) | NDVI (9.63) |
SWIR2 (11.81) | HH COR (6.48) | HH CON (10.97) | LSWI (11.85) | HH COR (6.71) | TIR (10.59) | SWIR1 (11.39) | NDI (12.75) | HV AVG (9.07) |
BLUE (11.67) | HH ENT (1.87) | NDVI (10.59) | NDTI (10.78) | HH ENT (0.04) | SWIR2 (10.39) | SWIR2 (11.03) | HH (12.54) | EVI (9.04) |
LSWI (11.22) | HH ASM (0.52) | LSWI (10.00) | SWIR2 (10.42) | HH ASM (0.00) | LSWI (10.08) | NDTI (10.42) | DIF (11.68) | NDTI (8.41) |
GREEN (10.70) | SWIR2 (9.89) | NIR (9.79) | NIR (9.77) | LSWI (10.19) | HH VAR (11.63) | NIR (8.38) |
Land Cover Class | Set A | Set B | |||||||
---|---|---|---|---|---|---|---|---|---|
1995 | 2015 | 2015 | |||||||
L | J | L + J | L | P | L + P | L | P | L + P | |
Forest | 0.9610 | 0.4690 | 0.9778 | 0.9787 | 0.2733 | 0.9635 | 0.9787 | 0.6527 | 0.9441 |
Mangrove | 0.7448 | 0.0120 | 0.7963 | 0.9692 | 0.5937 | 1.0000 | 0.9692 | 0.6247 | 1.0000 |
Oil Palm Mature | 0.9548 | 0.3081 | 0.9548 | 0.7348 | 0.4536 | 0.7641 | 0.7348 | 0.5781 | 0.7605 |
Rubber Mature | 1.0000 | 0.1888 | 1.0000 | 0.7735 | 0.6226 | 0.7681 | 0.7735 | 0.6833 | 0.7880 |
Shrub/Orchard | 0.7857 | 0.0254 | 0.8642 | 0.7017 | 0.2485 | 0.7670 | 0.7017 | - | 0.8141 |
Rice Paddy | 0.6976 | 0.4191 | 0.7174 | 0.8904 | 0.2597 | 0.9104 | 0.8904 | 0.2097 | 0.9185 |
Built-Up Area | 0.6989 | 0.8182 | 0.8960 | 0.6495 | 0.7706 | 1.0000 | 0.6495 | 0.7975 | 1.0000 |
Bare Soil/Ground | 0.7002 | 0.2784 | 0.7941 | 0.8137 | 0.3033 | 0.9126 | 0.8137 | 0.5328 | 0.9538 |
Water Body | 1.0000 | 0.9553 | 1.0000 | 1.0000 | 0.8278 | 1.0000 | 1.0000 | 0.9219 | 1.0000 |
2015 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
1995 | FOR | MNG | OPM | RBM | SHB | RPD | BUA | BSG | WTR | Total |
Land area (km2) | ||||||||||
FOR | 16,112 | 538 | 2044 | 1170 | 1361 | 15 | 2 | 3 | 0 | 21,245 |
MNG | 535 | 2345 | 432 | 20 | 114 | 34 | 3 | 24 | 5 | 3511 |
OPM | 441 | 3 | 738 | 124 | 128 | 2 | 0 | 1 | 0 | 1436 |
RBM | 156 | 1 | 381 | 431 | 751 | 5 | 0 | 0 | 0 | 1726 |
SHB | 1210 | 138 | 2564 | 2653 | 5683 | 137 | 4 | 20 | 3 | 12,413 |
RPD | 4 | 48 | 24 | 44 | 312 | 337 | 2 | 17 | 0 | 782 |
BUA | 1 | 11 | 3 | 1 | 24 | 6 | 6 | 3 | 0 | 55 |
BSG | 16 | 323 | 21 | 13 | 107 | 364 | 11 | 183 | 51 | 1089 |
WTR | 4 | 30 | 1 | 0 | 1 | 1 | 1 | 29 | 188 | 255 |
Total | 18,479 | 3428 | 6209 | 4547 | 8482 | 901 | 29 | 280 | 247 | 42,512 |
Percentage (%) | ||||||||||
FOR | MNG | OPM | RBM | SHB | RPD | BUA | BSG | WTR | Total | |
FOR | 37.90 | 1.26 | 4.81 | 2.75 | 3.20 | 0.04 | 0.00 | 0.01 | 0.00 | 49.97 |
MNG | 1.26 | 5.52 | 1.02 | 0.05 | 0.27 | 0.08 | 0.01 | 0.06 | 0.01 | 8.26 |
OPM | 1.04 | 0.01 | 1.74 | 0.29 | 0.30 | 0.00 | 0.00 | 0.00 | 0.00 | 3.38 |
RBM | 0.37 | 0.00 | 0.90 | 1.01 | 1.77 | 0.01 | 0.00 | 0.00 | 0.00 | 4.06 |
SHB | 2.85 | 0.33 | 6.03 | 6.24 | 13.37 | 0.32 | 0.01 | 0.05 | 0.01 | 29.20 |
RPD | 0.01 | 0.10 | 0.06 | 0.10 | 0.73 | 0.79 | 0.01 | 0.04 | 0.00 | 1.84 |
BUA | 0.00 | 0.03 | 0.01 | 0.00 | 0.06 | 0.01 | 0.01 | 0.01 | 0.00 | 0.13 |
BSG | 0.04 | 0.76 | 0.05 | 0.03 | 0.25 | 0.86 | 0.03 | 0.43 | 0.12 | 2.56 |
WTR | 0.01 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.44 | 0.60 |
Total | 43.47 | 8.06 | 14.61 | 10.48 | 19.95 | 2.12 | 0.07 | 0.66 | 0.58 | 100.00 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Alban, J.D.T.; Connette, G.M.; Oswald, P.; Webb, E.L. Combined Landsat and L-Band SAR Data Improves Land Cover Classification and Change Detection in Dynamic Tropical Landscapes. Remote Sens. 2018, 10, 306. https://doi.org/10.3390/rs10020306
De Alban JDT, Connette GM, Oswald P, Webb EL. Combined Landsat and L-Band SAR Data Improves Land Cover Classification and Change Detection in Dynamic Tropical Landscapes. Remote Sensing. 2018; 10(2):306. https://doi.org/10.3390/rs10020306
Chicago/Turabian StyleDe Alban, Jose Don T., Grant M. Connette, Patrick Oswald, and Edward L. Webb. 2018. "Combined Landsat and L-Band SAR Data Improves Land Cover Classification and Change Detection in Dynamic Tropical Landscapes" Remote Sensing 10, no. 2: 306. https://doi.org/10.3390/rs10020306
APA StyleDe Alban, J. D. T., Connette, G. M., Oswald, P., & Webb, E. L. (2018). Combined Landsat and L-Band SAR Data Improves Land Cover Classification and Change Detection in Dynamic Tropical Landscapes. Remote Sensing, 10(2), 306. https://doi.org/10.3390/rs10020306