Modifying an Image Fusion Approach for High Spatiotemporal LST Retrieval in Surface Dryness and Evapotranspiration Estimations
"> Figure 1
<p>The study area is a 1063 km<sup>2</sup> (120°09′05″E–120°28′30″E, 23°17′45″N–23°35′45″N) plot in the Chiayi County, Taiwan, mostly covered by agricultural land. The black circles indicate locations of weather stations A (23°34′9.13″N, 120°17′13.2″E), B (23°33′12.6″N, 120°25′13.08″E), C (23°24′47.16″N, 120°18′0.72″E), D (23°20′57.12″N, 120°24′22.68″E), and D (23°18′44.64″N, 120°18′30.96″E).</p> "> Figure 2
<p>Flowchart of STAEFM approach. NIR, near infrared; SWIR, shortwave infrared; TIR, thermal infrared; mNDVI, modified normalized difference vegetation index.</p> "> Figure 3
<p>Digital number of Himawari-8 TIR images (<b>a</b>) without sharpening and (<b>b</b>) with sharpening, compared to (<b>c</b>) the digital number of the Landsat-8 TIR image at the same acquisition time (15 November 2018).</p> "> Figure 4
<p>Results of fused TIR images from STARFM, ESTARFM, and STAEFM approaches.</p> "> Figure 5
<p>LST (°C) estimated from (<b>a</b>) Landsat TIR, (<b>b</b>) STARFM, (<b>c</b>) ESTARFM, and (<b>d</b>) STAEFM on 18 January 2019.</p> "> Figure 6
<p>Histograms of LST images from (<b>a</b>) Landsat, (<b>b</b>) STARFM, (<b>c</b>) ESTARFM, and (<b>d</b>) STAEFM on 18 January 2019.</p> "> Figure 7
<p>Comparison of Landsat TIR images with fused images of (<b>a</b>) STARFM, (<b>b</b>) ESTARFM, and (<b>c</b>) STAEFM after being normalized from 0 to 10,000.</p> "> Figure 8
<p>Hourly LST images (°C) estimated from STAEFM TIR on 18 January 2019 at (<b>a</b>) 09:00–10:00, (<b>b</b>) 11:00–12:00, and (<b>c</b>) 13:00–14:00, and (<b>d</b>–<b>f</b>) their histograms, respectively.</p> "> Figure 9
<p>Regression of dry and wet edges estimated from STAEFM TIR on 18 January 2019 at (<b>a</b>) 09:00–10:00, (<b>b</b>) 11:00–12:00, and (<b>c</b>) 13:00–14:00.</p> "> Figure 10
<p>Same as <a href="#remotesensing-12-00498-f008" class="html-fig">Figure 8</a>, but with the results of temperature vegetation dryness index (TVDI) on 18 January 2019.</p> "> Figure 11
<p>Same as <a href="#remotesensing-12-00498-f008" class="html-fig">Figure 8</a>, but with the results of actual evapotranspiration (ET) (mm/hour) on 18 January 2019.</p> "> Figure 12
<p>Correlation of hourly actual ET estimated from STAEFM TIR on 18 January 2019 with (<b>a</b>) albedo, (<b>b</b>) air temperature, (<b>c</b>) relative humidity, and (<b>d</b>) wind speed.</p> ">
Abstract
:1. Introduction
2. Literature Review
3. Study Area and Materials
4. Methodology
4.1. Spatiotemporal Image Fusion Methods
4.1.1. STARFM
Spectral Weighting
Temporal Weighting
Distance Weighting
4.1.2. ESTARFM
4.1.3. STAEFM
Sharpening Himawari-8 TIR Images
Generating a Classification Map Based on Land Surface Emissivity
Weightings of SWIR Bands
4.2. Temperature Vegetation Dryness Index
4.3. Solar Radiation
4.4. Operational Simplified Surface Energy Balance
4.4.1. ET Fraction
4.4.2. Reference ET
5. Results and Discussion
5.1. Comparison of Fused Images
5.2. Error Assessment of Fused Images
5.3. Application of STAEFM
5.4. Correlation between Evapotranspiration and Meteorological Parameters
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Berg, A.; Lintner, B.R.; Findell, K.L.; Malyshev, S.; Loikith, P.C.; Gentine, P. Impact of soil moisture-atmosphere interaction on surface temperature distribution. J. Clim. 2014, 27, 7976–7993. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.H.; Evans, J.P.; McCabe, M.F. The impact of observed vegetation changes on land-atmosphere feedbacks during drought. J. Hydrometeorol. 2014, 15, 759–776. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Shambhavi, S.; Kumar, R.; Singh, Y.K.; Rawat, K.S. Evapotranspiration mapping for agricultural water management: An overview. J. Appl. Nat. Sci. 2013, 5, 522–534. [Google Scholar] [CrossRef] [Green Version]
- Ershadi, A. Evapotranspiration: Application, Scaling and Uncertainty. Ph.D. Thesis, University of New South Wales, Sydney, Australia, 2014. [Google Scholar]
- Gebler, S.; Franssen, H.J.H.; Pütz, H.; Post, H.; Schmidt, M.; Vereecken, H. Actual evapotranspiration and precipitation measured by lysimeters: A comparison with eddy covariance and tipping bucket. Hydrol. Earth Syst. Sci. 2015, 19, 2145–2161. [Google Scholar] [CrossRef] [Green Version]
- Zitouna-Chebbi, R.; Prévot, L.; Chakhar, A.; Abdallah, M.M.B.; Jacob, F. Observing actual evapotranspiration from flux tower eddy covariance measurements within a hilly watershed: Case study of the Kamech site, Cap Bon Peninsula, Tunisia. J. Atmos. 2018, 9, 68. [Google Scholar] [CrossRef] [Green Version]
- Chirouze, J.; Boulet, G.; Jarlan, L.; Fieuzal, R.; Rodriguez, J.C.; Ezzahar, J.; Er-Raki, S.; Bigeard, G.; Merlin, O.; Garatuza-Payan, J.; et al. Intercomparison of four remote-sensing-based energy balance methods to retrieve surface evapotranspiration and water stress of irrigated fields in semi-arid climate. Hydrol. Earth Syst. Sci. 2014, 18, 1165–1188. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.C.; Kustas, W.P.; Norman, J.M.; Hain, C.R.; Mecikalski, J.R.; Schultz, L.; Gonzalez-Dugo, M.P.; Cammalleri, C.; d’Urso, G.; Pimstein, A.; et al. Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrol. Earth Syst. Sci. 2011, 15, 223–239. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Wei, B.; Su, W.; Shen, W.; Wang, C.; You, D.; Liu, Z. Evapotranspiration estimation based on the SEBAL model in the Nansi Lake Wetland of China. Math. Comput. Model. 2011, 64, 1086–1092. [Google Scholar] [CrossRef]
- Beg, A.A.F.; Al-Sulttani, A.H.; Ochtyra, A.; Jarocińska, A.; Marcinkowska, A. Estimation of evapotranspiration using SEBAL algorithm and Landsat-8 data–a case study: Tatra Mountains Region. J. Geol. Resour. Eng. 2018, 6, 257–270. [Google Scholar]
- Trezza, R.; Allen, R.G.; Tasumi, M. Estimation of actual evapotranspiration along the Middle Rio Grande of New Mexico using MODIS and Landsat imagery with the METRIC model. Remote Sens. 2013, 5, 5397–5423. [Google Scholar] [CrossRef] [Green Version]
- Killic, A.; Allen, R.; Trezza, R.; Ratcliffe, I.; Kamble, B.; Robison, C.; Ozturk, D. Sensitivity of evapotranspiration retrievals from METRIC processing algorithm to improved radiometric resolution of Landsat 8 thermal data and to calibration bias in Landsat-7 and 8 surface temperature. Remote Sens. Environ. 2016, 185, 198–209. [Google Scholar] [CrossRef] [Green Version]
- Shoko, C.; Dube, T.; Sibanda, M.; Adelabu, S. Applying the surface energy balance system (SEBS) remote sensing model to estimate spatial variations in evapotranspiration in Southern Zimbabwe. Trans. R. Soc. S. Afr. 2015, 70, 47–55. [Google Scholar] [CrossRef]
- Rwasoka, D.T.; Gumindoga, W.; Gwenzi, J. Estimation of actual evapotranspiration using the surface energy balance system (SEBS) algorithm in the Upper Manyame catchment in Zimbabwe. Phys. Chem. Earth. 2011, 36, 736–746. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Q.F.; Zhu, X.J.; Li, Y.N.; Yu, G.R. Hysteresis Responses of Evapotranspiration to Meteorological Factors at a Diel Timescale: Patterns and Causes. PLoS ONE 2014, 9, e98857. [Google Scholar] [CrossRef]
- Li, S.; Jiang, G.M. Land surface temperature retrieval from Landsat-8 data with the generalized split-window algorithm. IEEE 2018, 6, 18149–18162. [Google Scholar] [CrossRef]
- Sattari, F.; Hashim, M.; Pour, A.B. Thermal sharpening of land surface temperature maps based on the impervious surface index with the TsHARP method to ASTER satellite data: A case study from the metropolitan Kuala Lumpur, Malaysia. Measurement 2018, 125, 262–278. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Ishikawa, H.; Oku, Y. An Algorithm for Land Surface Temperature Retrieval Using Three Thermal Infrared Bands of Himawari-8. J. Meteorol. Soc. Jpn. 2018, 96B, 59–76. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.Y.; Suh, M.S. Development of Himawari-8/Advanced Himawari Imager (AHI) Land Surface Temperature Retrieval Algorithm. Remote Sens. 2018, 10, 2013. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the landsat and modis surface reflectance: Predicting daily landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar]
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Schneider, S.H. The greenhouse effect: Science and policy. Science 1989, 243, 771–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.Y.; Ho, H.C.; Lin, T.H. Improving the image fusion procedure for high-spatiotemporal aerosol optical depth retrieval: A case study of urban area in Taiwan. J. Appl. Remote Sens. 2018, 12, 042605. [Google Scholar] [CrossRef]
- Kustas, W.P.; Norman, J.M.; Anderson, M.C.; French, A.N. Estimating subpixel surface temperatures and energy fluxes from the vegetation index–radiometric temperature relationship. Remote Sens. Environ. 2003, 85, 429–440. [Google Scholar] [CrossRef]
- Agam, N.; Kustas, W.P.; Anderson, M.C.; Li, F.; Neale, C.M.U. A vegetation index based technique for spatial sharpening of thermal imagery. Remote Sens. Environ. 2007, 107, 545–558. [Google Scholar] [CrossRef]
- Nichol, J. An emissivity modulation method for spatial enhancement of thermal satellite images in urban heat island analysis. Photogramm. Eng. Remote Sens. 2009, 75, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Addesso, P.; Longo, M.; Restaino, R.; Vivone, G. Sequential Bayesian Methods for Resolution Enhancement of TIR Image Sequences. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 233–243. [Google Scholar] [CrossRef]
- Xia, H.; Chen, Y.; Zhao, Y.; Chen, Z. “Regression-then-Fusion” or “Fusion-then-Regression”? A Theoretical Analysis for Generating High Spatiotemporal Resolution Land Surface Temperatures. Remote Sens. 2018, 10, 1382. [Google Scholar] [CrossRef] [Green Version]
- Cammalleri, C.; Anderson, M.; Gao, F.; Hain, C.R.; Kustas, W.P. A data fusion approach for mapping daily evapotranspiration at field scale. Water Resour. Res. 2013, 49, 4672–4686. [Google Scholar] [CrossRef]
- Alidoost, F.; Sharifi, M.A.; Stein, A. Region- and pixel-based image fusion for disaggregation of actual evapotranspiration. Int. J. Image Data Fusion. 2015, 6, 216–231. [Google Scholar] [CrossRef]
- Semmens, K.A.; Anderson, M.C.; Kustas, W.P.; Gao, F.; Alfieri, J.G.; McKee, L.; Prueger, J.H.; Hain, C.R.; Cammalleri, C.; Yang, Y.; et al. Monitoring daily evapotranspiration over two California vineyards using Landsat 8 in a multi-sensor data fusion approach. Remote Sens. Environ. 2015, 185, 155–170. [Google Scholar] [CrossRef] [Green Version]
- Ke, Y.; Im, J.; Park, S.; Gong, H. Downscaling of MODIS one-kilometer evapotranspiration using Landsat-8 data and machine learning approaches. Remote Sens. 2016, 8, 215. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Anderson, M.C.; Gao, F.; Hain, C.R.; Semmens, K.A.; Kustas, W.P.; Noormets, A.; Wyne, R.H.; Thomas, V.A.; Sun, G. Daily Landsat-scale evapotranspiration estimation over a forested landscape in North Carolina, USA, using multi-satellite data fusion. Hydrol. Earth Syst. Sci. 2017, 21, 1017–1103. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Qin, Z.; Li, W.; Song, C.; Karnieli, A.; Zhao, S. An efficient approach for pixel decomposition to increase the spatial resolution of land surface temperature images from MODIS thermal infrared band data. Sensors 2014, 15, 304–330. [Google Scholar] [CrossRef] [Green Version]
- Farhanj, F.; Akhoondzadeh, M. Fusion of Landsat-8 thermal infrared and visible bands with multiresolution analysis contourlet methods. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 12, 042605. [Google Scholar]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from Landsat TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; NASA/GSFC Type III Final Report: Greenbelt, Maryland, NASA; NASA: Washington, DC, USA, 1974; 371p.
- Rosas, J.; Houborg, R.; McCabe, M.F. Sensitivity of Landsat 8 surface temperature estimates to atmospheric profile data: A study using MODTRAN in dryland irrigated systems. Remote Sens. 2017, 9, 988. [Google Scholar] [CrossRef] [Green Version]
- U.S. Geological Survey. Landsat 8 (L8) Data Users Handbook; Department of the Interior US Geological Survey: Reston, VA, USA, 2019.
- Artis, D.A.; Carnahan, W.A. Survey of emissivity variability in thermography of urban areas. Remote Sens. Environ. 1982, 12, 313–329. [Google Scholar] [CrossRef]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Fan, L.; Xiao, Q.; Wen, J.; Liu, Q.; Tang, Y.; You, D.; Wang, H.; Gong, Z.; Li, X. Evaluation of the airborne CASI/TASI Ts-VI space method for estimating near-surface soil moisture. Remote Sens. 2015, 7, 3114–3137. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Zhang, L.W.; Shi, J.J.; Huang, J.F. Soil moisture monitoring based on land surface temperature-vegetation index space derived from MODIS data. Pedosphere 2014, 24, 450–460. [Google Scholar] [CrossRef]
- Chen, S.; Wen, Z.; Jiang, H.; Zhao, Q.; Zhang, X.; Chen, Y. Temperature vegetation dryness index estimation of soil moisture under different tree species. Sustainability 2015, 7, 11401–11417. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Gao, W.; Chang, N.B. Integrating temperature vegetation dryness index (TVDI) and regional water stress index (RWSI) for drought assessment with the aid of Landsat TM/ETM+ images. Int. J. Appl. Earth Obs. Geoinf. 2010, 13, 495–503. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R.; Waters, R.; Bastiaanssen, W. Advance Training and Users Manual–Idaho Implementation; Version 1.0; SEBAL (Surface Energy Balance Algorithms for Land); University of Idaho: Kimberly Idaho, ID, USA, 2002; p. 97. [Google Scholar]
- Su, Z. The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–99. [Google Scholar] [CrossRef]
- Senay, G.B.; Bohms, S.; Singh, R.K.; Gowda, P.H.; Velpuri, N.M.; Alemu, H.; Verdin, J.P. Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEB approach. J. Am. Water Resour. Assoc. 2013, 49, 577–591. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration: Guide-lines for computing crop water requirements. In FAO Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998; 300p. [Google Scholar]
Specific Bands (Central Wavelength) | Acquisition Dates | Image Fusion Method | ||
---|---|---|---|---|
STARFM | ESTARFM | STAEFM | ||
H8-B13 (10.41 µm) | 30 October 2018 | ✓ | ||
15 November 2018 | ✓ | ✓ | ✓ | |
18 January 2019 | ✓ | ✓ | ✓ | |
H8-B05 (1.61 µm) | 30 October 2018 | |||
15 November 2018 | ✓ | |||
18 January 2019 | ✓ | |||
L8-B10 (10.9 µm) | 30 October 2018 | ✓ | ||
15 November 2018 | ✓ | ✓ | ✓ | |
L8-B06 (1.61 µm) | 30 October 2018 | |||
15 November 2018 | ✓ |
Landsat-8 Band | Wavelength (µm) | ESUN |
---|---|---|
2 (blue) | 0.45–0.51 | 2067 |
3 (green) | 0.53–0.59 | 1893 |
4 (red) | 0.64–0.67 | 1603 |
5 (NIR) | 0.85–0.88 | 972.6 |
6 (SWIR 1) | 1.57–1.65 | 245 |
7 (SWIR 2) | 2.11–2. 29 | 79.72 |
Station | Ta (°C) | LST (°C) | LST-Ta | ||||||
---|---|---|---|---|---|---|---|---|---|
Landsat TIR | STARFM | ESATRFM | STAEFM | Landsat TIR | STARFM | ESATRFM | STAEFM | ||
A | 19.70 | 24.63 | 30.53 | 26.92 | 25.86 | 4.93 | 10.83 | 7.22 | 6.16 |
B | 19.80 | 21.95 | 28.17 | 23.02 | 22.85 | 2.15 | 8.37 | 3.22 | 3.05 |
C | 19.30 | 25.97 | 29.65 | 25.09 | 24.75 | 6.67 | 10.35 | 5.79 | 5.45 |
D | 19.90 | 22.19 | 28.65 | 24.69 | 23.40 | 2.29 | 8.75 | 4.79 | 3.50 |
E | 20.40 | 21.92 | 29.00 | 24.91 | 24.00 | 1.52 | 8.60 | 4.51 | 3.60 |
Local Time | Dry Edge | Wet Edge |
---|---|---|
09:00–10:00 | Tsmax = 31.67 − 10.72 EVI | Tsmin = 14.70 + 2.79 EVI |
R2 = 0.980 | R2 = 0.883 | |
11:00–12:00 | Tsmax = 30.10 − 11.52 EVI | Tsmin = 14.86 + 3.49 EVI |
R2 = 0.969 | R2 = 0.904 | |
13:00–14:00 | Tsmax = 35.17 − 16.53 EVI | Tsmin = 8.46 + 8.14 EVI |
R2 = 0.991 | R2 = 0.941 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Januar, T.W.; Lin, T.-H.; Huang, C.-Y.; Chang, K.-E. Modifying an Image Fusion Approach for High Spatiotemporal LST Retrieval in Surface Dryness and Evapotranspiration Estimations. Remote Sens. 2020, 12, 498. https://doi.org/10.3390/rs12030498
Januar TW, Lin T-H, Huang C-Y, Chang K-E. Modifying an Image Fusion Approach for High Spatiotemporal LST Retrieval in Surface Dryness and Evapotranspiration Estimations. Remote Sensing. 2020; 12(3):498. https://doi.org/10.3390/rs12030498
Chicago/Turabian StyleJanuar, Tri Wandi, Tang-Huang Lin, Chih-Yuan Huang, and Kuo-En Chang. 2020. "Modifying an Image Fusion Approach for High Spatiotemporal LST Retrieval in Surface Dryness and Evapotranspiration Estimations" Remote Sensing 12, no. 3: 498. https://doi.org/10.3390/rs12030498
APA StyleJanuar, T. W., Lin, T. -H., Huang, C. -Y., & Chang, K. -E. (2020). Modifying an Image Fusion Approach for High Spatiotemporal LST Retrieval in Surface Dryness and Evapotranspiration Estimations. Remote Sensing, 12(3), 498. https://doi.org/10.3390/rs12030498