Downscaling of MODIS One Kilometer Evapotranspiration Using Landsat-8 Data and Machine Learning Approaches
"> Figure 1
<p>Location of the study Sites 1, 2, 3 and 4 over (<b>a</b>) US and (<b>b</b>) South Korea.</p> "> Figure 2
<p>Landsat 8 OLI color-infrared images for: (<b>a</b>) Site 1, image collected on 6 August 2013; (<b>b</b>) Site 2, image collected on 21 July 2013; (<b>c</b>) Site 3, image collected on 11 May 2013; and (<b>d</b>) Site 4, image collected on 5 June 2013. Yellow outlines show the boundary of the study area, blue rectangles show the areas around flux towers of sites 2 and 4, and green triangles indicate the location of flux towers.</p> "> Figure 2 Cont.
<p>Landsat 8 OLI color-infrared images for: (<b>a</b>) Site 1, image collected on 6 August 2013; (<b>b</b>) Site 2, image collected on 21 July 2013; (<b>c</b>) Site 3, image collected on 11 May 2013; and (<b>d</b>) Site 4, image collected on 5 June 2013. Yellow outlines show the boundary of the study area, blue rectangles show the areas around flux towers of sites 2 and 4, and green triangles indicate the location of flux towers.</p> "> Figure 3
<p>Flow diagram of the machine learning-based ET downscaling model.</p> "> Figure 4
<p>Root Mean Square Error (RMSE) and relative RMSE (rRMSE%) of Support Vector Regression (SVR), Random Forest (RF), and Cubist models at: Site 1 (<b>a</b>,<b>b</b>); Site 2 (<b>c</b>,<b>d</b>); Site 3 (<b>e</b>,<b>f</b>); and Site 4 (<b>g</b>,<b>h</b>).</p> "> Figure 5
<p>Importance of the 11 variables represented by the average increase in Mean Squared Error (MSE) of evapotranspiration (ET) resulted from all RF models at the four sites.</p> "> Figure 6
<p>RMSE and rRMSE (%) of Landsat-aggregated 1 km ET against MODIS ET: (<b>a</b>) RMSE and (<b>b</b>) rRMSE (%) for Sites 1, 2, 3, and 4.</p> "> Figure 7
<p>MODIS 8-day ET, Landsat 1 km ET and downscaled Landsat 30 m ET in the northeast part of Site 2 (refer to <a href="#remotesensing-08-00215-f002" class="html-fig">Figure 2</a>b blue outline for the area boundary) during the year of 2013.</p> "> Figure 8
<p>MODIS 8-day ET, Landsat 1 km ET and downscaled Landsat 30 m ET in the southwest part of Site 3 (refer to <a href="#remotesensing-08-00215-f002" class="html-fig">Figure 2</a>f blue outline for the area boundary) during the year of 2013.</p> "> Figure 9
<p>Zoomed view of Landsat 30 m downscaled ET (mm/8-days) in the northeast part of Site 2 during the year of 2013.</p> "> Figure 10
<p>Boxplots of difference between Landsat downscaled 30 m ET and MODIS ET in forest, crop, shrub and grass areas for: (<b>a</b>) Site 1; (<b>b</b>) Site 2; (<b>c</b>) Site 3; and (<b>d</b>) Site 4.</p> "> Figure 10 Cont.
<p>Boxplots of difference between Landsat downscaled 30 m ET and MODIS ET in forest, crop, shrub and grass areas for: (<b>a</b>) Site 1; (<b>b</b>) Site 2; (<b>c</b>) Site 3; and (<b>d</b>) Site 4.</p> "> Figure 11
<p>Comparison with <span class="html-italic">in-situ</span> ET at: (<b>a</b>) Site 1 (US-ARM flux tower); (<b>b</b>) Site 2 (US-Twt flux tower); (<b>c</b>) Site 3; and (<b>d</b>) Site 4. (<b>e</b>–<b>h</b>) The close view of the tower sites in July 2013 for Sites 1–3 and May 2013 for Site 4, with a black square denoting 1 km grid around each tower location: (e) Site 1; (f) Site 2; (g) Site 3; and (h) Site 4.</p> "> Figure 12
<p>Scatterplots of satellite-based ET against <span class="html-italic">in situ</span> ET at: (<b>a</b>) Site 1; (<b>b</b>) Site 2; (<b>c</b>) Site 3; and (<b>d</b>) Site 4.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Areas
2.2. Landsat 8 Imagery and MODIS ET Products
2.3. In Situ ET Calculation
3. Methodology
3.1. Derivation and Upscaling of Landsat 8-Based Indices
3.1.1. Landsat 8 VIs Calculation
3.1.2. Landsat 8 Broadband Surface Albedo Estimation
3.1.3. Landsat 8 LST and TVDI Estimation
3.1.4. Upscaling of Landsat 8 Indices
3.2. Machine Learning-Based Downscaling Models
4. Results
4.1. Results from Three Machine Learning Algorithms
4.2. Agreement between Landsat and MODIS ET
4.3. Spatial Variation of the Downscaled ET Product
4.4. Comparisons between Satellite-Based and in Situ ET
5. Discussion
5.1. Novelty, Performances and Opportunities
5.2. Challenges
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Anderson, M.C.; Allen, R.G.; Morse, A.; Kustas, W.P. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens. Environ. 2012, 122, 50–65. [Google Scholar] [CrossRef]
- Wang, S.; Pan, M.; Mu, Q.; Shi, X.; Mao, J.; Brümmer, C.; Jassal, R.S.; Krishnan, P.; Li, J.; Black, T.A. Comparing evapotranspiration from eddy covariance measurements, water budgets, remote sensing, and land surface models over Canada. J. Hydrometeorol. 2015, 16, 1540–1560. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. J. Hydrol. 1998, 198–213. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Pelgrum, H.; Wang, J.; Ma, Y.; Moreno, J.F.; Roerink, G.J. A remote sensing surface energy balance algorithm for land (SEBAL): 2. Validation. J. Hydrol. 1998, 213–229. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Morse, A.; Trezza, R.; Wright, J.L.; Bastiaanssen, W. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Applications. J. Irrig. Drain. E-ASCE 2007, 133, 395–406. [Google Scholar] [CrossRef]
- Norman, J.M.; Anderson, M.C.; Kustas, W.P.; French, A.N.; Mecikalski, J.; Torn, R.; Diak, G.R.; Schmugge, T.J.; Tanner, B.C.W. Remote sensing of surface energy fluxes at 101-m pixel resolution. Water Resour. Res. 2003, 39, 1221–1237. [Google Scholar] [CrossRef]
- Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–99. [Google Scholar] [CrossRef]
- Cleugh, H.A.; Leuning, R.; Mu, Q.; Running, S.W. Regional Evaporation Estimates from flux tower and MODIS satellite data. Remote Sens. Environ. 2007, 106, 285–304. [Google Scholar] [CrossRef]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Hu, G.; Jia, L.; Menenti, M. Comparison of MOD16 and LSA-SAF MSG evapotranspiration products over Europe for 2011. Remote Sens. Environ. 2015, 156, 510–526. [Google Scholar] [CrossRef]
- Ghilain, N.; Arboleda, A.; Gellens-Meulenberghs, F. Evapotranspiration modelling at large scale using near-real time MSG SEVIRI derived data. Hydrol. Earth Syst. Sci. 2011, 15, 771–786. [Google Scholar] [CrossRef]
- Yang, Y.; Guan, H.; Shang, S.; Long, D.; Simmons, C.T. Toward the use of the MODIS ET product to estimate terrestrial GPP for nonforest ecosystems. IEEE Geosci. Remote Sens. 2014, 11, 1624–1628. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Kimball, J.S.; McDowell, N.G.; Running, S.W. A remotely sensed global terrestrial drought severity index. B. Am. Meteorol. Soc. 2013, 94, 83–98. [Google Scholar] [CrossRef]
- Műnch, Z.; Conrad, J.; Gibson, L.; Palmer, A.; Hughes, D. Satellite earth observation as a tool to conceptualize hydrogeological fluxes in The Sandveld, South Africa. Hydrogeol. J. 2013, 21, 1053–1070. [Google Scholar] [CrossRef]
- Beigi, E.; Tsai, F. GIS-Based water budget framework for high-resolution groundwater recharge estimation of large-scale humid regions. J. Hydrol. Eng. 2014, 19, 5014004. [Google Scholar] [CrossRef]
- Momm, H.; Easson, G.; Bingner, R.; Wilcox, D. Evaluation of the use of remotely sensed evapotranspiration estimates into AnnAGNPS pollution model. Ecohydrology. 2011, 4, 650–660. [Google Scholar] [CrossRef]
- Hong, S.; Hendrickx, J.M.H.; Borchers, B. Down-scaling of SEBAL derived evapotranspiration maps from MODIS (250 m) to Landsat (30 m) scales. Int. J. Remote Sens. 2011, 32, 6457–6477. [Google Scholar] [CrossRef]
- Singh, R.; Senay, G.; Velpuri, N.; Bohms, S.; Verdin, J. On the downscaling of actual evapotranspiration maps based on combination of MODIS and Landsat-based actual evapotranspiration estimates. Remote Sens. 2014, 6, 10483. [Google Scholar] [CrossRef]
- Bhattarai, N.; Quackenbush, L.J.; Dougherty, M.; Marzen, L.J. A simple Landsat–MODIS fusion approach for monitoring seasonal evapotranspiration at 30 m spatial resolution. Int. J. Remote Sens. 2015, 36, 115–143. [Google Scholar] [CrossRef]
- Cammalleri, C.; Anderson, M.C.; Gao, F.; Hain, C.R.; Kustas, W.P. A data fusion approach for mapping daily evapotranspiration at field scale. Water Resour. Res. 2013, 49, 4672–4686. [Google Scholar] [CrossRef]
- Cammalleri, C.; Anderson, M.C.; Gao, F.; Hain, C.R.; Kustas, W.P. Mapping daily evapotranspiration at field scales over rainfed and irrigated agricultural areas using remote sensing data fusion. Agr. Forest Meteorol. 2014, 186, 1–11. [Google Scholar] [CrossRef]
- Ha, W.; Gowda, P.H.; Howell, T.A. A review of downscaling methods for remote sensing-based irrigation management: Part I. Irrig. Sci. 2013, 31, 831–850. [Google Scholar] [CrossRef]
- Ha, W.; Gowda, P.H.; Howell, T.A. A review of potential image fusion methods for remote sensing-based irrigation management: Part II. Irrig. Sci. 2013, 31, 851–869. [Google Scholar] [CrossRef]
- Wang, J.; Sammis, T.W.; Gutschick, V.P.; Gebremichael, M.; Miller, D.R. Sensitivity analysis of the Surface Energy Balance Algorithm for Land (SEBAL). T Asabe. 2008, 52, 801–811. [Google Scholar] [CrossRef]
- Mokhtari, M.H.; Ahmad, B.; Hoveidi, H.; Busu, I. Sensitivity analysis of METRIC–based evapotranspiration algorithm. Int. J. Environ. Res. 2013, 7, 407–422. [Google Scholar]
- Ke, Y.; Im, J.; Lee, J.; Gong, H.; Ryu, Y. Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in situ observations. Remote Sens. Environ. 2015, 164, 298–313. [Google Scholar] [CrossRef]
- Ghosh, S.; Mujumdar, P.P. Statistical downscaling of GCM simulations to streamflow using relevance vector machine. Adv. Water Resour. 2008, 31, 132–146. [Google Scholar] [CrossRef]
- Kaheil, Y.H.; Gill, M.K.; McKee, M.; Bastidas, L.A.; Rosero, E. Downscaling and assimilation of surface soil moisture using ground truth measurements. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1375–1384. [Google Scholar] [CrossRef]
- Im, J.; Park, S.; Rhee, J.; Baek, J.; Choi, M. Downscaling of AMSR-E soil moisture with MODIS products using machine learning approaches. Environ. Earth Sci. under review.
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Storey, J.; Choate, M.; Lee, K. Landsat 8 operational land imager on-orbit geometric calibration and performance. Remote Sens. 2014, 6, 11127. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Algorithm Theoretical Basis Document: MODIS Global Terrestrial Evapotranspiration (ET) Product (NASA MOD16A2/A3) Collection 5. 2013. NASA Headquarters. Available online: http://www.ntsg.umt.edu/project/mod16 (accessed on 30 November 2015).
- Mullens, T.J. Evaluation and Improvements of the Offline CLM4 Using ARM Data. Master’s Thesis, San Jose State University, San Jose, CA, USA, 2013. [Google Scholar]
- Lokupitiya, E.; Denning, S.; Paustian, K.; Baker, I.; Schaefer, K.; Verma, S.; Meyers, T.; Bernacchi, C.J.; Suyker, A.; Fischer, M. Incorporation of crop phenology in Simple Biosphere Model (SiBcrop) to improve land-atmosphere carbon exchanges from croplands. Biogeosciences 2009, 6, 969–986. [Google Scholar] [CrossRef]
- Yu, X.; Guo, X.; Wu, Z. Land surface temperature retrieval from Landsat 8 TIRS—Comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sens. 2014, 6, 9829–9852. [Google Scholar] [CrossRef]
- USGS, Department of the Interior U.S. Geological Survey. Product Guide. Provisional Landsat 8 surface reflectance product 2015. Available online: http://landsat.usgs.gov/documents/provisional_l8sr_product_guide.pdf (accessed on 30 November 2015).
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Wilson, E.H.; Sader, S.A. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens. Environ. 2002, 80, 385–396. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Hunt, E.R.; Rock, B.N. Detection of changes in leaf water content using near- and middle-infrared reflectance. Remote Sens. Environ. 1989, 30, 43–54. [Google Scholar]
- Van Niel, T.G.; McVicar, T.R.; Fang, H.; Liang, S. Calculating environmental moisture for per-field discrimination of rice crops. Int. J. Remote Sens. 2003, 24, 885–890. [Google Scholar] [CrossRef]
- Tasumi, M.; Allen, R.G.; Trezza, R. At-Surface reflectance and albedo from satellite for operational calculation of land surface energy balance. J. Hydrol. Eng. 2008, 13, 51–63. [Google Scholar] [CrossRef]
- Gueymard, C. SMARTS2, A Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment. Professional Paper FSEC-PF-270–95, 1995, Florida Solar Energy Center, Univ. of Central Florida, Cocoa, FL. Available online: http://www.nrel.gov/rredc/smarts/about.html (accessed on 30 November 2015).
- Landsat Mission Headlines. Available online: http://landsat.usgs.gov/about_LU_Vol_8_Issue_2.php (accessed on 30 November 2015).
- Jiménez-Muñoz, J.C.; Sobrino, J.A.; Skokovic, D.; Mattar, C.; Cristobal, J. Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geosci. Remote Sens. 2014, 11, 1840–1843. [Google Scholar] [CrossRef]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Quinlan, R. C4.5: Programs for Machine Learning; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1993. [Google Scholar]
- Li, M.; Im, J.; Quackenbush, L.J.; Li, T. Forest biomass and carbon stock quantification using airborne LiDAR data: A case study over Huntington Wildlife Forest in the Adirondack Park. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3143–3156. [Google Scholar] [CrossRef]
- Im, J.; Lu, Z.; Rhee, J.; Quackenbush, L.J. Impervious surface quantification using a synthesis of artificial immune networks and decision/regression trees from multi-sensor data. Remote Sens. Environ. 2012, 117, 102–113. [Google Scholar] [CrossRef]
- Tadesse, T.; Wardlow, B.; Hayes, M.; Svoboda, M.; Brown, J. The vegetation outlook (VegOut): A new method for predicting vegetation seasonal greenness. GISci. Remote Sens. 2010, 47, 25–52. [Google Scholar] [CrossRef]
- Im, J.; Jensen, J.R.; Coleman, M.; Nelson, E. Hyperspectral remote sensing analysis of short rotation woody crops grown with controlled nutrient and irrigation treatments. Geocarto. Int. 2009, 24, 293–312. [Google Scholar] [CrossRef]
- Russell, S.; Norvig, P. Chapter 18: Learning from Examples. In Artificial Intelligence: A Modern Approach, 3rd ed.; Prentice Hall, Pearson Education, Inc: Upper Saddle River, NJ, USA, 2009; pp. 744–748. [Google Scholar]
- Lu, D.; Li, G.; Mora, E.; Kuang, W. A Comparative analysis of approaches for successional vegetation classification in the Brazilian Amazon. GISci. Remote Sens. 2014, 51, 695–709. [Google Scholar] [CrossRef]
- Xun, L.; Wang, L. An object-based SVM method incorporating optimal segmentation scale estimation using Bhattacharyya Distance for mapping salt cedar (Tamarisk spp.) with QuickBird imagery. GISci. Remote Sens. 2015, 52, 257–273. [Google Scholar] [CrossRef]
- Moreira, L.; Teixeira, A.; Galvao, L. Potential of multispectral and hyperspectral data to detect saline-exposed soils in Brazil. GISci. Remote Sens. 2015, 52, 416–436. [Google Scholar] [CrossRef]
- Kim, Y.H.; Im, J.; Ha, H.K.; Choi, J.; Ha, S. Machine learning approaches to coastal water quality monitoring using GOCI satellite data. GISci. Remote Sens. 2014, 51, 158–174. [Google Scholar] [CrossRef]
- Gleason, C.J.; Im, J. Forest biomass estimation from airborne LiDAR data using machine learning approaches. Remote Sens. Environ. 2012, 125, 80–91. [Google Scholar] [CrossRef]
- Kang, D.; Im, J.; Lee, M.; Quackenbush, L.J. The MODIS ice surface temperature product as an indicator of sea ice minimum over the Arctic Ocean. Remote Sens. Environ. 2014, 152, 99–108. [Google Scholar] [CrossRef]
- Rao, C.; Rao, M.; Kumar, A.; Lakshmi, B.; Dadhwal, V. Expansion of LISSIII swath using AWiFS wider swath data and contourlet coefficients learning. GISci. Remote Sens. 2015, 52, 78–93. [Google Scholar] [CrossRef]
- Chang, C.; Lin, C. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Kim, M.; Im, J.; Han, H.; Kim, J.; Lee, S.; Shin, M.; Kim, H. Landfast sea ice monitoring using multisensor fusion in the Antarctic. GISci. Remote Sens. 2015, 52, 239–256. [Google Scholar] [CrossRef]
- Long, J.A.; Lawrence, R.L.; Greenwood, M.C.; Marshall, L.; Miller, P.R. Object-Oriented crop classification using multitemporal ETM+ SLC-off imagery and random forest. GISci. Remote Sens. 2013, 50, 418–436. [Google Scholar]
- Rhee, J.; Park, S.; Lu, Z. Relationship between land cover patterns and surface temperature in urban areas. GISci. Remote Sens. 2014, 51, 521–536. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Homer, C.G.; Dewitz, J.A.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.D.; Wickham, J.D.; Megown, K. Completion of the 2011 National Land Cover Database for the conterminous United States-Representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 2015, 81, 345–354. [Google Scholar]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 Global Land Cover: Algorithm Refinements and Characterization of New Datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- GlobCover. Available online: http://due.esrin.esa.int/page_globcover.php (accessed on 30 November 2015).
- Finer Resolution Observation and Monitoring of Global Land Cover. Available online: http://data.ess.tsinghua.edu.cn/ (accessed on 30 November 2015).
- Cropland Data Layer. Available online: http://nassgeodata.gmu.edu/CropScape/ (accessed on 30 November 2015).
- Tian, F.; Qiu, G.; Yang, Y.; Lü, Y.; Xiong, Y. Estimation of evapotranspiration and its partition based on an extended three-temperature model and MODIS products. J. Hydrol. 2013, 498, 210–220. [Google Scholar] [CrossRef]
- Tsarouchi, G.M.; Buytaert, W.; Mijic, A. Coupling a land-surface model with a crop growth model to improve ET flux estimations in the Upper Ganges basin, India. Hydrol. Earth Syst. Sci. 2014, 18, 4223–4238. [Google Scholar] [CrossRef]
- Semmens, K.A.; Anderson, M.C.; Kustas, W.P.; Gao, F.; Alfieri, J.G.; McKee, L.; Prueger, J.; Hain, C.; Cammalleri, C.; Yang, Y.; et al. Monitoring daily evapotranspiration over two California vineyards using Landsat 8 in a multi-sensor data fusion approach. Remote Sens. Environ. 2016. [Google Scholar] [CrossRef]
Site No. | Landsat 8 Imagery | MOD16A2 Products | ||
---|---|---|---|---|
Path/Row | Acquisition Dates | H/V | Starting Dates | |
1 | 06/03/2013 | 06/02/2013 | ||
08/06/2013 | 08/05/2013 | |||
09/07/2013 | 09/06/2013 | |||
09/23/2013 | 09/22/2013 | |||
10/09/2013 | 10/08/2013 | |||
28/35 | 10/25/2013 | 10/05 | 10/24/2013 | |
11/26/2013 | 11/25/2013 | |||
04/19/2014 | 04/15/2014 | |||
05/05/2014 | 05/01/2014 | |||
07/24/2014 | 07/20/2014 | |||
08/25/2014 | /08/21/2014 | |||
2 | 04/16/2013 | 04/15/2013 | ||
06/03/2013 | 06/02/2013 | |||
06/19/2013 | 06/18/2013 | |||
07/21/2013 | 07/20/2013 | |||
08/22/2013 | 08/21/2013 | |||
09/07/2013 | 09/06/2013 | |||
09/23/2013 | 09/22/2013 | |||
44/34 | 11/10/2013 | 8/5 | 11/09/2013 | |
12/12/2013 | 12/11/2013 | |||
03/18/2014 | 03/14/2014 | |||
04/19/2014 | 04/15/2014 | |||
06/06/2014 | 06/02/2014 | |||
06/22/2014 | 06/18/2014 | |||
07/24/2014 | 07/20/2014 | |||
08/09/2014 | 08/05/2014 | |||
3 | 05/11/2013 | 05/09/2013 | ||
116/34 | 06/28/2013 | 28/5 | 06/26/2013 | |
09/16/2013 | 09/14/2013 | |||
4 | 06/05/2013 | 06/02/2013 | ||
115/34 | 10/27/2013 | 28/5 | 10/24/2013 | |
11/12/2013 | 11/09/2013 |
Acronym | Equation | Source | |
---|---|---|---|
Vegetation Greenness Indices | NDVI | Tucker (1979) [39] | |
EVI | Huete et al. (2002) [40] | ||
SAVI | Huete (1988) [41] | ||
MSAVI | Qi et al. (1994) [42] | ||
Vegetation Water Indices | NDMI | Wilson and Sader (2002) [43] | |
NDWI | McFeeters (1996) [44] | ||
NDIIb7 | Hunt and Rock (1989) [45] | ||
D1609 | adapted from Van Niel et al. (2003) [46] |
Landsat 8 OLI | Landsat 7 ETM+ | |||||
---|---|---|---|---|---|---|
Band Number | Band Limits (μm) | and Bound | Band Number | Band Limits (μm) | and Bound | |
1 | 0.43–0.45 | 0.30–0.450 | 1 | 0.45–0.52 | 0.300–0.520 | |
2 | 0.45–0.51 | 0.450–0.520 | 2 | 0.52–0.60 | 0.520–0.615 | |
3 | 0.53–0.59 | 0.520–0.615 | 3 | 0.63–0.69 | 0.615–0.725 | |
4 | 0.64–0.67 | 0.615–0.760 | 4 | 0.77–0.90 | 0.725–1.225 | |
5 | 0.85–0.88 | 0.760–1.225 | 5 | 1.55–1.75 | 1.225–1.915 | |
6 | 1.57–1.65 | 1.225–1.880 | 6 | 10.40–12.50 | Thermal | |
7 | 2.11–2.29 | 1.880–4.000 | 7 | 2.09–2.35 | 1.915–4.000 |
Sensor | Band Number | Total | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
Landsat 8 OLI | 0.130 | 0.115 | 0.143 | 0.180 | 0.281 | 0.108 | 0.042 | 1.00 |
Landsat 7 ETM+ | 0.254 | 0.149 | 0.147 | 0.311 | 0.103 | -- | 0.036 | 1.00 |
Variables | All Dates | Growing Season (June–September) | |||
---|---|---|---|---|---|
Average | Standard Deviation of | Average | Standard Deviation of | ||
NDVI | 0.72 | 0.31 | 0.82 | 0.13 | |
EVI | 0.70 | 0.31 | 0.76 | 0.13 | |
SAVI | 0.69 | 0.23 | 0.73 | 0.14 | |
NDIIb7 | 0.68 | 0.35 | 0.79 | 0.16 | |
NDWI | −0.67 | 0.23 | −0.76 | 0.13 | |
MSAVI | 0.68 | 0.31 | 0.75 | 0.14 | |
LST | −0.59 | 0.29 | −0.73 | 0.15 | |
NDMI | 0.66 | 0.31 | 0.75 | 0.19 | |
D1609 | −0.42 | 0.21 | −0.62 | 0.16 | |
Albedo | −0.38 | 0.24 | −0.44 | 0.22 | |
TVDI | −0.32 | 0.39 | −0.60 | 0.22 |
Site 1 | Site 2 | |||||||
---|---|---|---|---|---|---|---|---|
RMSE (mm/8 days) | a | b | R2 | RMSE (mm/8 days) | a | b | R2 | |
Downscaled Landsat ET (30 m) | 11.8 | 0.37 | 2.90 | 0.76 | 12.5 | 0.57 | 1.89 | 0.77 |
MODIS ET (1 km) | 14.2 | 0.38 | 1.48 | 0.60 | 18.3 | 0.33 | 3.34 | 0.83 |
Modeled ET (1 km) | 14.6 | 0.26 | 3.01 | 0.52 | 19.5 | 0.30 | 3.50 | 0.73 |
Aggregated Landsat ET (1 km) | 14.7 | 0.37 | 2.02 | 0.60 | 18.5 | 0.31 | 4.04 | 0.76 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, Y.; Im, J.; Park, S.; Gong, H. Downscaling of MODIS One Kilometer Evapotranspiration Using Landsat-8 Data and Machine Learning Approaches. Remote Sens. 2016, 8, 215. https://doi.org/10.3390/rs8030215
Ke Y, Im J, Park S, Gong H. Downscaling of MODIS One Kilometer Evapotranspiration Using Landsat-8 Data and Machine Learning Approaches. Remote Sensing. 2016; 8(3):215. https://doi.org/10.3390/rs8030215
Chicago/Turabian StyleKe, Yinghai, Jungho Im, Seonyoung Park, and Huili Gong. 2016. "Downscaling of MODIS One Kilometer Evapotranspiration Using Landsat-8 Data and Machine Learning Approaches" Remote Sensing 8, no. 3: 215. https://doi.org/10.3390/rs8030215