An Improved Cloud Detection Method for GF-4 Imagery
"> Figure 1
<p>The locations of the test images of the Hainan, Liaoning, and Xinjiang areas in China.</p> "> Figure 2
<p>Flowchart for the Real-Time-Difference (RTD) cloud-screening method. GSWO: Global Surface Water Occurrence.</p> "> Figure 3
<p>False-color GF-4 image of the Hainan study area with the NIR-R-G composition (left) and a difference map of the time-adjacent images in the same area (right).</p> "> Figure 4
<p>Classification of clouds and background in the Hainan study area using the RTD (left) and Support Vector Machine (SVM; right) methods.</p> "> Figure 5
<p>The 2000 random points generated for the Hainan study area that were used for the accuracy assessment. Red points indicate clouds and green points indicate background.</p> "> Figure 6
<p>False-color GF-4 image of the Liaoning area using the NIR-R-G composition (left) and a difference map of two time-adjacent blue band images of the same area (right).</p> "> Figure 7
<p>Classification of clouds and background in the Liaoning area using the RTD method (left) and SVM method (right).</p> "> Figure 8
<p>The 2000 points obtained using stratified random sampling from the Liaoning study area that were used for the accuracy assessment. Red points indicate clouds and green points indicate background.</p> "> Figure 9
<p>False-color GF-4 image of the Xinjiang area using the NIR-R-G composition (left) and a difference map of two time-adjacent blue band images of the same area (right).</p> "> Figure 10
<p>Classification of clouds and background in the Xinjiang area using the RTD method (left) and the SVM method (right).</p> "> Figure 11
<p>The 2000 points obtained using stratified random sampling from the Xinjiang study area that were used for the accuracy assessment. Red points indicate clouds and green points indicate background.</p> "> Figure 12
<p>The results of the spectral test of the RTD method in Xinjiang.</p> "> Figure 13
<p>A part of the original GF-4 imagery (<b>a</b>) and the cloud-detection results of SVM with different kernel types, namely linear (<b>b</b>), polynomial (<b>c</b>), radial basis (<b>d</b>), and sigmoid (<b>e</b>).</p> "> Figure 14
<p>The SVM results using the radial basis kernel type with penalty parameters of 20 (<b>a</b>), 40 (<b>b</b>), 60 (<b>c</b>), 80 (<b>d</b>), and 100 (<b>e</b>).</p> "> Figure 15
<p>Example of the MIR band of the GF-4 imagery for the Liaoning Sea study area.</p> ">
Abstract
:1. Introduction
2. Materials
2.1. Test Images
- (1)
- Hainan area
- (2)
- Liaoning area
- (3)
- Xinjiang area
2.2. Reference Images
2.3. Auxiliary Data
2.4. Validation Data
3. Methodology
3.1. Preprocessing
3.2. Potential Cloud Pixels Detection from Single Image
- (1)
- Separate land and water with GSWO data
- (2)
- Cloud test
- Spectral test in a single spectral band
- Whiteness test
- HOT test
- NDVI test
- NDWI test
3.3. The Difference between a Pair of Real-Time Images
3.4. Evaluation of RTD by Comparison with SVM
4. Results
4.1. Hainan Area
4.2. Liaoning Area
4.3. Xinjiang Area
5. Discussion
5.1. Advantages and Disadvantages of the RTD Method
5.2. Description of the Thresholds Used in This Paper
- (1)
- The thresholds used in RTD
- (2)
- Thresholds used in SVM
5.3. MIR Band of GF-4 Images
5.4. Prospects
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, A.; Zhong, B.; Wu, S.; Liu, Q. Radiometric cross-calibration of GF-4 in multispectral bands. Remote Sens. 2017, 9, 232. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Xin, L.; Guo, Y.; Gao, D.; Kong, X.; Jia, X. Super-resolution for GaoFen-4 remote sensing images. IEEE Geosci. Remote Sens. Lett. 2017, 15, 28–32. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, L.; Xiong, W.; Jing, T.; Zhou, Z. Ship target tracking based on a low-resolution optical satellite in geostationary orbit. Int. J. Remote Sens. 2018, 39, 2991–3009. [Google Scholar] [CrossRef]
- Li, P.; Sun, K.; Li, D.; Sui, H.; Zhang, Y. An emergency georeferencing framework for GF-4 imagery based on GCP prediction and dynamic RPC refinement. Remote Sens. 2017, 9, 1053. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Shao, Y.; Tian, W.; Wei, Q.; Zhang, Y.; Zhang, Q. Application Potential of GF-4 Images for Dynamic Ship Monitoring. IEEE Geosci. Remote Sens. Lett. 2017, 14, 911–915. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, K.; Li, D.; Bai, T.; Huang, C. Radiometric cross-calibration of gf-4 pms sensor based on assimilation of landsat-8 oli images. Remote Sens. 2017, 9, 811. [Google Scholar] [CrossRef] [Green Version]
- Yao, L.; Liu, Y.; He, Y. A novel ship-tracking method for GF-4 satellite sequential images. Sensors 2018, 18, 2007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, W.; Liu, W. Remote sensing recognition of residential areas based on GF-4 satellite image. In Proceedings of the 2018 Fifth International Worksho on Earth Observation and Remote Sensing Applications (EORSA), Xi’an, China, 18–20 June 2018; pp. 1–4. [Google Scholar]
- Ju, J.; Roy, D.P. The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally. Remote Sens. Environ. 2008, 112, 1196–1211. [Google Scholar] [CrossRef]
- Lu, Y.; Coops, N.C.; Hermosilla, T. Estimating urban vegetation fraction across 25 cities in pan-Pacific using Landsat time series data. ISPRS J. Photogramm. Remote Sens. 2017, 126, 11–23. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change. Remote Sens. Environ. 2014, 152, 217–234. [Google Scholar] [CrossRef]
- Zhu, Z. Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- Chen, B.; Huang, B.; Xu, B. Multi-source remotely sensed data fusion for improving land cover classification. ISPRS J. Photogramm. Remote Sens. 2017, 124, 27–39. [Google Scholar] [CrossRef]
- Shao, Z.; Pan, Y.; Diao, C.; Cai, J. Cloud Detection in Remote Sensing Images Based on Multiscale Features-Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4062–4076. [Google Scholar] [CrossRef]
- Derrien, M.; Farki, B.; Harang, L.; LeGleau, H.; Noyalet, A.; Pochic, D.; Sairouni, A. Automatic cloud detection applied to NOAA-11/AVHRR imagery. Remote Sens. Environ. 1993, 46, 246–267. [Google Scholar] [CrossRef]
- Qiu, S.; Zhu, Z.; He, B. Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 4–8 and Sentinel-2 imagery. Remote Sens. Environ. 2019, 231, 111205. [Google Scholar] [CrossRef]
- Zhu, Z.; Qiu, S.; He, B.; Deng, C. Cloud and cloud shadow detection for Landsat images: The fundamental basis for analyzing Landsat time series. In Remote Sensing Time Series Image Processing; CRC Press: Boca Raton, FL, USA, 2018; pp. 25–46. [Google Scholar]
- Zhu, X.; Helmer, E.H. An automatic method for screening clouds and cloud shadows in optical satellite image time series in cloudy regions. Remote Sens. Environ. 2018, 214, 135–153. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Joseph Hughes, M.; Laue, B. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Irish, R.R.; Barker, J.L.; Goward, S.N.; Arvidson, T. Characterization of the Landsat-7 ETM+ Automated Cloud-Cover Assessment (ACCA) algorithm. Photogramm. Eng. Remote Sens. 2006, 72, 1179–1188. [Google Scholar] [CrossRef]
- Chai, D.; Newsam, S.; Zhang, H.K.; Qiu, Y.; Huang, J. Cloud and cloud shadow detection in Landsat imagery based on deep convolutional neural networks. Remote Sens. Environ. 2019, 225, 307–316. [Google Scholar] [CrossRef]
- Scaramuzza, P.L.; Bouchard, M.A.; Dwyer, J.L. Development of the Landsat Data Continuity Mission Cloud-Cover Assessment Algorithms. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1140–1154. [Google Scholar] [CrossRef]
- Hughes, M.J.; Hayes, D.J. Automated Detection of Cloud and Cloud Shadow in Single-Date Landsat Imagery Using Neural Networks and Spatial Post-Processing. Remote Sens. 2014, 6, 4907–4926. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Wahba, G.; Ackerman, S.A. Cloud Classification of Satellite Radiance Data by Multicategory Support Vector Machines. J. Atmos. Ocean. Technol. 2004, 21, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Dong, L.; Xiao, H.; Xu, M. A cloud image detection method based on SVM vector machine. Neurocomputing 2015, 169, 34–42. [Google Scholar] [CrossRef]
- Derrien, M.; Le Gléau, H. Improvement of cloud detection near sunrise and sunset by temporal-differencing and region-growing techniques with real-time SEVIRI. Int. J. Remote Sens. 2010, 31, 1765–1780. [Google Scholar] [CrossRef]
- Liu, R.; Liu, Y. Generation of new cloud masks from MODIS land surface reflectance products. Remote Sens. Environ. 2013, 133, 21–37. [Google Scholar] [CrossRef]
- Goodwin, N.R.; Collett, L.J.; Denham, R.J.; Flood, N.; Tindall, D. Cloud and cloud shadow screening across Queensland, Australia: An automated method for Landsat TM/ETM+ time series. Remote Sens. Environ. 2013, 134, 50–65. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418. [Google Scholar] [CrossRef]
- Grodecki, J.; Dial, G. Block adjustment of high-resolution satellite images described by rational polynomials. Photogramm. Eng. Remote Sens. 2003, 69, 59–68. [Google Scholar] [CrossRef]
- Gomezchova, L.; Campsvalls, G.; Calpemaravilla, J.; Guanter, L.; Moreno, J. Cloud-Screening Algorithm for ENVISAT/MERIS Multispectral Images. IEEE Trans. Geosci. Remote Sens. 2007, 45, 4105–4118. [Google Scholar] [CrossRef]
- Zhang, Y.; Guindon, B.; Cihlar, J. An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images. Remote Sens. Environ. 2002, 82, 173–187. [Google Scholar] [CrossRef]
- Mcfeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Silva, A.R.; Silva, A.R.; Gouvêa, M.M., Jr. A novel model to simulate cloud dynamics with cellular automaton. Environ. Model. Softw. 2019, 122, 104537. [Google Scholar] [CrossRef]
- Doraiswamy, H.; Natarajan, V.; Nanjundiah, R.S. An exploration framework to identify and track movement of cloud systems. IEEE Trans. Vis. Comput. Graph. 2013, 19, 2896–2905. [Google Scholar] [CrossRef]
- Asundi, A.; Wensen, Z. Fast phase-unwrapping algorithm based on a gray-scale mask and flood fill. Appl. Opt. 1998, 37, 5416–5420. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Lu, M.; Chen, B.; Liao, X.; Yue, T.; Yue, H.; Ren, S.; Li, X.; Nie, Z.; Xu, B. Forest Types Classification Based on Multi-Source Data Fusion. Remote Sens. 2017, 9, 1153. [Google Scholar] [CrossRef] [Green Version]
- Menzel, W.P.; Purdom, J.F.W. Introducing GOES-I: The First of a New Generation of Geostationary Operational Environmental Satellites. Bull. Am. Meteorol. Soc. 1994, 75, 757–781. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Jedlovec, G.J.; Haines, S.L.; Lafontaine, F.J. Spatial and Temporal Varying Thresholds for Cloud Detection in GOES Imagery. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1705–1717. [Google Scholar] [CrossRef]
- Cheung, W.; Hamarneh, G. N-sift: N-dimensional scale invariant feature transform for matching medical images. In Proceedings of the 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Arlington, VA, USA, 12–15 April 2007; pp. 720–723. [Google Scholar]
- Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-up robust features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G.R. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011 International Conference on Computer Vision, ICCV, Barcelona, Spain, 6–13 November 2011; p. 2. [Google Scholar]
Parameter | Indicator |
---|---|
Orbit type | Geosynchronous orbit |
Orbit altitude | 36,000 km |
Fixed point location | 105.6°E |
Spectral Band No. | Spectral Range (µm) | Spatial Resolution (m) | Breadth (km) | Revisit Time (s) |
---|---|---|---|---|
1 | 0.45~0.90 | 50 | 400 | 20 |
2 | 0.45~0.52 | 50 | 400 | 20 |
3 | 0.52~0.60 | 50 | 400 | 20 |
4 | 0.63~0.69 | 50 | 400 | 20 |
5 | 0.76~0.90 | 50 | 400 | 20 |
6 | 3.50~4.10 | 400 | 400 | 20 |
Dataset ID | |
---|---|
GF4_PMS_E91.2_N37.9_20181119_L1A0000223392 | GF4_PMS_E93.5_N27.2_20180405_L1A0000191705 |
GF4_PMS_E95.7_N37.8_20181119_L1A0000223393 | GF4_PMS_E101.4_N23.3_20180715_L1A0000203338 |
GF4_PMS_E102.5_N31.9_20180720_L1A0000204513 | GF4_PMS_E102.6_N27.7_20180720_L1A0000204512 |
GF4_PMS_E114.8_N27.0_20181122_L1A0000223800 | GF4_PMS_E122.7_N45.6_20180405_L1A0000191701 |
GF4_PMS_E124.8_N27.6_20180715_L1A0000203347 | GF4_PMS_E112.4_N18.6_20181201_L1A0000224692 |
GF4_PMS_E84.1_N38.7_20180830_L1A0000214112 | GF4_PMS_E100.2_N37.8_20181119_L1A0000223394 |
GF4_PMS_E110.9_N36.4_20180720_L1A0000204522 | GF4_PMS_E115.3_N36.4_20180720_L1A0000204521 |
GF4_PMS_E118.3_N27.7_20180719_L1A0000203560 | GF4_PMS_E128.3_N45.9_20180405_L1A0000191702 |
GF4_PMS_E108.8_N18.5_20181201_L1A0000224693 | GF4_PMS_E108.9_N22.3_20181201_L1A0000224698 |
GF4_PMS_E109.1_N30.2_20181128_L1A0000224373 | GF4_PMS_E110.2_N15.5_20181122_L1A0000223841 |
GF4_PMS_E123.2_N32.1_20180720_L1A0000204518 | GF4_PMS_E106.6_N36.4_20180720_L1A0000204523 |
GF4_PMS_E108.8_N23.3_20180715_L1A0000203336 | GF4_PMS_E109.5_N40.8_20180715_L1A0000203368 |
GF4_PMS_E111.3_N30.3_20180707_L1A0000201956 | GF4_PMS_E114.1_N23.4_20180713_L1A0000203186 |
GF4_PMS_E114.7_N31.9_20180720_L1A0000204516 | GF4_PMS_E118.9_N32.0_20180720_L1A0000204517 |
GF4_PMS_E86.6_N26.9_20170817_L1A0000171808 | GF4_PMS_E119.5_N38.7_20170303_L1A0000156660 |
OA | Kappa | |
---|---|---|
SVM | 95.5% | 0.91 |
RTD | 95.9% | 0.92 |
CE | OE | PA | UA | |
---|---|---|---|---|
SVM | 5.48% | 3.40% | 96.60% | 94.52% |
RTD | 1.07 % | 7.20% | 92.80% | 98.93% |
OA | Kappa | |
---|---|---|
SVM | 91.15% | 0.82 |
RTD | 94.10 | 0.88 |
CE | OE | PA | UA | |
---|---|---|---|---|
SVM | 7.71% | 10.20% | 89.80% | 92.29% |
RTD | 2.99% | 9.00% | 91.00% | 97.01% |
OA | Kappa | |
---|---|---|
SVM | 89.2% | 0.784 |
RTD | 93.9% | 0.878 |
CE | OE | PA | UA | |
---|---|---|---|---|
SVM | 15.43% | 4.1% | 95.9% | 84.57% |
RTD | 4.55% | 7.8% | 92.2% | 95.45 |
OA | Kappa | CE | OE | PA | UA |
---|---|---|---|---|---|
88.4% | 0.768 | 16.1% | 4.9% | 95.1% | 83.9% |
Sand | Mountain | Vegetation | Ocean | Haze | |
---|---|---|---|---|---|
TOA_Blue | 0.3 | 0.25 | 0.25 | 0.15 | 0.15 |
NDVI | 0.1 | 0.1 | 0.3 | 0.1 | 0.3 |
NDWI | 0.3 | 0.1 | 0.1 | 0.25 | 0.3 |
Whiteness | 0.5 | 0.5 | 0.5 | 0.7 | 0.5 |
HOT | 0.15 | 0.15 | 0.15 | 0.08 | 0.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, M.; Li, F.; Zhan, B.; Li, H.; Yang, X.; Lu, X.; Xiao, H. An Improved Cloud Detection Method for GF-4 Imagery. Remote Sens. 2020, 12, 1525. https://doi.org/10.3390/rs12091525
Lu M, Li F, Zhan B, Li H, Yang X, Lu X, Xiao H. An Improved Cloud Detection Method for GF-4 Imagery. Remote Sensing. 2020; 12(9):1525. https://doi.org/10.3390/rs12091525
Chicago/Turabian StyleLu, Ming, Feng Li, Bangcheng Zhan, He Li, Xue Yang, Xiaotian Lu, and Huachao Xiao. 2020. "An Improved Cloud Detection Method for GF-4 Imagery" Remote Sensing 12, no. 9: 1525. https://doi.org/10.3390/rs12091525
APA StyleLu, M., Li, F., Zhan, B., Li, H., Yang, X., Lu, X., & Xiao, H. (2020). An Improved Cloud Detection Method for GF-4 Imagery. Remote Sensing, 12(9), 1525. https://doi.org/10.3390/rs12091525