Radiometric Cross-Calibration of GF-4 in Multispectral Bands
<p>Illustration of the procedure of the new cross-calibration approach (parallelogram is the input and rectangle is the process).</p> "> Figure 2
<p>Location and close view of the calibration site: (<b>a</b>) is the location of the calibration site and a true color composite from Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and (<b>b</b>) is the close view of the site from a true color composite of Landsat Enhanced Thematic Mapper Plus (ETM+) imagery.</p> "> Figure 3
<p>Difference curve in SPF for different spectral band of PMS and Operational Land Imager (OLI) (the SPF of PMS is published by CRESDA through its website [<a href="#B24-remotesensing-09-00232" class="html-bibr">24</a>]; and the SPF of OLI is published by NASA through its website [<a href="#B25-remotesensing-09-00232" class="html-bibr">25</a>]).</p> "> Figure 4
<p>Comparison of the top-of-the atmosphere (TOA) reflectance between GF-4/PMS and Terra/MODIS. (<b>a</b>) Laboratory calibration. (<b>b</b>) Vicarious calibration.</p> "> Figure 5
<p>Example of the simulated TOA radiance and its corresponding Digital Number (DN) of GF-4/PMS image on 15 June 2016 in blue and green bands.</p> "> Figure 6
<p>Comparison of the TOA reflectance between GF-4/PMS after cross-calibration and Terra/MODIS.</p> "> Figure 7
<p>The calibration site’s directional characterization of the red band of Terra/MODIS. The reflectance varies with relative azimuth and solar zenith angles for each bin of the view zenith angle, which shows systematic variation, which is due to directional effects. The directional effect is about 15%.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Site
2.2. Data
2.3. Spectra Matching
3.2. Radiometric Capability of GF-4/PMS
2.5. Cross-Calibration of the GF-4/PMS
- (1)
- Collect clean OLI images covered the calibration desert site;
- (2)
- Retrieve the AOD at 550 nm using the DO method. There are many clear lakes located in the calibration site, which can be seen as the dark objects. First, calculate the radiance of these selected images, and record the radiance on the clear lakes area in the blue band since the reflectance in clean water bodies is low (about 5%) and the radiance can be seen as atmospheric path radiation;
- (3)
- Build the 6S model. Firstly, a set of parameters are set up as input, including the atmospheric model, serosol model, geometrical condition (including solar zenith, solar azimuth, view zenith, and view azimuth), wavelength, surface reflectance, and a set of AODs. In these parameters, only AOD can be changed, and every input AOD corresponds to a TOA radiance as the output. Consequently, the relationship between AOD and TOA radiance can be set up. Therefore, the AODs for all of the selected images can be retrieved. The atmospheric effect can be corrected with the retrieved AODs for these selected images since the site is hardly influenced by human activities. Finally, the surface reflectance of these selected images is calculated; and
- (4)
- Establish a 4-D lookup table (LUT) as the BRDF characterization with the solar zenith angle of slope, view zenith angle of slope, and the relative azimuth angle of slope as inputs, and the surface reflectance as the output. Given any combination of solar zenith angle, view zenith angle, and relative azimuth angle input for the LUT, the output is a unique interpolated surface reflectance. Notably, the calculated slope and aspect are in a local coordinate system, while the solar illuminations and view geometries are in the global coordinate system, so coordinates in the global coordinate system need to be converted to those in the local coordinate system.
3. Results
- (1)
- Choose image pairs of the GF-4/PMS and OLI with similar transit times at the Dunhuang test site; the information of these chosen image pairs are listed in Table 10.
- (2)
- Calculate the TOA reflectance of these GF-4/PMS images using the site calibration coefficients published by CRESDA and fixed in this paper, separately. The TOA reflectance of the GF-4/PMS can be calculated using Equations (2) and (3).
- (3)
- Calculate the TOA reflectance of these OLI images using its given calibration coefficients published in the header files. The radiance of Landsat-8/OLI image can be calculated using Equation (5):ρλ = (Mρ·Qcal + Aρ)/sin(θSE)
- (4)
- Compare the three sets of TOA reflectance. The comparison results are listed in Table 11.
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Xu, W.; Gong, J.; Wang, M. Development, application, and prospects for Chinese land observation satellites. Geo-Spat. Inf. Sci. 2014, 17, 102–109. [Google Scholar] [CrossRef]
- Zhong, B.; Zhang, Y.; Du, T.; Yang, A.; Lv, W.; Liu, Q. Cross-calibration of HJ-1/CCD over a desert site using Landsat ETM+ imagery and ASTER GDEM product. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7247–7263. [Google Scholar] [CrossRef]
- Yang, A.; Zhong, B.; Lv, W.; Lv, W.; Wu, S.; Liu, Q. Cross-calibration of GF-1/WFV over a desert site using Landsat-8/OLI imagery and ZY-3/TLC data. Remote Sens. 2015, 7, 10763–10787. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Sendra, C. Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. Int. J. Remote Sens. 1988, 9, 1357–1381. [Google Scholar] [CrossRef]
- United States Geological Survey (USGS). LDCM CAL/VAL Algorithm Description Document. Available online: http://landsat.usgs.gov/documents/LDCM_CVT_ADD.pdf (accessed on 17 June 2015).
- Pahlevan, N.; Lee, Z.; Wei, J.; Schaaf, C.B.; Schott, J.R.; Berk, A. On-orbit radiometric characterization of OLI (Landsat-8) for applications in aquatic remote sensing. Remote Sens. Environ. 2014, 154, 272–284. [Google Scholar] [CrossRef]
- Knight, E.J.; Kvaran, G. Landsat-8 operational land imager design, characterization and performance. Remote Sens. 2014, 6, 10286–10305. [Google Scholar] [CrossRef]
- Landsat 8 (L8) Data Users Handbook. Available online: http://landsat.usgs.gov/documents/Landsat8DataUsersHandbook.pdf (accessed on 17 June 2015).
- Shi, Z.; Wen, X.; Ma, W.; Zhang, L.; Wang, J.; Zhou, Y. Quantitative and statistics analysis of lineament from Landsat-8 OLI imagery. In Proceedings of the 2015 International Industrial Informatics and Computer Engineering Conference, Xi’an, Shaanxi, China, 10–11 January 2015.
- Markham, B.; Knight, E.J.; Canova, B.; Donley, E.; Kvaran, G.; Lee, K.; Irons, J.R. The Landsat data continuity mission operational land imager (OLI) sensor. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 6995–6998.
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Zhu, Z. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Markham, B.; Storey, J.; Morfitt, R. Landsat-8 sensor characterization and calibration. Remote Sens. 2015, 7, 2279–2282. [Google Scholar] [CrossRef]
- Markham, B.L.; Dabney, P.W.; Murphy-Morris, J.E.; Pedelty, J.; Knight, E.J.; Kvaran, G.; Barsi, J. The Landsat data continuity mission operational land imager (OLI) radiometric calibration. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010.
- Markham, B.L.; Storey, J.C.; Irons, J.R. Landsat data continuity mission, now Landsat-8: Six months on-orbit. Proc. SPIE 2013. [Google Scholar] [CrossRef]
- Czapla-Myers, J.S.; Anderson, N.J.; Biggar, S.F. Early ground-based vicarious calibration results for Landsat 8 OLI. Proc. SPIE 2013. [Google Scholar] [CrossRef]
- Czapla-Myers, J.; Anderson, N.; Thome, K.; Biggar, S. The absolute radiometric calibration of the Landsat 8 Operational Land Imager using the reflectance-based approach and the Radiometric Calibration Test Site (RadCaTS). Proc. SPIE 2014. [Google Scholar] [CrossRef]
- Peng, L.; Luguang, J.; Zhiming, F. Cross-comparison of vegetation indices derived from Landsat-7 enhanced thematic mapper plus (ETM+) and Landsat-8 operational land imager (OLI) sensors. Remote Sens. 2013, 6, 310–329. [Google Scholar]
- Tang, X.; Zhang, G.; Zhu, X.; Pan, H.; Jiang, Y.; Zhou, P.; Wang, X. Triple linear-array image geometry model of ZiYuan-3 surveying satellite and its validation. Int. J. Image Data Fusion 2013, 4, 33–51. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, G.; Tang, X.; Zhu, X.; Qin, Q.; Li, D.; Fu, X. High accuracy geometric calibration of ZY-3 three-line image. Acta Geod. Cartogr. Sin. 2013, 42, 523–529. [Google Scholar]
- Huang, X.; Wen, D.; Xie, J.; Zhang, L. Quality assessment of panchromatic and multispectral image fusion for the ZY-3 satellite: From an information extraction perspective. IEEE Geosci. Remote Sens. Lett. 2014, 11, 753–757. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, M.; Xiong, J.; Lu, Y.; Xiong, X. On-orbit geometric calibration of ZY-3 three-line array imagery with multistrip data sets. IEEE Trans. Geosci. Remote Sens. 2014, 52, 224–234. [Google Scholar] [CrossRef]
- Tong, X.; Li, L.; Liu, S.; Xu, Y.; Ye, Z.; Jin, Y.; Xie, H. Detection and estimation of ZY-3 three-line array image distortions caused by attitude oscillation. ISPRS J. Photogramm. Remote Sens. 2015, 101, 291–309. [Google Scholar] [CrossRef]
- Huang, H.; Zhong, B.; Liu, Q.; Sun, L. Retrieving BRDF of desert using time series of MODIS imagery. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 4273–4276.
- China Centre for Resources Satellite Data and Application (CRESDA). Downloads. Available online: http://www.cresda.com/CN/Downloads/ (accessed on 29 July 2016).
- NASA Landsat Science. Spectral Response of the Operational Land Imager In-Band, Band-Average Relative Spectral Response. Available online: https://landsat.gsfc.nasa.gov/ (accessed on 1 March 2016).
- Guenther, B.; Xiong, X.; Salomonson, V.V.; Barnes, W.L.; Young, J. On-orbit performance of the Earth Observing System Moderate Resolution Imaging Spectroradiometer; first year of data. Remote Sens. Environ. 2002, 83, 16–30. [Google Scholar] [CrossRef]
- Chen, G.W.; Chen, Z.C.; Ma, L.; Zhang, H. Monitoring and assessment on radiometric stability of HJ-1A CCD using MODIS data. In Proceedings of the Eighth International Symposium on Multispectral Image Processing and Pattern Recognition, Wuhan, China, 26–27 October 2013; pp. 89211I–89211I-8.
- Nagaraja Rao, C.R.; Chen, J. Inter-satellite calibration linkages for the visible and near-infared channels of the Advanced Very High Resolution Radiometer on the NOAA-7,-9, and -11 spacecraft. Int. J. Remote Sens. 1995, 16, 1931–1942. [Google Scholar] [CrossRef]
- Zhong, B.; Liang, S.; Holben, B. Validating a new algorithm for estimating aerosol optical depths over land from MODIS imagery. Int. J. Remote Sens. 2007, 28, 4207–4214. [Google Scholar] [CrossRef]
- Liang, S.; Zhong, B.; Fang, H. Improved estimation of aerosol optical depth from MODIS imagery over land surfaces. Remote Sens. Environ. 2006, 104, 416–425. [Google Scholar] [CrossRef]
- Staylor, W.F.; Suttles, J.T. Reflection and emission models for deserts derived from Nimbus-7 ERB scanner measurements. J. Clim. Appl. Meteorol. 1986, 25, 196–202. [Google Scholar] [CrossRef]
- Berk, A.; Bernstein, L.S.; Robertson, D.C. Modtran: A Moderate Resolution Model for LOWTRAN; Spectral Sciences Inc.: Burlington, MA, USA, 1987. [Google Scholar]
Sensor | GF-4/PMS | GF-1/WFV | HJ-1/CCD | |
---|---|---|---|---|
Spectral Settings (nm) | Blue | 450–520 | 450–520 | 430–520 |
Green | 520–600 | 520–590 | 520–600 | |
Red | 630–690 | 630–690 | 630–690 | |
Near infrared | 760–900 | 770–890 | 700–900 | |
Spatial Resolution (m) | 50 | 16 | 30 | |
Swath Width (km) | 400 | 800 (four cameras combined) | 360 (one camera); ~700 (one satellite A/B) | |
Revisit Period | 20 s | 4 days | 96 h for one satellite; 48 h for two satellites together |
Sensor | Band | Spectral Range (nm) | Spatial Resolution (m) | Swath Width (km) | Revisit Period (days) |
---|---|---|---|---|---|
Forward scanner | - | 500–800 | 3.6 | 52 | 3–5 |
Backward scanner | - | 500–800 | 3.6 | 52 | 3–5 |
Nadir scanner | - | 500–800 | 2.1 | 51 | 3–5 |
Multispectral scanner | Blue | 450–520 | 5.8 | 51 | 3–5 |
Green | 520–590 | ||||
Red | 630–690 | ||||
NIR | 770–890 |
Band | Blue | Green | Red | NIR |
---|---|---|---|---|
Spectral matching factor (a) | 1.0653 | 0.9978 | 0.9971 | 0.9987 |
Band | Blue | Green | Red | NIR |
---|---|---|---|---|
1907.88 | 1815.42 | 1580.18 | 1098.79 |
Band | Integration Time (ms) | a | b | Band | Integration Time (ms) | a | b |
---|---|---|---|---|---|---|---|
Blue | 6 | 0.952 | 12.207 | Red | 6 | 1.094 | 26.387 |
16 | 2.517 | 5.973 | 16 | 3.360 | 8.057 | ||
20 | 2.90 | 11.4 | 20 | 4.261 | 4.207 | ||
30 | 4.598 | 4.140 | 30 | 6.375 | 3.605 | ||
40 | 5.792 | 17.133 | 40 | 8.538 | 1.679 | ||
Green | 4 | 0.796 | 30.579 | NIR | 4 | 0.865 | 34.500 |
12 | 3.080 | 6.735 | 16 | 4.443 | 11.355 | ||
16 | 4.128 | 4.705 | 20 | 5.657 | 7.257 | ||
20 | 5.223 | 1.439 | 30 | 8.681 | 0.331 | ||
30 | 7.921 | 0.256 | 40 | 11.579 | −1.004 |
Band | Integration Time (ms) | Gain | Band | Integration Time (ms) | Gain |
---|---|---|---|---|---|
Blue | 6 | 0.9400 | Red | 6 | 0.7847 |
16 | 0.3484 | 16 | 0.3095 | ||
20 | 0.3263 | 20 | 0.2806 | ||
30 | 0.1784 | 30 | 0.1515 | ||
40 | 0.1252 | 40 | 0.1102 | ||
Green | 4 | 0.9885 | NIR | 4 | 0.5641 |
12 | 0.3448 | 16 | 0.2257 | ||
16 | 0.2472 | 20 | 0.1997 | ||
20 | 0.1878 | 30 | 0.1080 | ||
30 | 0.1226 | 40 | 0.0796 |
Acquisition Date | GMT time (H:MM) | Sun Azimuth (°) | Sun Elevation (°) | View Azimuth (°) | View Elevation (°) | Retrieved AOD at 550 nm |
---|---|---|---|---|---|---|
14 May 2016 | 12:16 | 145.498 | 65.198 | 171.441 | 43.486 | 0.126 |
15 June 2016 | 14:09 | 222.159 | 65.673 | 171.607 | 45.833 | 0.247 |
6 July 2016 | 10:33 | 99.919 | 50.545 | 170.673 | 45.999 | 0.280 |
25 August 2016 | 12:00 | 140.538 | 57.354 | 170.826 | 45.861 | 0.108 |
3 September 2016 | 09:38 | 108.880 | 31.242 | 171.570 | 43.196 | 0.069 |
6 December 2016 | 11:30 | 138.490 | 48.743 | 172.684 | 43.014 | 0.221 |
7 October 2016 | 10:16 | 129.921 | 30.151 | 172.859 | 43.032 | 0.138 |
15 October 2016 | 11:06 | 144.690 | 34.193 | 172.712 | 43.030 | 0.157 |
18 October 2016 | 12:00 | 160.822 | 37.991 | 172.705 | 43.129 | 0.211 |
1 November 2016 | 11:00 | 146.705 | 28.514 | 172.605 | 43.114 | 0.086 |
14 November 2016 | 11:00 | 148.374 | 25.100 | 172.753 | 43.225 | 0.110 |
29 November 2016 | 11:00 | 148.855 | 21.743 | 172.514 | 43.023 | 0.060 |
1 December 2016 | 11:44 | 159.194 | 25.032 | 172.497 | 43.025 | 0.057 |
7 December 2016 | 12:05 | 164.057 | 25.370 | 172.497 | 43.026 | 0.222 |
15 December 2016 | 11:00 | 148.113 | 19.440 | 172.535 | 43.027 | 0.056 |
Date | Blue Band | Green Band | Red Band | NIR Band | ||||
---|---|---|---|---|---|---|---|---|
DN | TOA * | DN | TOA | DN | TOA | DN | TOA | |
14 May 2016 | 286.37 | 53.09 | 338.09 | 68.40 | 426.49 | 73.40 | 309.02 | 41.47 |
15 June 2016 | 276.98 | 49.00 | 328.47 | 63.26 | 418.38 | 67.15 | 306.75 | 37.76 |
6 July 2016 | 416.55 | 68.44 | 513.40 | 92.05 | 662.84 | 104.13 | 476.86 | 59.18 |
25 August 2016 | 438.81 | 67.27 | 548.11 | 97.34 | 714.68 | 109.42 | 498.47 | 60.12 |
3 September 2016 | 340.21 | 49.13 | 307.04 | 54.19 | 385.62 | 57.92 | 402.02 | 47.80 |
6 December 2016 | 449.47 | 62.48 | 435.50 | 74.38 | 537.84 | 79.98 | 567.85 | 66.21 |
7 October 2016 | 361.10 | 48.64 | 327.02 | 53.27 | 394.28 | 57.92 | 414.58 | 47.72 |
15 October 2016 | 401.31 | 54.54 | 371.91 | 58.46 | 444.47 | 66.49 | 460.30 | 54.45 |
18 October 2016 | 443.61 | 59.53 | 415.61 | 64.96 | 503.47 | 73.36 | 529.37 | 60.56 |
1 November 2016 | 359.26 | 48.29 | 328.73 | 51.41 | 394.13 | 56.24 | 412.55 | 46.82 |
14 November 2016 | 425.52 | 43.02 | 445.94 | 42.99 | 455.37 | 50.41 | 476.83 | 42.34 |
29 November 2016 | 422.08 | 39.34 | 417.71 | 39.60 | 414.09 | 44.39 | 433.48 | 36.72 |
1 December 2016 | 345.86 | 32.68 | 310.34 | 29.48 | 372.16 | 40.01 | 395.02 | 33.73 |
7 December 2016 | 350.05 | 33.74 | 314.41 | 30.72 | 376.90 | 40.18 | 392.90 | 33.91 |
15 December 2016 | 369.99 | 35.48 | 379.98 | 37.16 | 376.08 | 40.35 | 391.18 | 33.88 |
Date | Blue Band | Green Band | Red Band | NIR Band |
---|---|---|---|---|
14 May 2016 | 0.1854 | 0.2023 | 0.1721 | 0.1342 |
15 June 2016 | 0.1769 | 0.1926 | 0.1605 | 0.1231 |
6 July 2016 | 0.1643 | 0.1793 | 0.1571 | 0.1241 |
25 August 2016 | 0.1533 | 0.1776 | 0.1531 | 0.1206 |
3 September 2016 | 0.1444 | 0.1765 | 0.1502 | 0.1189 |
6 December 2016 | 0.1390 | 0.1708 | 0.1487 | 0.1166 |
7 October 2016 | 0.1347 | 0.1629 | 0.1469 | 0.1151 |
15 October 2016 | 0.1359 | 0.1572 | 0.1496 | 0.1183 |
18 October 2016 | 0.1342 | 0.1563 | 0.1457 | 0.1144 |
1 November 2016 | 0.1344 | 0.1564 | 0.1427 | 0.1135 |
14 November 2016 | 0.1011 | 0.0964 | 0.1107 | 0.0888 |
29 November 2016 | 0.0932 | 0.0948 | 0.1072 | 0.0847 |
1 December 2016 | 0.0945 | 0.0950 | 0.1075 | 0.0854 |
7 December 2016 | 0.0964 | 0.0977 | 0.1066 | 0.0863 |
15 December 2016 | 0.0959 | 0.0978 | 0.1073 | 0.0866 |
Acquiring Date of GF-4/PMS | Acquiring Date of OLI (Day Month Year) | Solar Zenith of GF-4/PMS (°) | Solar Zenith of OLI (°) | View Zenith of GF-4/PMS (°) | View Zenith of OLI (°) | Relative Azimuth of GF-4/PMS (°) | Relative Azimuth of OLI (°) |
---|---|---|---|---|---|---|---|
15 June 2016 | 11 June 2016 | 24.3270 | 24.0301 | 44.1670 | 0.0000 | 50.5520 | 129.8012 |
6 July 2016 | 6 July 2016 | 39.4550 | 25.1137 | 44.0010 | 0.0000 | 70.7540 | 128.4181 |
25 August 2016 | 30 August 2016 | 32.6460 | 36.1487 | 44.1390 | 0.0000 | 30.2880 | 145.0563 |
7 October 2016 | 10 October 2016 | 59.8490 | 49.5287 | 46.9680 | 0.0000 | 42.9380 | 158.1424 |
15 October 2016 | 17 October 2016 | 55.8070 | 51.9167 | 46.9700 | 0.0000 | 28.0220 | 159.5839 |
1 November 2016 | 2 November 2016 | 61.4860 | 57.0972 | 46.8860 | 0.0000 | 25.9000 | 161.8259 |
14 November 2016 | 11 November 2016 | 64.9000 | 59.7016 | 46.7750 | 0.0000 | 24.3790 | 162.4547 |
29 November 2016 | 27 November 2016 | 68.2570 | 63.4680 | 46.9770 | 0.0000 | 23.6590 | 162.5250 |
15 December 2016 | 13 December 2016 | 70.5600 | 65.7732 | 46.9730 | 0.0000 | 24.4220 | 161.4440 |
Date | Band | DN | GCC * | CCC # | TOA Reflectance by GCC | TOA Reflectance by CCC | TOA Reflectance of OLI | Error by GCC (%) | Error by CCC (%) |
---|---|---|---|---|---|---|---|---|---|
15 June 2016 | Blue | 457.78 | 0.1784 | 0.1769 | 0.1523 | 0.1511 | 0.1435 | 6.19 | 5.32 |
Green | 444.97 | 0.1878 | 0.1926 | 0.1638 | 0.1680 | 0.1720 | 4.74 | 2.31 | |
Red | 596.59 | 0.1515 | 0.1605 | 0.2036 | 0.2157 | 0.2261 | 9.98 | 4.62 | |
NIR | 637.73 | 0.1080 | 0.1231 | 0.2231 | 0.2543 | 0.2722 | 18.04 | 6.57 | |
6 July 2016 | Blue | 448.12 | 0.1784 | 0.1643 | 0.1762 | 0.1623 | 0.1555 | 13.31 | 4.36 |
Green | 432.92 | 0.1878 | 0.1793 | 0.1883 | 0.1798 | 0.1794 | 5.00 | 0.24 | |
Red | 546.95 | 0.1515 | 0.1571 | 0.2205 | 0.2287 | 0.2274 | 3.01 | 0.58 | |
NIR | 560.83 | 0.1080 | 0.1241 | 0.2318 | 0.2663 | 0.2713 | 14.56 | 1.85 | |
25 August 2016 | Blue | 476.03 | 0.1784 | 0.1533 | 0.1693 | 0.1455 | 0.1390 | 21.80 | 4.67 |
Green | 462.99 | 0.1878 | 0.1776 | 0.1822 | 0.1723 | 0.1670 | 9.10 | 3.19 | |
Red | 599.32 | 0.1515 | 0.1531 | 0.2186 | 0.2209 | 0.2187 | 0.05 | 1.02 | |
NIR | 615.65 | 0.1080 | 0.1206 | 0.2302 | 0.2571 | 0.2621 | 12.17 | 1.90 | |
7 October 2016 | Blue | 364.10 | 0.1784 | 0.1347 | 0.2120 | 0.1601 | 0.1516 | 39.85 | 5.60 |
Green | 327.78 | 0.1878 | 0.1629 | 0.2112 | 0.1832 | 0.1749 | 20.74 | 4.75 | |
Red | 395.09 | 0.1515 | 0.1469 | 0.2359 | 0.2287 | 0.2251 | 4.78 | 1.59 | |
NIR | 413.07 | 0.1080 | 0.1151 | 0.2528 | 0.2695 | 0.2683 | 5.78 | 0.43 | |
15 October 2016 | Blue | 405.28 | 0.1784 | 0.1359 | 0.2100 | 0.1599 | 0.1650 | 27.28 | 3.07 |
Green | 372.86 | 0.1878 | 0.1572 | 0.2137 | 0.1789 | 0.1867 | 14.45 | 4.19 | |
Red | 445.03 | 0.1515 | 0.1496 | 0.2364 | 0.2334 | 0.2368 | 0.17 | 1.43 | |
NIR | 459.94 | 0.1080 | 0.1183 | 0.2505 | 0.2744 | 0.2803 | 10.65 | 2.11 | |
1 November 2016 | Blue | 362.22 | 0.1784 | 0.1344 | 0.2201 | 0.1658 | 0.1549 | 42.06 | 7.03 |
Green | 329.32 | 0.1878 | 0.1564 | 0.2213 | 0.1843 | 0.1766 | 25.36 | 4.38 | |
Red | 394.01 | 0.1515 | 0.1427 | 0.2454 | 0.2311 | 0.2272 | 8.03 | 1.72 | |
NIR | 412.03 | 0.1080 | 0.1135 | 0.2631 | 0.2765 | 0.2716 | 3.12 | 1.81 | |
14 November 2016 | Blue | 429.32 | 0.1252 | 0.1011 | 0.2046 | 0.1653 | 0.1575 | 29.95 | 4.98 |
Green | 446.63 | 0.1226 | 0.0964 | 0.2191 | 0.1722 | 0.1778 | 23.20 | 3.16 | |
Red | 454.82 | 0.1102 | 0.1107 | 0.2304 | 0.2315 | 0.2281 | 1.00 | 1.50 | |
NIR | 474.92 | 0.0796 | 0.0888 | 0.2499 | 0.2789 | 0.2719 | 8.08 | 2.59 | |
29 November 2016 | Blue | 426.01 | 0.1252 | 0.0932 | 0.2302 | 0.1714 | 0.1624 | 41.76 | 5.53 |
Green | 419.61 | 0.1226 | 0.0948 | 0.2334 | 0.1805 | 0.1780 | 31.11 | 1.40 | |
Red | 414.93 | 0.1102 | 0.1072 | 0.2383 | 0.2319 | 0.2281 | 4.49 | 1.67 | |
NIR | 432.66 | 0.0796 | 0.0847 | 0.2581 | 0.2746 | 0.2730 | 5.43 | 0.60 | |
15 December 2016 | Blue | 373.18 | 0.1252 | 0.0959 | 0.2237 | 0.1714 | 0.1670 | 33.97 | 2.64 |
Green | 381.03 | 0.1226 | 0.0978 | 0.2351 | 0.1875 | 0.1810 | 29.87 | 3.59 | |
Red | 376.04 | 0.1102 | 0.1073 | 0.2396 | 0.2333 | 0.2289 | 4.67 | 1.93 | |
NIR | 389.99 | 0.0796 | 0.0866 | 0.2581 | 0.2807 | 0.2727 | 5.37 | 2.92 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, A.; Zhong, B.; Wu, S.; Liu, Q. Radiometric Cross-Calibration of GF-4 in Multispectral Bands. Remote Sens. 2017, 9, 232. https://doi.org/10.3390/rs9030232
Yang A, Zhong B, Wu S, Liu Q. Radiometric Cross-Calibration of GF-4 in Multispectral Bands. Remote Sensing. 2017; 9(3):232. https://doi.org/10.3390/rs9030232
Chicago/Turabian StyleYang, Aixia, Bo Zhong, Shanlong Wu, and Qinhuo Liu. 2017. "Radiometric Cross-Calibration of GF-4 in Multispectral Bands" Remote Sensing 9, no. 3: 232. https://doi.org/10.3390/rs9030232
APA StyleYang, A., Zhong, B., Wu, S., & Liu, Q. (2017). Radiometric Cross-Calibration of GF-4 in Multispectral Bands. Remote Sensing, 9(3), 232. https://doi.org/10.3390/rs9030232