Introduction of Variable Correlation for the Improved Retrieval of Crop Traits Using Canopy Reflectance Model Inversion
"> Figure 1
<p>The layout of the experimental plots: (<b>A</b>) a map of the study area (left side) in which the star indicates the position of the study site; (<b>B</b>) the arrangement of the nitrogen fertilization experiment (the lower-right side); and (<b>C</b>) the plot design for in situ measurements (the upper right.)</p> "> Figure 2
<p>Relationships between LAI and Cv variables using forward simulations (<b>a</b>) without variable correlation and (<b>b</b>) with variable correlation using the Cholesky method.</p> "> Figure 3
<p>Comparison between measured (black) and simulated (red) spectra for four types of leaf inclination distribution functions (LIDFs) and four selected potato plots (cases) to identify the LIDF type that best represents potato.</p> "> Figure 4
<p>Relation between estimated LAI and Cv from LUTstd (<b>a</b>) and LUTreg (<b>b</b>).</p> "> Figure 5
<p>The estimated LAI from LUTstd (<b>a</b>) and LUTreg (<b>b</b>).</p> "> Figure 6
<p>The estimated fCover from LUTstd (<b>a</b>) and LUTreg (<b>b</b>).</p> "> Figure 7
<p>The magnitude of LAI variation across 27 potato plots obtained from both types of LUTs.</p> "> Figure 8
<p>The magnitude of Cv variation across 27 potato plots obtained from both types of LUTs.</p> "> Figure 9
<p>The magnitude of fCover variation across 27 potato plots obtained from both types of LUTs.</p> "> Figure A1
<p>The estimated CCC obtained from LUTstd (<b>a</b>) and LUTreg (<b>b</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Design
2.2. Spectral Measurements and Preprocessing
2.3. Biophysical and Biochemical Measurements
2.4. Radiative Transfer Model
2.5. Model Parameterization
2.6. The Approach for Regularizing Look-Up Table Inversion
2.7. Model Inversion and Validation Data
3. Results
3.1. Characteristics of the Potato Crop
3.2. LIDF Estimation from the Forward Simulation
3.3. Inversion Results for Standard LUT and Regularized LUT
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
No. of | Statistical | LCC_ LUTreg | LCC_LUTstd | ||||
---|---|---|---|---|---|---|---|
Solutions | Parameter | R2 | RMSE | NRMSE% | R2 | RMSE | NRMSE% |
Single | - | 0.002 | 17.38 | 63.05 | 0.010 | 17.81 | 63.61 |
First 5 | Mean | 0.001 | 15.49 | 55.32 | 0.006 | 16.80 | 60.05 |
Median | 0.003 | 15.56 | 55.57 | 0.004 | 16.70 | 59.64 | |
First 10 | Mean | 0.002 | 14.96 | 53.43 | 0.029 | 16.36 | 58.43 |
Median | 0.002 | 15.63 | 56.70 | 0.040 | 16.95 | 60.54 | |
First 100 | Mean | 0.059 | 13.55 | 48.39 | 0.020 | 15.60 | 55.71 |
Median | 0.030 | 12.54 | 44.79 | 0.020 | 14.09 | 50.32 | |
First 250 | Mean | 0.023 | 12.01 | 42.89 | 0.031 | 13.44 | 48.76 |
Median | 0.015 | 11.59 | 42.08 | 0.020 | 13.97 | 49.89 | |
First 300 | Mean | 0.021 | 11.50 | 41.07 | 0.020 | 12.17 | 43.46 |
Median | 0.025 | 10.11 | 36.11 | 0.010 | 12.81 | 45.75 | |
First 500 | Mean | 0.101 | 11.69 | 41.75 | 0.082 | 12.46 | 44.50 |
Median | 0.165 | 11.68 | 41.71 | 0.079 | 12.96 | 46.29 |
References
- Darvishzadeh, R.; Atzberger, C.; Skidmore, A.; Schlerf, M. Mapping grassland leaf area index with airborne hyperspectral imagery: A comparison study of statistical approaches and inversion of radiative transfer models. ISPRS J. Photogramm. Remote Sens. 2011, 66, 894–906. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT+ SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113, S56–S66. [Google Scholar] [CrossRef]
- Xiao, Z.; Wang, T.; Liang, S.; Sun, R. Estimating the fractional vegetation cover from GLASS leaf area index product. Remote Sens. 2016, 8, 337. [Google Scholar] [CrossRef]
- Mu, X.; Song, W.; Gao, Z.; McVicar, T.R.; Donohue, R.J.; Yan, G. Fractional vegetation cover estimation by using multi-angle vegetation index. Remote Sens. Environ. 2018, 216, 44–56. [Google Scholar] [CrossRef]
- Zheng, G.; Moskal, L.M. Retrieving leaf area index (LAI) using remote sensing: Theories, methods and sensors. Sensors 2009, 9, 2719–2745. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, Q.; Yang, R.; Zhang, H.; Zhang, J.; Cai, E. The design and implementation of the leaf area index sensor. Sensors 2015, 15, 6250–6269. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Li, X.B. Fractional vegetation cover estimation based on an improved selective endmember spectral mixture model. PLoS ONE 2015, 10, e0124608. [Google Scholar] [CrossRef]
- Clevers, J.G.; Kooistra, L. Using hyperspectral remote sensing data for retrieving canopy chlorophyll and nitrogen content. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 5, 574–583. [Google Scholar] [CrossRef]
- Clevers, J.; Kooistra, L.; Van Den Brande, M. Using Sentinel-2 data for retrieving LAI and leaf and canopy chlorophyll content of a potato crop. Remote Sens. 2017, 9, 405. [Google Scholar] [CrossRef]
- Kooistra, L.; Clevers, J.G. Estimating potato leaf chlorophyll content using ratio vegetation indices. Remote Sens. Lett. 2016, 7, 611–620. [Google Scholar] [CrossRef]
- Liu, D.; Yang, L.; Jia, K.; Liang, S.; Xiao, Z.; Wei, X.; Yao, Y.; Xia, M.; Li, Y. Global Fractional Vegetation Cover Estimation Algorithm for VIIRS Reflectance Data Based on Machine Learning Methods. Remote Sens. 2018, 10, 1648. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C. Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland. Remote Sens. Environ. 2008, 112, 2592–2604. [Google Scholar] [CrossRef]
- Schlerf, M.; Atzberger, C. Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data. Remote Sens. Environ. 2006, 100, 281–294. [Google Scholar] [CrossRef]
- Locherer, M.; Hank, T.; Danner, M.; Mauser, W. Retrieval of seasonal leaf area index from simulated EnMAP data through optimized LUT-based inversion of the PROSAIL model. Remote Sens. 2015, 7, 10321–10346. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F.; Myneni, R.; Pragnère, A.; Knyazikhin, Y. Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data. Agric. Environ. 2000, 20, 3–22. [Google Scholar] [CrossRef]
- Houborg, R.; Soegaard, H.; Boegh, E. Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data. Remote Sens. Environ. 2007, 106, 39–58. [Google Scholar] [CrossRef]
- Yebra, M.; Chuvieco, E. Linking ecological information and radiative transfer models to estimate fuel moisture content in the Mediterranean region of Spain: Solving the ill-posed inverse problem. Remote Sens. Environ. 2009, 113, 2403–2411. [Google Scholar] [CrossRef]
- Sehgal, V.K.; Chakraborty, D.; Sahoo, R.N. Inversion of radiative transfer model for retrieval of wheat biophysical parameters from broadband reflectance measurements. Inf. Process. Agric. 2016, 3, 107–118. [Google Scholar] [CrossRef]
- Qin, J.; Liang, S.; Li, X.; Wang, J. Development of the adjoint model of a canopy radiative transfer model for sensitivity study and inversion of leaf area index. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2028–2037. [Google Scholar] [CrossRef]
- Combal, B.; Baret, F.; Weiss, M.; Trubuil, A.; Mace, D.; Pragnere, A.; Myneni, R.; Knyazikhin, Y.; Wang, L. Retrieval of canopy biophysical variables from bidirectional reflectance: Using prior information to solve the ill-posed inverse problem. Remote Sens. Environ. 2003, 84, 1–15. [Google Scholar] [CrossRef]
- Berger, K.; Atzberger, C.; Danner, M.; D’Urso, G.; Mauser, W.; Vuolo, F.; Hank, T. Evaluation of the PROSAIL model capabilities for future hyperspectral model environments: A review study. Remote Sens. 2018, 10, 85. [Google Scholar] [CrossRef]
- Verhoef, W.; Bach, H. Coupled soil–leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data. Remote Sens. Environ. 2007, 109, 166–182. [Google Scholar] [CrossRef]
- Levashova, N.; Lukyanenko, D.; Mukhartova, Y.; Olchev, A. Application of a Three-Dimensional Radiative Transfer Model to Retrieve the Species Composition of a Mixed Forest Stand from Canopy Reflected Radiation. Remote Sens. 2018, 10, 1661. [Google Scholar] [CrossRef]
- Mousivand, A.; Menenti, M.; Gorte, B.; Verhoef, W. Multi-temporal, multi-sensor retrieval of terrestrial vegetation properties from spectral–directional radiometric data. Remote Sens. Environ. 2015, 158, 311–330. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Bacour, C.; Poilve, H.; Frangi, J.P. Comparison of four radiative transfer models to simulate plant canopies reflectance: Direct and inverse mode. Remote Sens. Environ. 2000, 74, 471–481. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F.; Andrieu, B.; Danson, F.; Jaggard, K. Extraction of vegetation biophysical parameters by inversion of the PROSPECT+ SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors. Remote Sens. Environ. 1995, 52, 163–172. [Google Scholar] [CrossRef]
- Fang, H.; Liang, S. A hybrid inversion method for mapping leaf area index from MODIS data: Experiments and application to broadleaf and needleleaf canopies. Remote Sens. Environ. 2005, 94, 405–424. [Google Scholar] [CrossRef]
- Walthall, C.; Dulaney, W.; Anderson, M.; Norman, J.; Fang, H.; Liang, S. A comparison of empirical and neural network approaches for estimating corn and soybean leaf area index from Landsat ETM+ imagery. Remote Sens. Environ. 2004, 92, 465–474. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F. Evaluation of canopy biophysical variable retrieval performances from the accumulation of large swath satellite data. Remote Sens. Environ. 1999, 70, 293–306. [Google Scholar] [CrossRef]
- Fang, H.; Liang, S.; Kuusk, A. Retrieving leaf area index using a genetic algorithm with a canopy radiative transfer model. Remote Sens. Environ. 2003, 85, 257–270. [Google Scholar] [CrossRef]
- Durbha, S.S.; King, R.L.; Younan, N.H. Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer. Remote Sens. Environ. 2007, 107, 348–361. [Google Scholar] [CrossRef]
- Qu, Y.; Wang, J.; Wan, H.; Li, X.; Zhou, G. A Bayesian network algorithm for retrieving the characterization of land surface vegetation. Remote Sens. Environ. 2008, 112, 613–622. [Google Scholar] [CrossRef]
- Laurent, V.C.; Verhoef, W.; Damm, A.; Schaepman, M.E.; Clevers, J.G. A Bayesian object-based approach for estimating vegetation biophysical and biochemical variables from APEX at-sensor radiance data. Remote Sens. Environ. 2013, 139, 6–17. [Google Scholar] [CrossRef]
- Verrelst, J.; Camps-Valls, G.; Muñoz-Marí, J.; Rivera, J.P.; Veroustraete, F.; Clevers, J.G.; Moreno, J. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties—A review. ISPRS J. Photogramm. Remote Sens. 2015, 108, 273–290. [Google Scholar] [CrossRef]
- Atzberger, C. Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models. Remote Sens. Environ. 2004, 93, 53–67. [Google Scholar] [CrossRef]
- Baret, F.; Jacquemoud, S. Modeling canopy spectral properties to retrieve biophysical and biochemical characteristics. In Imaging Spectrometry—A Tool for Environmental Observations; Springer: Dordrecht, The Netherlands, 1994; pp. 145–167. [Google Scholar]
- Duan, S.B.; Li, Z.L.; Wu, H.; Tang, B.H.; Ma, L.; Zhao, E.; Li, C. Inversion of the PROSAIL model to estimate leaf area index of maize, potato, and sunflower fields from unmanned aerial vehicle hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 12–20. [Google Scholar] [CrossRef]
- Hadamard, J. Sur les problemes aux derivees partielles et leur signification physique. Princet. Univ. Bull. 1902, 13, 49–52. [Google Scholar]
- Roosjen, P.P.; Brede, B.; Suomalainen, J.M.; Bartholomeus, H.M.; Kooistra, L.; Clevers, J.G. Improved estimation of leaf area index and leaf chlorophyll content of a potato crop using multi-angle spectral data–potential of unmanned aerial vehicle imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 14–26. [Google Scholar] [CrossRef]
- Leonenko, G.; Los, S.O.; North, P.R.J. Statistical Distances and Their Applications to Biophysical Parameter Estimation: Information Measures, M-Estimates, and Minimum Contrast Methods. Remote Sens. 2013, 5, 1355–1388. [Google Scholar] [CrossRef] [Green Version]
- Leonenko, G.; Los, S.; North, P. Retrieval of leaf area index from MODIS surface reflectance by model inversion using different minimization criteria. Remote Sens. Environ. 2013, 139, 257–270. [Google Scholar] [CrossRef]
- Lavergne, T.; Kaminski, T.; Pinty, B.; Taberner, M.; Gobron, N.; Verstraete, M.M.; Vossbeck, M.; Widlowski, J.L.; Giering, R. Application to MISR land products of an RPV model inversion package using adjoint and Hessian codes. Remote Sens. Environ. 2007, 107, 362–375. [Google Scholar] [CrossRef]
- Bacour, C.; Jacquemoud, S.; Vogt, P.; Hosgood, B.; Andreoli, G.; Frangi, J.P. Optimal sampling configurations for the estimation of canopy properties from BRDF data acquired with the EGO/JRC. In Proceedings of the 8th International Symposium Physical Measurements & Signatures in Remote Sensing, Aussois, France, 8–12 January 2001; Available online: https://www.semanticscholar.org/paper/OPTIMAL-SAMPLING-CONFIGURATIONS-FOR-THE-ESTIMATION-Bacour-Jacquemoud/41f35a794f543e1a0e78e3bb97f2b8fc85dac864 (accessed on 3 January 2018).
- Baret, F.; Houles, V.; Guérif, M. Quantification of plant stress using remote sensing observations and crop models: the case of nitrogen management. J. Exp. Bot. 2007, 58, 869–880. [Google Scholar] [CrossRef] [Green Version]
- Koetz, B.; Baret, F.; Poilvé, H.; Hill, J. Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics. Remote Sens. Environ. 2005, 95, 115–124. [Google Scholar] [CrossRef]
- Richter, K.; Timmermans, W. Physically based retrieval of crop characteristics for improved water use estimates. Hydrol. Earth Syst. Sci. 2009, 13, 663–674. [Google Scholar] [CrossRef] [Green Version]
- Quan, X.; He, B.; Li, X. A Bayesian network-based method to alleviate the ill-posed inverse problem: A case study on leaf area index and canopy water content retrieval. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6507–6517. [Google Scholar] [CrossRef]
- Parker, M. Chapter 13—Matrix Inversion. In Digital Signal Processing 101, 2nd ed.; Cambridge University Press: Cambridge, UK, 2005; pp. 149–162. [Google Scholar]
- Shi, W.; Guo, Y.F. Incomplete Cholesky decomposition based kernel principal component analysis for large-scale data set. In Proceedings of the 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain, 18–23 July 2010. [Google Scholar]
- Sabino, P. Monte Carlo methods and path-generation techniques for pricing multi-asset path-dependent options. arXiv 2007, arXiv:0710.0850. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.W. An adaptive general sparse out-of-core Cholesky factorization scheme. SIAM J. Sci. Stat. Comput. 1987, 8, 585–599. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Muñoz-Marí, J.; Gómez-Chova, L.; Richter, K.; Calpe-Maravilla, J. Biophysical parameter estimation with a semisupervised support vector machine. IEEE Geosci. Remote Sens. Lett. 2009, 6, 248–252. [Google Scholar] [CrossRef]
- Pasolli, L.; Melgani, F.; Blanzieri, E. Gaussian process regression for estimating chlorophyll concentration in subsurface waters from remote sensing data. IEEE Geosci. Remote Sens. Lett. 2010, 7, 464–468. [Google Scholar] [CrossRef]
- Hueni, A.; Bialek, A. Cause, effect, and correction of field spectroradiometer interchannel radiometric steps. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1542–1551. [Google Scholar] [CrossRef]
- Uddling, J.; Gelang-Alfredsson, J.; Piikki, K.; Pleijel, H. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynth. Res. 2007, 91, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Hapke, B. Bidirectional reflectance spectroscopy: 1. Theory. J. Geophys. Res. Solid Earth 1981, 86, 3039–3054. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Tong, A. Estimating Grassland Chlorophyll Content for a Mixed Grassland: Exploring the Performance of the Empirical-Statistical and the Physical Modeling Approach. Master’s Thesis, 2014; pp. 62–69. Available online: http://hdl.handle.net/1807/82667 (accessed on 4 November 2018).
- Botha, E.J.; Leblon, B.; Zebarth, B.; Watmough, J. Non-destructive estimation of potato leaf chlorophyll from canopy hyperspectral reflectance using the inverted PROSAIL model. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 360–374. [Google Scholar] [CrossRef]
- Casa, R.; Jones, H. Retrieval of crop canopy properties: A comparison between model inversion from hyperspectral data and image classification. Int. J. Remote Sens. 2004, 25, 1119–1130. [Google Scholar] [CrossRef]
- Edlin, R.; McCabe, C.; Hulme, C.; Hall, P.; Wright, J. Correlated Parameters and the Cholesky Decomposition. In Cost Effectiveness Modelling for Health Technology Assessment; ADIS: Cham, Switzerland, 2015; pp. 119–132. [Google Scholar]
- Higham, N.J. Cholesky factorization. Wiley Interdiscip. Rev. 2009, 1, 251–254. [Google Scholar] [CrossRef]
- Yu, H.; Chung, C.; Wong, K.; Lee, H.; Zhang, J. Probabilistic load flow evaluation with hybrid latin hypercube sampling and cholesky decomposition. IEEE Trans. Power Syst. 2009, 24, 661–667. [Google Scholar] [CrossRef]
- Vuolo, F.; Atzberger, C.; Richter, K.; D’Urso, G.; Dash, J. Retrieval of Biophysical Vegetation Products from RapidEye Imagery. Available online: http://publications.jrc.ec.europa.eu/repository/handle/JRC55768 (accessed on 1 January 2018).
- Rivera, J.; Verrelst, J.; Leonenko, G.; Moreno, J. Multiple cost functions and regularization options for improved retrieval of leaf chlorophyll content and LAI through inversion of the PROSAIL model. Remote Sens. 2013, 5, 3280–3304. [Google Scholar] [CrossRef] [Green Version]
- Darvishzadeh, R.; Matkan, A.A.; Dashti Ahangar, A. Inversion of a Radiative Transfer Model for Estimation of Rice Canopy Chlorophyll Content Using a Lookup-Table Approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1222–1230. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Yang, H.; Pan, J.; Xu, P. Exploring optimal design of look-up table for PROSAIL model inversion with multi-angle MODIS data. In Land Surface Remote Sensing; International Society for Optics and Photonics: Bellingham, WA, USA, 2012; Volume 8524, p. 852420. [Google Scholar]
- D’Urso, G.; Dini, L.; Vuolo, F.; Alonso, L.; Guanter, L. Retrieval of leaf area index by inverting hyperspectral multiangular CHRIS PROBA data from SPARC 2003. In Proceedings of the 2nd CHRIS Proba Workshop, Frascati, Italy, 28–30 April 2004; Volume 28, pp. 58–63. [Google Scholar]
- Jia, K.; Liang, S.; Gu, X.; Baret, F.; Wei, X.; Wang, X.; Yao, Y.; Yang, L.; Li, Y. Fractional vegetation cover estimation algorithm for Chinese GF-1 wide field view data. Remote Sens. Environ. 2016, 177, 184–191. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, H.; Li, Z.; Xin, X.; Zheng, X.; Zhao, K. Comparison of fractional vegetation cover estimations using dimidiate pixel models and look-up table inversions of the PROSAIL model from Landsat 8 OLI data. J. Appl. Remote Sens. 2016, 10, 036022. [Google Scholar] [CrossRef]
Parameter | Unit | Range | Fixed Value | Source of Information | ||
---|---|---|---|---|---|---|
Min | Max | |||||
Leaf parameter (PROSPECT-4) | ||||||
Internal leaf structure, N | Unitless | 1 | 2.5 | Kooistra and Clevers [10], Botha et al. [59] | ||
Leaf chlorophyll content, LCC | (g cm) | 50 | 90 | Field measurement | ||
Water content, Cw | (cm) | 0.0317 | Clevers and Kooistra [8] | |||
Dry matter content, Cm | (g cm) | 0.005 | Botha et al. [59] | |||
Senescent material, Cs | Unitless | 0 | From field experience | |||
Canopy parameter (4SAIL2) | ||||||
Leaf area index, LAI | (m m) | 0.4 | 5 | Field measurement | ||
Leaf inclination distribution function (LIDFa/b) | Unitless | 0.66 | −0.04 | Estimated from comparison with field spectra | ||
Hotspot coefficient, hot | (m m) | 0.05 | Casa and Jones [60] | |||
Vertical crown cover, Cv | Unitless | 0.1 | 1 | From field experience | ||
Tree shape factor, zeta | Unitless | 2 | From field experience | |||
Layer dissociation factor, D | Unitless | 1 | From field experience | |||
Solar zenith angle, tts | degree | 38 | Field measurement | |||
Viewing zenith angle, tto | degree | 0 | - | |||
Relative azimuth angle, psi | degree | 0 | - | |||
Soil parameters (Hapke’s soil) | ||||||
Hapke_b | Unitless | 0.84 | Verhoef and Bach [22], Mousivand et al. [24] | |||
Hapke_c | Unitless | 0.68 | - | |||
Hapke_h | Unitless | 0.23 | - | |||
Hapke_B0 | Unitless | 0.3 | - | |||
Soil moisture, SM | Unitless | 15 | From field experience |
Measured Variable | Mean | StDev | Range | Min | Max | C.V(%) |
---|---|---|---|---|---|---|
LAI (m m) | 2.22 | 0.86 | 3.48 | 0.56 | 4.04 | 38.7 |
LCC (g cm) | 73.39 | 9.06 | 28 | 60 | 87 | 12.35 |
CCC (g m) | 1.66 | 0.77 | 2.92 | 0.37 | 3.29 | 46.38 |
fCover | 0.62 | 0.25 | 0.85 | 0.10 | 0.95 | 40.6 |
Correlation | LAI | LCC | fCover |
---|---|---|---|
LAI (m m) | 1 | ||
LCC (g cm) | 0.42 | 1 | |
fCover | 0.86 | 0.16 | 1 |
LIDF a, b | Sum Square Error (SSE) | Root Mean Square Error (RMSE) | ||||||
---|---|---|---|---|---|---|---|---|
Type 1 | Type 2 | Type 3 | Type 4 | Type 1 | Type 2 | Type 3 | Type 4 | |
Case 1 | 0.40 | 0.69 | 0.08 | 0.2 | 0.05 | 0.06 | 0.02 | 0.03 |
Case 2 | 0.39 | 0.7 | 0.07 | 0.2 | 0.05 | 0.06 | 0.02 | 0.03 |
Case 3 | 0.70 | 0.42 | 0.41 | 0.15 | 0.06 | 0.05 | 0.05 | 0.03 |
Case 4 | 0.06 | 1.97 | 0.29 | 0.09 | 0.02 | 0.1 | 0.04 | 0.02 |
No. of | Statistical | LAI | fCover | CCC | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Solutions | Parameter | R2 | RMSE | NRMSE% | R2 | RMSE | NRMSE% | R2 | RMSE | NRMSE% |
Single | - | 0.67 | 1.09 | 31.24 | 0.71 | 0.15 | 17.96 | 0.65 | 0.50 | 17.08 |
First 5 | Mean | 0.74 | 0.99 | 28.55 | 0.69 | 0.16 | 18.63 | 0.74 | 0.41 | 14.11 |
Median | 0.74 | 1.01 | 28.62 | 0.67 | 0.16 | 18.95 | 0.74 | 0.42 | 14.25 | |
First 10 | Mean | 0.72 | 1.01 | 28.72 | 0.69 | 0.16 | 18.63 | 0.73 | 0.43 | 14.64 |
Median | 0.72 | 1.01 | 28.66 | 0.68 | 0.16 | 18.71 | 0.74 | 0.42 | 14.32 | |
First 100 | Mean | 0.71 | 0.96 | 27.45 | 0.70 | 0.16 | 19.14 | 0.69 | 0.49 | 16.94 |
Median | 0.70 | 0.98 | 28.29 | 0.69 | 0.16 | 19.23 | 0.70 | 0.48 | 16.77 | |
First 250 | Mean | 0.69 | 0.91 | 26.76 | 0.70 | 0.16 | 18.83 | 0.69 | 0.47 | 16.18 |
Median | 0.70 | 0.91 | 26.76 | 0.71 | 0.16 | 18.84 | 0.68 | 0.46 | 15.68 | |
First 300 | Mean | 0.70 | 0.90 | 25.86 | 0.71 | 0.15 | 17.80 | 0.69 | 0.43 | 15.00 |
Median | 0.71 | 0.91 | 25.57 | 0.70 | 0.15 | 17.85 | 0.70 | 0.41 | 14.01 | |
First 500 | Mean | 0.73 | 0.90 | 25.90 | 0.69 | 0.16 | 18.49 | 0.72 | 0.42 | 14.43 |
Median | 0.71 | 0.90 | 25.95 | 0.68 | 0.16 | 18.53 | 0.72 | 0.41 | 14.10 |
No. of | Statistical | LAI | fCover | CCC | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Solutions | Parameter | R2 | RMSE | NRMSE% | R2 | RMSE | NRMSE% | R2 | RMSE | NRMSE% |
Single | - | 0.72 | 0.95 | 27.31 | 0.67 | 0.16 | 18.71 | 0.70 | 0.41 | 14.18 |
First 5 | Mean | 0.73 | 0.92 | 26.51 | 0.68 | 0.16 | 18.81 | 0.74 | 0.39 | 13.49 |
Median | 0.72 | 0.96 | 27.59 | 0.66 | 0.16 | 19.05 | 0.75 | 0.39 | 13.19 | |
First 10 | Mean | 0.72 | 0.94 | 26.90 | 0.67 | 0.16 | 18.95 | 0.75 | 0.39 | 13.38 |
Median | 0.72 | 0.96 | 27.66 | 0.67 | 0.16 | 19.12 | 0.73 | 0.40 | 13.67 | |
First 100 | Mean | 0.76 | 0.92 | 26.31 | 0.70 | 0.17 | 19.60 | 0.75 | 0.45 | 15.28 |
Median | 0.75 | 0.93 | 26.86 | 0.69 | 0.17 | 19.85 | 0.74 | 0.44 | 15.10 | |
First 250 | Mean | 0.75 | 0.89 | 25.57 | 0.68 | 0.17 | 19.47 | 0.76 | 0.42 | 14.39 |
Median | 0.74 | 0.86 | 24.71 | 0.66 | 0.17 | 19.69 | 0.75 | 0.44 | 15.12 | |
First 300 | Mean | 0.75 | 0.85 | 24.42 | 0.69 | 0.16 | 18.50 | 0.75 | 0.39 | 13.40 |
Median | 0.74 | 0.85 | 24.45 | 0.69 | 0.16 | 18.60 | 0.75 | 0.40 | 13.75 | |
First 500 | Mean | 0.75 | 0.85 | 24.43 | 0.67 | 0.16 | 18.61 | 0.75 | 0.40 | 13.76 |
Median | 0.75 | 0.86 | 24.92 | 0.65 | 0.16 | 18.99 | 0.74 | 0.41 | 14.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelbaki, A.; Schlerf, M.; Verhoef, W.; Udelhoven, T. Introduction of Variable Correlation for the Improved Retrieval of Crop Traits Using Canopy Reflectance Model Inversion. Remote Sens. 2019, 11, 2681. https://doi.org/10.3390/rs11222681
Abdelbaki A, Schlerf M, Verhoef W, Udelhoven T. Introduction of Variable Correlation for the Improved Retrieval of Crop Traits Using Canopy Reflectance Model Inversion. Remote Sensing. 2019; 11(22):2681. https://doi.org/10.3390/rs11222681
Chicago/Turabian StyleAbdelbaki, Asmaa, Martin Schlerf, Wout Verhoef, and Thomas Udelhoven. 2019. "Introduction of Variable Correlation for the Improved Retrieval of Crop Traits Using Canopy Reflectance Model Inversion" Remote Sensing 11, no. 22: 2681. https://doi.org/10.3390/rs11222681
APA StyleAbdelbaki, A., Schlerf, M., Verhoef, W., & Udelhoven, T. (2019). Introduction of Variable Correlation for the Improved Retrieval of Crop Traits Using Canopy Reflectance Model Inversion. Remote Sensing, 11(22), 2681. https://doi.org/10.3390/rs11222681