Coral Reef Change Detection in Remote Pacific Islands Using Support Vector Machine Classifiers
<p>The relative location of each of the six sites (<b>1</b>) Palmyra Atoll, (<b>2</b>) Kingman Reef, (<b>3</b>) Baker Island Atoll, (<b>4</b>) Howland Island, (<b>5</b>) Tabuaeran Island, and (<b>6</b>) Kiritimati Island.</p> "> Figure 2
<p>Support vector machine (SVM) classifier training and change analysis process flow for Palmyra Atoll, Kingman Reef, Baker Island Atoll, and Howland Island.</p> "> Figure 3
<p>Robust SVM Classifier training and change analysis process flow for Tabuaeran Island and Kiritimati Island.</p> "> Figure 4
<p>Performance evaluation of the combined classifier using Receiver Operating Characteristic (ROC) Curve and Area Under Curve (AUC = 0.778).</p> "> Figure 5
<p>Posterior probability map for the Palmyra Atoll area of interest (top, 2001 and bottom, 2015).</p> "> Figure 6
<p>Difference in predicted class membership map for the Palmyra Atoll area of interest for 2001 initial state compared to 2015 final state.</p> "> Figure 7
<p>Posterior probability map for the Kingman Reef area of interest (top, 2001 and bottom, 2015).</p> "> Figure 8
<p>Difference in predicted class membership map for the Kingman Reef area of interest for 2001 initial state compared to 2015 final state.</p> "> Figure 9
<p>Posterior probability map for the Baker Island Atoll area of interest (top, 2002 and bottom, 2014).</p> "> Figure 10
<p>Difference in predicted class membership map for the Palmyra Atoll area of interest for 2002 initial state compared to 2014 final state.</p> "> Figure 11
<p>Posterior probability map for the Howland Island area of interest (top, 2001 and bottom, 2015).</p> "> Figure 12
<p>Difference in predicted class membership map for the Howland Island area of interest for 2001 initial state compared to 2015 final state.</p> "> Figure 13
<p>Posterior probability map for the Tabuaeran Island area of interest (top, 2000 and bottom, 2014).</p> "> Figure 14
<p>Difference in predicted class membership map for the Tabuaeran Island area of interest for 2000 initial state compared to 2014 final state.</p> "> Figure 15
<p>Posterior probability map for the Kiritimati Island area of interest (left, 2002 and right, 2014).</p> "> Figure 16
<p>Difference in predicted class membership map for the Kiritimati Island area of interest for 2002 initial state compared to 2014 final state.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satelite Data Used
2.2. Ground Truth Data Used for Training and Validation
2.3. Sites
2.4. Methodology
2.4.1. Cloud Mask
2.4.2. Land Mask
2.4.3. Atmospheric Correction and Water Column Correction
- : the mean deep-water radiance in band i
- : a constant for band i accounting for atmospheric effects and water surface reflection
- : the bottom reflectance
- : a geometric factor to account for path length through water (set to two for a two-flow model)
- : depth
2.4.4. SVM Site Application, Validation, and Change Analysis
3. Results
3.1. Classicication Accruacy by Site
3.2. Consolidated Model Robust to Site-Specific Bias
3.3. Change Detection Analysis
3.3.1. Palmyra Atoll
3.3.2. Kingman Reef
3.3.3. Baker Island Atoll
3.3.4. Howland Island
3.3.5. Tabuaeran Island
3.3.6. Kiritimati Island
4. Discussion
4.1. Methodology Benefits and Challenges
4.2. Future Research
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aronson, R.B.; Precht, W.F. White-Band Disease and the Changing Face of Caribbean Coral Reefs. Hydrobiologia 2001, 460, 25–38. [Google Scholar] [CrossRef]
- Glynn, P.W. Coral Reef Bleaching: Ecological Perspectives. Coral Reefs 1993, 12, 1–17. [Google Scholar] [CrossRef]
- McManus, J.W.; Reyes, R.B., Jr.; Nañola, C.L., Jr. Effects of Some Destructive Fishing Methods on Coral Cover and Potential Rates of Recovery. Environ. Manag. 1997, 21, 69–78. [Google Scholar] [CrossRef]
- Pennisi, E. Survey confirms coral reefs are in peril. Science 2002, 297, 1622b–1623b. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.; Reytar, K.; Spalding, M.; Perry, A. Reefs at Risk Revisited; World Resources Institute: Washington, DC, USA, 2011; p. 114. [Google Scholar]
- Mora, C.A. A clear human footprint in the coral reefs of the Caribbean. Proc. R. Soc. Lond. B Biol. Sci. 2008, 275, 767–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoegh-Guldberg, O.; Mumby, J.P.; Hooten, J.A.; Steneck, S.R.; Greenfield, P.; Gomez, E. Coral reefs under rapid climate change and ocean acidification. Science 2007, 281, 1737–1742. [Google Scholar] [CrossRef] [PubMed]
- Pandolfi, J.M.; Bradbury, R.H.; Sala, E.; Hughes, T.P.; Bjorndal, K.A.; Cooke, R.G.; McArdle, D.; McClenachan, L.; Newman, M.J.H.; Paredes, G.; et al. Global trajectories of the long-term decline of coral reef ecosystems. Science 2003, 201, 955–958. [Google Scholar] [CrossRef]
- Hedley, J.C.; Roelfsema, I.; Chollett, A.; Harborne, S.; Heron, S.; Weeks, W.; Skirving, A.; Strong, C.; Eakin, T.; Christensen, V.; et al. Remote sensing of coral reefs for monitoring and management: A review. Remote Sens. 2016, 8, 118. [Google Scholar] [CrossRef]
- Atkinson, J.M.; Lucey, P.G.; Taylor, G.J.; Porter, J.; Dollar, S.; Andre, S. CRESPO: Coral Reef Ecosystem Spectro-Photometric Observatory, Concept Study Report to the University Earth System Science Program National Aeronautics and Space Administration; University of Hawaii: Honolulu, HI, USA, 2001. [Google Scholar]
- Hochberg, E.J.; Atkinson, M.J. Capabilities of Remote Sensors to Classify Coral, Algae, and Sand as Pure and Mixed Spectra. Remote Sens. Environ. 2003, 85, 174–189. [Google Scholar] [CrossRef]
- Kutser, T.; Dekker, A.G.; Skirving, W. Modeling Spectral Discrimination of Great Barrier Reef Benthic Communities by Remote Sensing Instruments. Limnol. Oceanogr. 2003, 48, 497–510. [Google Scholar] [CrossRef]
- Mumby, P.J.; Green, E.P.; Edwards, A.J.; Clark, C.D. The cost-effectiveness of remote sensing for tropical coastal resources assessment and management. J. Environ. Manag. 1999, 55, 157–166. [Google Scholar] [CrossRef]
- Yamano, H. Multispectral Applications. In Coral Reef Remote Sensing: A Guide for Multi-Level Sensing Mapping and Assessment; Goodman, J., Purkis, S., Phinn, S.R., Eds.; Springer: Berlin, Germany, 2013; pp. 51–78. [Google Scholar]
- Capolsini, P.; Andréfouët, S.; Rion, C.; Payri, C. A comparison of Landsat ETM+, SPOT HRV, IKONOS, ASTER, and airborne MASTER data for coral reef habitat mapping in South Pacific islands. Can. J. Remote Sens. 2007, 29, 187–200. [Google Scholar] [CrossRef]
- Kobryn, H.T.; Wouters, K.; Beckley, L.E.; Heege, T. Ningaloo reef: Shallow marine habitats mapped using a hyperspectral sensor. PLoS ONE 2013, 8, e70105. [Google Scholar] [CrossRef] [PubMed]
- Phinn, S.R.; Hochberg, E.; Roelfsema, C.M. Airborne photography, multispectral and hyperspectral remote sensing on coral reefs. In Coral Reef Remote Sensing; Goodman, J.A., Phinn, S.R., Purkis, S., Eds.; Springer: Berlin, Germany, 2013; pp. 3–25. [Google Scholar]
- Vanderstraete, T.; Goossens, R.; Ghabour, T.K. Coral Reef Habitat Mapping in The Red Sea (Hurghada, Egypt) Based on Remote Sensing. Earsel Eproc. 2004, 3, 191–207. [Google Scholar]
- El-Askary, H.; El-Mawla, S.H.A.; Li, J.; El-Hattab, M.M.; El-Raey, M. Change detection of coral reef habitat using Landsat-5 TM, Landsat 7 ETM+ and Landsat 8 OLI data in the Red Sea. Int. J. Remote Sens. 2014, 35, 2327–2346. [Google Scholar]
- Traganos, D.; Aggarwal, B.; Poursanidis, D.; Topouzelis, K.; Chrysoulakis, N.; Reinartz, P. Towards Global-Scale Seagrass Mapping and Monitoring Using Sentinel-2 on Google Earth Engine: The Case Study of the Aegean and Ionian Seas. Remote Sens. 2018, 10, 1227. [Google Scholar] [CrossRef]
- Traganos, D.; Poursanidis, D.; Aggarwal, B.; Chrysoulakis, N.; Reinartz, P. Estimating Satellite-Derived Bathymetry (SDB) with the Google Earth Engine and Sentinel-2. Remote Sens. 2018, 10, 859. [Google Scholar] [CrossRef]
- Hedley, J.D.; Roelfsema, C.; Brando, V.; Giardino, C.; Kutser, T.; Phinn, S.; Mumby, P.J.; Barrilero, O.; Laporte, J.; Koetz, B. Coral reef applications of Sentinel-2: Coverage, characteristics, bathymetry and benthic mapping with comparison to Landsat 8. Remote Sens. Environ. 2018, 216, 598–614. [Google Scholar] [CrossRef]
- Zhou, Z.; Ma, L.; Fu, T.; Zhang, G.; Yao, M.; Li, M. Change Detection in Coral Reef Environment Using High-Resolution Images: Comparison of Object-Based and Pixel-Based Paradigms. ISPRS Int. J. Geo-Inf. 2018, 7, 441. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Leon, J.; Woodroffe, C.D. Improving the synoptic mapping of coral reef geomorphology using object-based image analysis. Int. J. Geogr. Inf. Sci. 2011, 25, 949–969. [Google Scholar] [CrossRef]
- Phinn, S.R.; Roelfsema, C.M.; Mumby, P.J. Multi-scale, object-based image analysis for mapping geomorphic and ecological zones on coral reefs. Int. J. Remote Sens. 2012, 33, 3768–3797. [Google Scholar] [CrossRef]
- Roelfsema, C.; Phinn, S.; Jupiter, S.; Comley, J.; Albert, S. Mapping coral reefs at reef to reef-system scales, 10s–1000s km2, using object-based image analysis. Int. J. Remote Sens. 2013, 34, 6367–6388. [Google Scholar] [CrossRef]
- Dingle Robertson, L.; King, D.J. Comparison of pixel- and object-based classification in land cover change mapping. Int. J. Remote Sens. 2011, 32, 1505–1529. [Google Scholar] [CrossRef]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012, 118, 259–272. [Google Scholar] [CrossRef]
- Pax-Lenney, M.; Woodcock, C.E.; Macomber, S.A.; Gopal, S.; Song, C. Forest mapping with a generalized classifier and Landsat TM data. Remote Sens. Environ. 2001, 77, 241–250. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Macomber, S.A.; Pax-Lenney, M.; Cohen, W.B. Monitoring large areas for forest change using Landsat: Generalization across space, time and Landsat sensors. Remote Sens. Environ. 2001, 78, 194–203. [Google Scholar] [CrossRef] [Green Version]
- Quirein, J.A.; Trichel, M.C. Acreage estimation, feature selection, and signature extension dependent upon the maximum likelihood decision rule. In Proceedings of the Symposium on Machine Classification of Remotely Sensed Data, Purdue University, West Lafayette, IN, USA, 3–5 June 1975; pp. 26–39. Available online: www.lars.purdue.edu/home/references/sym_1975/1975_2A-26.pdf (accessed on 9 April 2019).
- Olthof, I.; Butson, C.; Fraser, R. Signature extension through space for northern landcover classification: A comparison of radiometric correction methods. Remote Sens. Environ. 2005, 95, 290–302. [Google Scholar] [CrossRef]
- Bauer, M.E.; Cipra, J.E.; Anuta, P.E.; Etheridge, J.B. Identification and area estimation of agricultural crops by computer classification of Landsat MSS data. Remote Sens. Environ. 1979, 8, 77–92. [Google Scholar] [CrossRef]
- Hall, F.G.; Strebel, D.E.; Nickeson, J.E.; Goetz, S.J. Radiometric rectification: Toward a common radiometric response among multidate, multisensor images. Remote Sens. Environ. 1991, 35, 11–27. [Google Scholar] [CrossRef]
- Pax-Lenney, M.; Woodcock, C.E. Monitoring agricultural lands in Egypt with multitemporal Landsat TM imagery: How many images are needed? Remote Sens. Environ. 1997, 59, 522–529. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; CRC/Lewis Press: Boca Raton, FL, USA, 1999; 137p. [Google Scholar]
- Langley, S.K.; Cheshire, H.M.; Humes, K.S. A comparison of single date and multitemporal satellite image classifications in a semi-arid grassland. J. Arid Environ. 2001, 49, 401–411. [Google Scholar] [CrossRef]
- Van Niel, T.G.; McVicar, T.R. Determining temporal windows for crop discrimination with remote sensing: A case study in south-eastern Australia. Comput. Electron. Agric. 2004, 45, 91–108. [Google Scholar] [CrossRef]
- Laborte, A.G.; Maunahan, A.A.; Hijmans, R.J. Spectral Signature Generalization and Expansion Can Improve the Accuracy of Satellite Image Classification. PLoS ONE 2010, 5, e10516. [Google Scholar] [CrossRef] [PubMed]
- Palandro, D.A.; Andréfouët, S.; Hu, C.; Hallock, P.; Muller-Karger, F.; Dustan, P.; Callahan, M.K.; Kranenburg, C.; Beaver, C.R. Quantification of two decades of shallow-water coral reef habitat decline in the Florida Keys National Marine Sanctuary using Landsat data (1984–2002). Remote Sens. Environ. 2008, 112, 3388–3399. [Google Scholar] [CrossRef]
- Knudby, A.; Newman, C.; Shaghude, Y.; Muhando, C. Simple and effective monitoring of historic changes in nearshore environments using the free archive of Landsat imagery. Int. J. Appl. Earth Obs. Geoinform. 2010, 12S, S116–S122. [Google Scholar] [CrossRef]
- Andréfouët, S.; Muller-Karger, F.E.; Hochberg, E.J.; Hu, C.; Carder, K.L. Change detection in shallow coral reef environments using Landsat 7/ETM+ data. Remote Sens. Environ. 2001, 78, 150–162. [Google Scholar] [CrossRef]
- Lyons, M.; Roelfsema, C.; Phinn, S. Towards understanding temporal and spatial dynamics of seagrass landscapes using time-series remote sensing. Estuar. Cloastal Shelf Sci. 2013, 120, 42–53. [Google Scholar] [CrossRef]
- Li, W.; El-Askary, H.; Qurban, M.; Li, J.; ManiKandan, K.; Piechota, T. Using multi-indices approach to quantify mangrave changes over the Western Arabian Gulf along Saudi Arabia coast. Ecol. Indic. 2019, 102, 734–745. [Google Scholar] [CrossRef]
- Wang, Z.; Yao, W.; Tang, Q.; Liu, L.; Xiao, P.; Kong, X.; Zhang, P.; Shi, F.; Wang, Y. Continuous Change Detection of Forest/Grassland and Cropland in the Loess Plateau of China Using All Available Landsat Data. Remote Sens. 2018, 10, 1775. [Google Scholar] [CrossRef]
- Spalding, M.D.; Brown, B.E. Warm-water coral reefs and climate change. Science 2015, 350, 769–771. [Google Scholar] [CrossRef] [PubMed]
- Baker, A.C.; Glynn, P.W.; Riegl, B. Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. Estuar. Coast. Shelf Sci. 2008, 80, 435–471. [Google Scholar] [CrossRef]
- Hughes, T.P.; Kerry, J.T.; Alvarez-Noriega, M.; Alvarez-Romero, J.G.; Anderson, K.D.; Baird, A.H.; Babcock, R.C.; Beger, M.; Bellwood, D.R.; Berkelmans, R.; et al. Global warming and recurrent mass bleaching of corals. Nature 2017, 543, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.P.; Anderson, K.D.; Connolly, S.R.; Heron, S.F.; Kerry, J.T.; Lough, J.M.; Baird, A.H.; Baum, J.K.; Berumen, M.L.; Bridge, T.C.; et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 2018, 359, 80–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandolfi, J.M.; Connolly, S.R.; Marshall, D.J.; Cohen, A.L. Projecting coral reef futures under global warming and ocean acidification. Science 2011, 333, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Coral Reef Ecosystem Program; Pacific Islands Fisheries Science Center. National Coral Reef Monitoring Program: Benthic Cover Derived from Analysis of Benthic Images Collected during Stratified Random Surveys (StRS) across the Pacific Remote Island Areas since 2014. NOAA’s National Center for Environmental Information, 2016. Available online: https://inport.nmfs.noaa.gov/inport/item/36157 (accessed on 15 May 2018).
- Pacific Island Benthic Habitat Mapping Center. Palmyra Atoll. NOAA’s National Center for Environmental Information, 2018. Available online: http://www.soest.hawaii.edu/pibhmc/cms/ (accessed on 12 May 2018).
- Landsat Project Science Office, Landsat 7 (L7) Data Users Handbook Updated: June 2018. Available online: https://www.usgs.gov/media/files/landsat-7-data-users-handbook (accessed on 15 January 2019).
- Landsat Project Science Office, Landsat 8 (L8) Data Users Handbook Updated: October 2018. Available online: https://www.usgs.gov/media/files/landsat-8-data-users-handbook (accessed on 15 January 2019).
- Landsat Data Continuity Mission Underfly with Landsat 7. USGS. Available online: https://www.usgs.gov/land-resources/nli/landsat/landsat-data-continuity-mission-underfly-landsat-7 (accessed on 15 April 2019).
- Roy, D.P.; Wulder, M.; Loveland, T.; Woodcock, C.; Allen, R.; Anderson, M.; Zhu, Z. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef] [Green Version]
- Magel, J.; Burns, J.; Gates, R.; Baum, J. Effects of bleaching-associated mass coral mortality on reef structural complexity across a gradient of local disturbances. Sci. Rep. 2019. [Google Scholar] [CrossRef]
- NOAA Rapid Ecological Assessment (REA) Survey Methodology: #3 Benthic Habitat Surveys Coral Reef Ecosystem Program (CREP). Available online: https://www.pifsc.noaa.gov/cred/survey_methods/fish_surveys/spc_benthic_method_training_2016_final_draft.pdf accessed (accessed on 7 April 2018).
- Heenan, A.; Williams, I.D.; Acoba, T.; DesRochers, A.; Kosaki, R.K.; Kanemura, T.; Nadon, M.O.; Brainard, R.E. Long-term monitoring of coral reef fish assemblages in the Western central pacific. Sci. Data 2017, 4, 170176. [Google Scholar] [CrossRef] [Green Version]
- Beijbom, O.; Edmunds, P.J.; Kline, D.I.; Mitchell, G.B.; Kriegman, D. Automated Annotation of Coral Reef Survey Images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012. [Google Scholar]
- Beijbom, O.; Edmunds, P.J.; Roelfsema, C.; Smith, J.; Kline, D.I.; Neal, B.; Dunlap, M.J.; Moriarty, V.; Fan, T.-Y.; Tan, C.-J.; et al. Towards automated annotation of benthic survey images: variability of human experts and operational modes of automation. PLoS ONE 2015, 10, e0130312. [Google Scholar] [CrossRef]
- McCoy, K.; Williams, I.; Heenan, A. A Comparison of Rapid Visual Assessments and Photo-Quadrat Analyses to Monitor Coral Reef Habitats. NOAA Pac. Isl. Fish. Sci. Cent. PIFSC Data Rep. 2015, DR-150-11. [Google Scholar] [CrossRef]
- Palmyra Atoll National Wildlife Refuge. Ramsar Site Information Services. 2018. Available online: https://www.fws.gov/refuge/Palmyra_Atoll/ (accessed on 15 May 2018).
- Office of Insular Affairs, Department of the Interior. Kingman Reef; Office of Insular Affairs, Department of the Interior: Washington, DC, USA, 2009.
- Pacific Remote Islands National Wildlife Refuge Complex. Baker Island National Wildlife Refuge: Draft Comprehensive Conservation Plan and Environmental Assessment; Pacific Remote Islands National Wildlife Refuge Complex: Washington, DC, USA, 2007. [Google Scholar]
- Maragos, J.; Miller, J.; Gove, J.; Mundy, B.; Friedlander, A.M.; Godwin, S.; Musburger, C.; Timmers, M.; Tsuda, R.; Vroom, P.; et al. US coral reefs in the Line and Phoenix Islands, central Pacific Ocean: History, geology, oceanography and biology. In Coral Reefs of the USA Coral Reefs of the World 1; Riegl, B.M., Dodge, R.E., Eds.; Springer: New York, NY, USA, 2008; pp. 595–641. [Google Scholar]
- Miller, J.; Maragos, J.; Brainard, R.; Vroom, P.S.; Godwin, S.; Hoeke, R.K.; Aeby, G.S.; Moffitt, R.; Lammers, M.; Gove, J.; et al. The state of Coral Reef Ecosystems of the Pacific Remote Island Areas. In The State of Coral Reef Ecosystems of the United States and Pacific Freely Associated States; Waddell, J.E., Clarke, A.M., Eds.; NOAA Technical Memorandum NOS; NCCOS: Silver Spring, MD, USA; pp. 353–386.
- Pacific Remote Islands National Wildlife Refuge Complex. Howland Island National Wildlife Refuge: Draft Comprehensive Conservation Plan and Environmental Assessment; Pacific Remote Islands National Wildlife Refuge Complex: Washington, DC, USA, 2007. [Google Scholar]
- Tabuaeran. Office of Te Beretitent—Republic of Kiribati Island Report Series. 2012. Available online: http://www.climate.gov.ki/wp-content/uploads/2013/01/21_TABUAERAN-revised-2012.pdf (accessed on 27 January 2019).
- Gallagher, B.; Shimada, K.; Gonzalez, F.; Stroup, E. Tides and Currents in Fanning Atoll Lagoon. Pac. Sci. 1971, 25, 191–205. [Google Scholar]
- Maragos, J. Reef Corals of Fanning Island. Pac. Sci. 1974, 28, 247–255. [Google Scholar]
- Kiritimati. Office of Te Beretitent—Republic of Kiribati Island Report Series 2012. Available online: http://www.climate.gov.ki/wp-content/uploads/2013/01/20_KIRITIMATI-revised-2012.pdf (accessed on 27 January 2019).
- Lovell, E.; Kirata, T.; Tekinaiti, T. Status Report for Kiribati’s Coral Reefs; Centre IRD de Nouméa: Nouméa, New Caledonia, 2002. [Google Scholar]
- Report on the Kiribati 2010 Census of Population and Housing Vol 1. Basic Information and Tables; National Statistics Office Ministry of Finance and Economic Planning: Bairiki, Tarawa, 2010.
- Anderson, A.; Wallin, P.; Martinsson-Wallin, H.; Fankhauser, B.; Hope, G. Towards a First Prehistory of Kiritimati (Christmas) Island, Republic of Kiribati. J. Polyn. Soc. 2000, 109, 273–294. [Google Scholar]
- Matsunaga, T.; Hoyano, A.; Mizukami, Y. Monitoring of Coral Reefs on Ishigaki Island in Japan Using Multitemporal Remote Sensing Data. Hyperspectral Remote Sens. Ocean 2001, 4154, 212–222. [Google Scholar] [CrossRef]
- Edwards, A. Applications of Satellite and Airborne Image Data to Coastal Management; UNESCO: Paris, France, 1999. [Google Scholar]
- Maritorena, S. Remote Sensing of the Water Attenuation in Coral Reefs: A Case Study in French Polynesia. Int. J. Remote Sens. 1996, 17, 155–166. [Google Scholar] [CrossRef]
- Roy, D.P.; Borak, J.S.; Devadiga, S.; Wolfe, R.E.; Zheng, M.; Descloitres, J. The MODIS Land product quality assessment approach. Remote Sens. Environ. 2002, 83, 62–76. [Google Scholar] [CrossRef]
- Ackerman, S.A.; Strabala, K.I.; Menzel, W.P.; Frey, R.A.; Moeller, C.C.; Gumley, L.E. Discriminating clear sky from clouds with MODIS. J. Geophys. Res. 1998, 103, 32141–32157. [Google Scholar] [CrossRef]
- Manavalan, P.; Sathyanath, P.; Rajegowda, G.L. Digital image analysis techniques to estimate waterspreadfor capacity evaluations of reservoirs. Photogramm. Eng. Remote Sens. 1993, 59, 1389–1395. [Google Scholar]
- Gitelson, A.A.; Ya Kondratyev, K. Optical models of mesotrophic and eutrophic water bodies. Int. J. Remote Sens. 1991, 12, 373–385. [Google Scholar] [CrossRef]
- Chavez, P.S., Jr. Image-Based Atmospheric Corrections—Revisited and Improved. Photogramm. Eng. Remote Sens. 1996, 62, 1025–1036. [Google Scholar]
- Green, E.P.; Mumby, P.J.; Edwards, A.J.; Clark, C.D. Remote Sensing Handbook for Tropical Coastal Management; Edwards, A.J., Ed.; UNESCO: Paris, France, 2000. [Google Scholar]
- Tassan, S. Modified Lyzenga’s method for macroalgae detection in water with non-uniform composition. Int. J. Remote Sens. 1996, 17, 1601–1607. [Google Scholar] [CrossRef]
- Gordon, H.R.; Morel, A. Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery; Springer: New York, NY, USA, 1983. [Google Scholar]
- Chavez, P.S., Jr. An improved dark-object subtraction technique for atmospheric scattering correction for multispectral data. Remote Sens. Environ. 1988, 24, 459–479. [Google Scholar] [CrossRef]
- Armstrong, R.A. Remote sensing of submerged vegetation canopies for biomass estimation. Int. J. Remote Sens. 1993, 14, 621–627. [Google Scholar] [CrossRef]
- Lyzenga, D. Remote Sensing of Bottom Reflectance and Water Attenuation Parameters in Shallow Water Using Aircraft and Landsat Data. Int. J. Remote Sens. 1981, 2, 71–82. [Google Scholar] [CrossRef]
- Lyzenga, D. Passive remote sensing techniques for mapping water depth and bottom features. Appl. Opt. 1978, 17, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Paredes, J.M.; Spero, R.E. Water depth mapping from passive remote sensing data under a generalized ratio assumption. Appl. Opt. 1983, 22, 1134–1135. [Google Scholar] [CrossRef] [PubMed]
- Green, E.P.; Mumby, P.J.; Edwards, A.J.; Clark, C.D. A review of remote sensing for the assessment and management of tropical costal resources. Coast. Manag. 1996, 24, 1–40. [Google Scholar] [CrossRef]
- Gould, R.W.; Arnone, R.A., Jr.; Sydor, M. Absorption, Scattering, and Remote Sensing Reflectance Relationships in Coastal Waters: Testing a New Inversion Algorithm. J. Costal Res. 2001, 17, 328–341. [Google Scholar]
- Meyer, D.; Dimitriadou, E.; Hornik, K.; Weingessel, A.; Leisch, F. e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. Package Version 1.7-1. 2019. Available online: https://github.com/cran/e1071/blob/master/R/svm.R (accessed on 31 March 2019).
- Gapper, J.; El-Askary, H.; Linstead, E.; Piechota, T. Evaluation of Spatial Generalization Characteristics of a Robust Classifier as Applied to Coral Reef Habitats in Remote Islands of the Pacific Ocean. Remote Sens. 2018, 10, 1774. [Google Scholar] [CrossRef]
- Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2016. Available online: https://www.R-project.org/ (accessed on 15 May 2018).
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009; pp. 106–111. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning with Applications in R, 1st ed.; Springer: New York, NY, USA, 2013; pp. 337–366. [Google Scholar]
- Provost, F.; Fawcett, T. Data Science for Business What You Need to Know About Data Mining and Data-Analytic Thinking, 1st ed.; O’Reilly: Sebastopol, CA, USA, 2013; pp. 219–222. [Google Scholar]
- Presidential Proclamation 8336: Establishment of the Pacific Remote Islands Marine National Monument. Weekly Comp. Pres. Docs. 12 January 2009. Available online: www.presidentialdocuments.gov (accessed on 4 April 2019).
Site | Ground Truth Observation Period | Landsat 8 Image Capture Date | Difference |
---|---|---|---|
Palmyra Atoll | 4/15/15–4/22/15 | 5/27/15 | <2 months |
Kingman Reef | 4/24/15–4/28/15 | 5/27/15 | <2 months |
Baker Island Atoll | 2/8/15–2/11/15 | 8/20/14 | <6 months |
Howland Island | 2/3/15–2/7/15 | 1/18/15 | <1 month |
Site (Figure 1) | Path/Row | Site | Latitude-Longitude | Final State Scene Capture Date | Initial State Scene Capture Date | Area of Interest Size | Number of Ground Truth Observations |
---|---|---|---|---|---|---|---|
1 | 065/056 | Palmyra Atoll | 5°52′N 162°6′W | 5/27/2015 | 1/4/2001 | 22 × 7-km | 82 |
2 | 065/056 | Kingman Reef | 6°23′N 162°25′W | 5/27/2015 | 1/4/2001 | 19 × 11-km | 57 |
3 | 073/060 | Baker Island Atoll | 0°12′N 176°29′W | 8/20/2014 | 1/15/2002 | 9 × 8-km | 26 |
4 | 074/059 | Howland Island | 0°48′N 176°37′W | 1/18/2015 | 1/19/2001 | 5 × 5-km | 30 |
5 | 063/057 | Tabuaeran Island | 3°51′N 159°21′W | 2/3/2014 | 8/31/2000 | 20 × 18-km | NA |
6 | 061/059 | Kiritimati Island | 1°40′N 158°30′W | 12/22/2014 | 10/10/2002 | 47 × 42-km | NA |
Palmyra Atoll | Kingman Reef | Baker Island Atoll | Howland Island | |
---|---|---|---|---|
Accuracy | 87.9% | 85.7% | 69.2% | 82.1% |
Precision | 0.837 | 0.824 | 0.706 | 0.813 |
Recall | 1.000 | 1.000 | 0.800 | 0.867 |
Specificity | 0.680 | 0.571 | 0.546 | 0.769 |
F-measure | 0.911 | 0.903 | 0.750 | 0.839 |
Ground Truth Labels | |||
---|---|---|---|
Coral | Not Coral | ||
Predicted Class | Palmyra Atoll | ||
Coral | 41 | 8 | |
Not Coral | 0 | 17 | |
Kingman Reef | |||
Coral | 28 | 6 | |
Not Coral | 0 | 8 | |
Baker Island Atoll | |||
Coral | 12 | 5 | |
Not Coral | 3 | 6 | |
Howland Island | |||
Coral | 13 | 3 | |
Not Coral | 2 | 10 | |
Consolidated Sites | |||
Coral | 91 | 32 | |
Not Coral | 8 | 31 |
Palmyra Atoll | Kingman Reef | Baker Island Atoll | Howland Island | Consolidated Sites | |
---|---|---|---|---|---|
Accuracy | 78.8% | 81.0% | 65.4% | 67.9% | 75.3% |
Precision | 0.776 | 0.813 | 0.625 | 0.750 | 0.740 |
Recall | 0.927 | 0.929 | 1.000 | 0.600 | 0.919 |
Specificity | 0.560 | 0.571 | 0.182 | 0.769 | 0.492 |
F-measure | 0.844 | 0.867 | 0.769 | 0.667 | 0.820 |
Initial Class (Pixel Count) | Initial Class | ||||
---|---|---|---|---|---|
Coral | Not Coral | Coral | Not Coral | ||
Final Class | Palmyra Atoll | Palmyra Atoll | |||
Coral | 14,242 | 2168 | 12.82 | 1.95 | |
Not Coral | 9850 | 19,395 | 8.87 | 17.46 | |
Kingman Reef | Kingman Reef | ||||
Coral | 23,642 | 1218 | 21.28 | 1.10 | |
Not Coral | 9652 | 4627 | 8.69 | 4.16 | |
Baker Island Atoll | Baker Island Atoll | ||||
Coral | 154 | 126 | 0.14 | 0.11 | |
Not Coral | 311 | 1520 | 0.28 | 1.37 | |
Howland Island | Howland Island | ||||
Coral | 94 | 94 | 0.08 | 0.08 | |
Not Coral | 158 | 828 | 0.14 | 0.75 | |
Tabuaeran Island | Tabuaeran Island | ||||
Coral | 1544 | 1754 | 1.39 | 1.58 | |
Not Coral | 3545 | 87,888 | 3.19 | 79.10 | |
Kiritimati Island | Kiritimati Island | ||||
Coral | 13,290 | 3514 | 11.96 | 3.16 | |
Not Coral | 16,013 | 120,105 | 14.41 | 108.53 |
Palmyra Atoll | Kingman Reef | Baker Island Atoll | Howland Island | Consolidated Sites | |
---|---|---|---|---|---|
LASSO Regression | 67.7% | 68.3% | 56.0% | 51.9% | 64.6% |
Ridge Regression | 67.7% | 68.3% | 56.0% | 51.9% | 64.6% |
Logistic Regression | 78.5% | 82.3% | 61.5% | 71.4% | 72.7% |
QDA | 76.9% | 78.0% | 61.5% | 64.3% | 73.3% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gapper, J.J.; El-Askary, H.; Linstead, E.; Piechota, T. Coral Reef Change Detection in Remote Pacific Islands Using Support Vector Machine Classifiers. Remote Sens. 2019, 11, 1525. https://doi.org/10.3390/rs11131525
Gapper JJ, El-Askary H, Linstead E, Piechota T. Coral Reef Change Detection in Remote Pacific Islands Using Support Vector Machine Classifiers. Remote Sensing. 2019; 11(13):1525. https://doi.org/10.3390/rs11131525
Chicago/Turabian StyleGapper, Justin J., Hesham El-Askary, Erik Linstead, and Thomas Piechota. 2019. "Coral Reef Change Detection in Remote Pacific Islands Using Support Vector Machine Classifiers" Remote Sensing 11, no. 13: 1525. https://doi.org/10.3390/rs11131525
APA StyleGapper, J. J., El-Askary, H., Linstead, E., & Piechota, T. (2019). Coral Reef Change Detection in Remote Pacific Islands Using Support Vector Machine Classifiers. Remote Sensing, 11(13), 1525. https://doi.org/10.3390/rs11131525