Change Detection in Coral Reef Environment Using High-Resolution Images: Comparison of Object-Based and Pixel-Based Paradigms
<p>Four coral reef study sites: (<b>a</b>,<b>b</b>) QuickBird satellite images of Taiping Island and Zhongye Island (Bands 3, 2, and 1 in RGB); (<b>c</b>,<b>d</b>) WorldView-2 satellite images of Barque Canada Reef (Bands 5, 3, and 2 in RGB), where red rectangles indicate the two study sites in Barque Canada reef.</p> "> Figure 2
<p>Schematic of the procedures implemented in coral reef change detection using the pixel-based change detection (PBCD) and object-based change detection (OBCD) methods and the comparison of their results.</p> "> Figure 3
<p>Rate of change of local variance (ROC-LV) curve of multiresolution segmentation of Zhongye Island images.</p> "> Figure 4
<p>Change detection maps and reference maps of Zhongye Island and Taiping Island.</p> "> Figure 5
<p>Change detection maps and reference maps of the two study sites on Barque Canada Reef.</p> "> Figure 6
<p>Overall accuracy and Kappa coefficients of the PBCD and OBCD results of the four study sites.</p> "> Figure 7
<p>The impact of registration error on PBCD and OBCD change detection methods. (Pixels between neighboring segments were marked by red circle in PBCD change detection maps).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Set and Image Preprocessing
2.3. Object-Based Coral Reef Change Detection
2.3.1. Multi-Temporal Segmentation
2.3.2. Object Feature Selection and Calculation
2.3.3. Sampling Changed Objects
2.3.4. Recognizing Changed Objects Using the RF Algorithm
2.4. Pixel-Based Coral Reef Change Detection
2.5. Accuracy Assessment and Statistical Comparisons
2.5.1. Confusion Matrix Based on Pixel Number, Object Number, and Object Area
2.5.2. Statistical Hypothesis Test for PBCD and OBCD Accuracy Assessment
3. Results
3.1. Visual Examination of PBCD and OBCD Maps
3.1.1. An Observation of PBCD Maps
3.1.2. An Observation of OBCD Maps
3.2. Quantitative Evaluations of PBCD and OBCD Performances
3.2.1. PBCD and OBCD Accuracy Assessment
3.2.2. Z-Test Results of the Accuracy Assessment
4. Discussion
4.1. Pros and Cons of the Proposed OBCD Method
4.2. The Superiority of the OBCD Method to the PBCD Method
4.3. Application of PBCD and OBCD Methods in Multiple Coral Reef Study Areas
4.4. Object-Number-Based and Object-Area-Based Accuracy Assessment
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Zhongye Island | ||||
Types | Area in 2005 (m2) | Proportion in 2005 (%) | Area in 2010 (m2) | Proportion in 2010 (%) |
Buildings and infrastructures | 154,819.86 | 24.85 | 145,485.35 | 23.35 |
Ocean | 237,918.29 | 38.18 | 237,576.74 | 38.13 |
Bare land | 35,529.86 | 5.70 | 35,064.84 | 5.63 |
Beach | 20,092.13 | 3.22 | 26,716.40 | 4.29 |
Vegetation | 174,709.09 | 28.04 | 178,225.91 | 28.60 |
Sum | 623,069.23 | 100.00 | 623,069.23 | 100.00 |
Taiping Island | ||||
Types | Area in 2004 (m2) | Proportion in 2004 (%) | Area in 2010 (m2) | Proportion in 2010 (%) |
Buildings and infrastructures | 67,932.38 | 9.17 | 127,455.08 | 17.20 |
Ocean | 323,486.86 | 43.65 | 313,509.64 | 42.31 |
Bare land | 34,235.36 | 4.62 | 42,485.03 | 5.73 |
Beach | 37,762.43 | 5.10 | 50,523.22 | 6.82 |
Vegetation | 277,608.10 | 37.46 | 207,052.17 | 27.94 |
Sum | 741,025.13 | 100.00 | 741,025.13 | 100.00 |
Barque Canada Reef Site 1 | ||||
Types | Area in 2013 (m2) | Proportion in 2013 (%) | Area in 2015 (m2) | Proportion in 2015 (%) |
Algae-dominated | 117,799.30 | 5.23 | 316,069.08 | 14.04 |
Lagoon | 235,411.50 | 10.46 | 7519.96 | 0.33 |
Ocean | 462,830.44 | 20.56 | 220,900.08 | 9.81 |
Coral-dominated | 270,640.08 | 12.02 | 241,113.99 | 10.71 |
Sand | 400,262.34 | 17.78 | 485,582.71 | 21.57 |
Rubble-dominated | 763,992.35 | 33.94 | 225,862.78 | 10.03 |
Aquatic vegetation | — | — | 753,887.39 | 33.49 |
Sum | 2,250,936.00 | 100.00 | 2,250,936.00 | 100.00 |
Barque Canada Reef Site 2 | ||||
Types | Area in 2013 (m2) | Proportion in 2013 (%) | Area in 2015 (m2) | Proportion in 2015 (%) |
Algae-dominated | 11679.00 | 0.36 | 33,324.13 | 1.03 |
Ocean | 715,696.91 | 22.03 | 720,942.45 | 22.19 |
Coral-dominated | 551,229.00 | 16.97 | 500,371.97 | 15.40 |
Rubble-dominated | 868,028.67 | 26.72 | 892,846.00 | 27.48 |
Sand | 1,102,457.99 | 33.93 | 1,000,743.93 | 30.80 |
Aquatic vegetation | — | — | 100,863.09 | 3.10 |
Sum | 3,249,091.57 | 100.00 | 3,249,091.57 | 100.00 |
Change Categories | Zhongye Island | Taiping Island | ||
---|---|---|---|---|
Area (m2) | Proportion (%) | Area (m2) | Proportion (%) | |
Coastal accretion | 13,485.46 | 2.16 | 16,761.46 | 2.26 |
No change | 517,984.69 | 83.13 | 577,412.20 | 77.92 |
Others | 1490.03 | 0.24 | 36,902.00 | 4.98 |
Sea level rise or coastal erosion | 5327.20 | 0.85 | 2813.15 | 0.38 |
Vegetation deterioration | 39,262.32 | 6.30 | 81,149.28 | 10.95 |
Vegetation growth or plantation | 45,519.53 | 7.31 | 25,987.05 | 3.51 |
Sum | 623,069.23 | 100.00 | 741,025.13 | 100.00 |
Change Categories | Barque Canada Reef Site 1 | Barque Canada Reef Site 2 | ||
---|---|---|---|---|
Area (m2) | Proportion (%) | Area (m2) | Proportion (%) | |
Algae growth | 73,015.26 | 3.24% | 21,655.81 | 0.67 |
Aquatic vegetation growth | 7475.63 | 0.33% | 100,852.41 | 3.10 |
Reef sediments extension | 20,314.33 | 0.90% | 30,428.52 | 0.94 |
Algae degradation | 8006.50 | 0.36% | — | — |
No change | 2,141,469.54 | 95.16% | 3,096,154.87 | 95.29 |
Sum | 2,250,281.25 | 100.00% | 3,249,091.60 | 100.00 |
Change Categories | Zhongye Island | Taiping Island | ||
---|---|---|---|---|
Training | Validation | Training | Validation | |
Coastal accretion | 17 | 39 | 28 | 66 |
No change | 1023 | 2386 | 684 | 1596 |
Others | 2 | 5 | 52 | 121 |
Sea level rise or coastal erosion | 11 | 26 | 5 | 12 |
Vegetation deterioration | 21 | 48 | 100 | 234 |
Vegetation growth or plantation | 28 | 65 | 33 | 76 |
Sum | 1101 | 2569 | 902 | 2105 |
Change Categories | Barque Canada Reef Site 1 | Barque Canada Reef Site 2 | ||
---|---|---|---|---|
Training | Validation | Training | Validation | |
Algae growth | 103 | 240 | 40 | 93 |
Aquatic vegetation growth | 7 | 16 | 128 | 299 |
Reef sediments extension | 30 | 71 | 69 | 161 |
Algae degradation | 8 | 18 | — | — |
No change | 2695 | 6290 | 3199 | 7466 |
Sum | 2843 | 6635 | 3436 | 8019 |
Change Categories | Zhongye Island | Taiping Island | ||
---|---|---|---|---|
Training | Validation | Training | Validation | |
Coastal accretion | 453 | 1058 | 1241 | 2895 |
No change | 9828 | 22,933 | 13,218 | 30,843 |
Others | 72 | 169 | 357 | 834 |
Sea level rise or coastal erosion | 191 | 446 | 1376 | 3211 |
Vegetation deterioration | 765 | 1784 | 3111 | 7259 |
Vegetation growth or plantation | 1373 | 3203 | 1650 | 3850 |
Sum | 12,683 | 29,593 | 20,954 | 48,892 |
Change Categories | Barque Canada Reef Site 1 | Barque Canada Reef Site 2 | ||
---|---|---|---|---|
Training | Validation | Training | Validation | |
Algae growth | 6518 | 15,209 | 1725 | 4025 |
Aquatic vegetation growth | 471 | 1098 | 4404 | 10,277 |
Reef sediments extension | 1814 | 4233 | 2407 | 5616 |
Algae degradation | 645 | 1506 | — | — |
No change | 128,840 | 300,626 | 129,200 | 301,466 |
Sum | 138,288 | 322,672 | 137,736 | 321,384 |
References
- Moberg, F.; Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 1999, 29, 215–233. [Google Scholar] [CrossRef]
- Reaka-Kudla, M.L. The global biodiversity of coral reefs: A comparison with rain forests. In Biodiversity II: Understanding & Protecting Our Biological Resource, 2nd ed.; Reaka-Kudla, M.L., Wilson, D.E., Wilson, E.O., Eds.; Joseph Henry/National Academy Press: Washington, DC, USA, 1997; pp. 83–108. [Google Scholar]
- Folke, C. Confronting the coral reef crisis. Nature 2004, 429, 827. [Google Scholar]
- Burke, L.M.; Reytar, K.; Spalding, M.; Perry, A.L. Reefs at risk revisited. Ethics Medics 2011, 22, 2008–2010. [Google Scholar]
- McCarthy, M.J.; Colna, K.E.; El-Mezayen, M.M.; Laureano-Rosario, A.E.; Mendez-Lazaro, P.; Otis, D.B.; Toro-Farmer, G.; Vega-Rodriguez, M.; Muller-Karger, F.E. Satellite remote sensing for coastal management: A review of successful applications. Environ. Manag. 2017, 60, 323–339. [Google Scholar] [CrossRef] [PubMed]
- Yamano, H.; Tamura, M. Detection limits of coral reef bleaching by satellite remote sensing: Simulation and data analysis. Remote Sens. Environ. 2004, 90, 86–103. [Google Scholar] [CrossRef]
- Palandro, D.A.; Andréfouët, S.; Hu, C.; Hallock, P.; Müller-Karger, F.E.; Dustan, P.; Callahan, M.K.; Kranenburg, C.; Beaver, C.R. Quantification of two decades of shallow-water coral reef habitat decline in the florida keys national marine sanctuary using landsat data (1984–2002). Remote Sens. Environ. 2008, 112, 3388–3399. [Google Scholar] [CrossRef]
- El-Askary, H.; Abd El-Mawla, S.H.; Li, J.; El-Hattab, M.M.; El-Raey, M. Change detection of coral reef habitat using landsat-5 TM, Landsat 7 ETM+ and Landsat 8 OLI data in the red sea (Hurghada, Egypt). Int. J. Remote Sens. 2014, 35, 2327–2346. [Google Scholar]
- Mumby, P.J.; Green, E.P.; Edwards, A.J.; Clark, C.D. The cost-effectiveness of remote sensing for tropical coastal resources assessment and management. J. Environ. Manag. 1999, 55, 157–166. [Google Scholar] [CrossRef]
- Scopélitis, J.; Andréfouët, S.; Phinn, S.; Done, T.; Chabanet, P. Coral colonisation of a shallow reef flat in response to rising sea level: Quantification from 35-years of remote sensing data at Heron Island, Australia. Coral Reefs 2011, 30, 951–965. [Google Scholar] [CrossRef]
- Mumby, P.J.; Edwards, A.J. Mapping marine environments with ikonos imagery: Enhanced spatial resolution can deliver greater thematic accuracy. Remote Sens. Environ. 2002, 82, 248–257. [Google Scholar] [CrossRef]
- Chen, G.; Hay, G.J.; Carvalho, L.M.T.; Wulder, M.A. Object-based change detection. Int. J. Remote Sens. 2012, 33, 4434–4457. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Zhang, C. Multiscale quantification of urban composition from EO-1/hyperion data using object-based spectral unmixing. Int. J. Appl. Earth Obs. Geoinf. 2016, 47, 153–162. [Google Scholar] [CrossRef]
- Cheng, L.; Pian, Y.; Chen, Z.; Jiang, P.; Liu, Y.; Chen, G.; Du, P.; Li, M. Hierarchical filtering strategy for registration of remote sensing images of coral reefs. IEEE J.-Stars 2016, 9, 3304–3313. [Google Scholar] [CrossRef]
- Leon, J.; Woodroffe, C.D. Improving the synoptic mapping of coral reef geomorphology using object-based image analysis. Int. J. Geogr. Inf. Sci. 2011, 25, 949–969. [Google Scholar] [CrossRef]
- Phinn, S.R.; Roelfsema, C.M.; Mumby, P.J. Multi-scale, object-based image analysis for mapping geomorphic and ecological zones on coral reefs. Int. J. Remote Sens. 2012, 33, 3768–3797. [Google Scholar] [CrossRef]
- Roelfsema, C.; Phinn, S.; Jupiter, S.; Comley, J.; Albert, S. Mapping coral reefs at reef to reef-system scales, 10s–1000s km2, using object-based image analysis. Int. J. Remote Sens. 2013, 34, 6367–6388. [Google Scholar] [CrossRef]
- Desclée, B.; Bogaert, P.; Defourny, P. Forest change detection by statistical object-based method. Remote Sens. Environ. 2006, 102, 1–11. [Google Scholar] [CrossRef]
- Stow, D.A. Reducing the effects of misregistration on pixel-level change detection. Int. J. Remote Sens. 1999, 20, 2477–2483. [Google Scholar] [CrossRef]
- Chen, G.; Zhao, K.; Powers, R. Assessment of the image misregistration effects on object-based change detection. ISPRS J. Photogramm. Remote Sens. 2014, 87, 19–27. [Google Scholar] [CrossRef]
- Stow, D. Geographic object-based image change analysis. In Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications; Fischer, M.M., Getis, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 565–582. [Google Scholar]
- Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [Google Scholar] [CrossRef]
- Bontemps, S.; Bogaert, P.; Titeux, N.; Defourny, P. An object-based change detection method accounting for temporal dependences in time series with medium to coarse spatial resolution. Remote Sens. Environ. 2008, 112, 3181–3191. [Google Scholar] [CrossRef]
- Niemeyer, I.; Marpu, P.R.; Nussbaum, S. Change Detection Using Object Features; Springer: Berlin/Heidelberg, Germany, 2008; pp. 185–201. [Google Scholar]
- Lu, D.; Li, G.; Moran, E. Current situation and needs of change detection techniques. Int. J. Image Data Fusion 2014, 5, 13–38. [Google Scholar] [CrossRef]
- Weih, R.C.; Riggan, N.D. Object-based classification vs. Pixel-based classification: Comparitive importance of multi-resolution imagery. In Proceedings of the GEOBIA 2010: Geographic Object-Based Image Analysis, Ghent, Belgium, 29 June–2 July 2010; p. 6. [Google Scholar]
- Dingle Robertson, L.; King, D.J. Comparison of pixel- and object-based classification in land cover change mapping. Int. J. Remote Sens. 2011, 32, 1505–1529. [Google Scholar] [CrossRef]
- Mafanya, M.; Tsele, P.; Botai, J.; Manyama, P.; Swart, B.; Monate, T. Evaluating pixel and object based image classification techniques for mapping plant invasions from uav derived aerial imagery: Harrisia pomanensis as a case study. ISPRS J. Photogramm. Remote Sens. 2017, 129, 1–11. [Google Scholar] [CrossRef]
- Benfield, S.L.; Guzman, H.M.; Mair, J.M.; Young, J.A.T. Mapping the distribution of coral reefs and associated sublittoral habitats in pacific panama: A comparison of optical satellite sensors and classification methodologies. Int. J. Remote Sens. 2007, 28, 5047–5070. [Google Scholar] [CrossRef]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012, 118, 259–272. [Google Scholar] [CrossRef]
- Huang, D.; Licuanan, W.Y.; Hoeksema, B.W.; Chen, C.A.; Ang, P.O.; Huang, H.; Lane, D.J.W.; Vo, S.T.; Waheed, Z.; Affendi, Y.A.; et al. Extraordinary diversity of reef corals in the south China sea. Mar. Biodivers. 2015, 45, 157–168. [Google Scholar] [CrossRef]
- Morton, B.; Blackmore, G. South China sea. Mar. Pollut. Bull. 2001, 42, 1236–1263. [Google Scholar] [CrossRef]
- Cooley, T.; Anderson, G.P.; Felde, G.W.; Hoke, M.L.; Ratkowski, A.J.; Chetwynd, J.H.; Gardner, J.A.; Adler-Golden, S.M.; Matthew, M.W.; Berk, A.; et al. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; pp. 1414–1418. [Google Scholar]
- ITT Visual Information Solutions. FLAASH Module. In Atmospheric Correction Module: QUAC and FLAASH User’s Guide; Version 4.7; ITT Visual Information Solutions: Boulder, CO, USA, 2009; p. 44. [Google Scholar]
- Aiazzi, B.; Baronti, S.; Selva, M.; Alparone, L. Enhanced gram-schmidt spectral sharpening based on multivariate regression of MS and Pan data. In Proceedings of the 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 31 July–4 August 2006; pp. 3806–3809. [Google Scholar]
- Lyzenga, D.R. Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and landsat data. Int. J. Remote Sens. 1981, 2, 71–82. [Google Scholar] [CrossRef]
- Andréfouët, S. Coral reef habitat mapping using remote sensing: A user vs producer perspective. Implications for research, management and capacity building. J. Spat. Sci. 2008, 53, 113–129. [Google Scholar] [CrossRef]
- Mumby, P.J.; Green, E.P.; Edwards, A.J.; Clark, C.D. Coral reef habitat mapping: How much detail can remote sensing provide? Mar. Biol. 1997, 130, 193–202. [Google Scholar] [CrossRef]
- Neubert, M.; Herold, H.; Meinel, G. Evaluation of remote sensing image segmentation quality–further results and concepts. In Proceedings of the 1 St International Conference on Object-based Image Analysis, Gvttingen, Germany, 7–8 October 2005. [Google Scholar]
- Baatz, M.; Schäpe, A. An optimization approach for high quality multi-scale image segmentation. In Proceedings of the Beiträge zum AGIT-Symposium, Salzburg, Germany, 3–5 July 2000; pp. 12–23. [Google Scholar]
- Woodcock, C.E.; Strahler, A.H. The factor of scale in remote sensing. Remote Sens. Environ. 1987, 21, 311–332. [Google Scholar] [CrossRef]
- Drăguţ, L.; Csillik, O.; Eisank, C.; Tiede, D. Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS J. Photogramm. Remote Sens. 2014, 88, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Drǎguţ, L.; Tiede, D.; Levick, S.R. Esp: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [Google Scholar] [CrossRef]
- Bontemps, S.; Langner, A.; Defourny, P. Monitoring forest changes in borneo on a yearly basis by an object-based change detection algorithm using SPOT-vegetation time series. Int. J. Remote Sens. 2012, 33, 4673–4699. [Google Scholar] [CrossRef]
- Lillesand, T.M.; Kiefer, R.W. Remote Sensing and Image Interpretation; John Wiley and Sons: New York, NY, USA, 2008. [Google Scholar]
- Boulila, W.; Farah, I.R.; Ettabaa, K.S.; Solaiman, B.; Ghézala, H.B. A data mining based approach to predict spatiotemporal changes in satellite images. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 386–395. [Google Scholar] [CrossRef]
- Volpi, M.; Tuia, D.; Bovolo, F.; Kanevski, M.; Bruzzone, L. Supervised change detection in VHR images using contextual information and support vector machines. Int. J. Appl. Earth Obs. 2013, 20, 77–85. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- McFeeters, S.K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, smc-3, 610–621. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chan, J.C.-W.; Paelinckx, D. Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens. Environ. 2008, 112, 2999–3011. [Google Scholar] [CrossRef]
- Immitzer, M.; Atzberger, C.; Koukal, T. Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data. Remote. Sens. 2012, 4, 2661. [Google Scholar] [CrossRef]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random forests for land cover classification. Pattern Recogn. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Khatami, R.; Mountrakis, G.; Stehman, S.V. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sens. Environ. 2016, 177, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Joshi, P.K. A comparison of selected classification algorithms for mapping bamboo patches in lower gangetic plains using very high resolution WorldView 2 imagery. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 298–311. [Google Scholar] [CrossRef]
- Dalponte, M.; Ørka, H.O.; Gobakken, T.; Gianelle, D.; Næsset, E. Tree species classification in boreal forests with hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2632–2645. [Google Scholar] [CrossRef]
- Sesnie, S.E.; Finegan, B.; Gessler, P.E.; Thessler, S.; Ramos Bendana, Z.; Smith, A.M.S. The multispectral separability of costa rican rainforest types with support vector machines and random forest decision trees. Int. J. Remote Sens. 2010, 31, 2885–2909. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Mandianpari, M.; Salehi, B.; Mohammadimanesh, F.; Motagh, M. Random forest wetland classification using ALOS-2 L-band, RADARSAT-2 C-band, and TerraSAR-X imagery. ISPRS J. Photogramm. Remote Sens. 2017, 130, 13–31. [Google Scholar] [CrossRef]
- Li, M.; Ma, L.; Blaschke, T.; Cheng, L.; Tiede, D. A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 87–98. [Google Scholar] [CrossRef]
- Ma, L.; Fu, T.; Blaschke, T.; Li, M.; Tiede, D.; Zhou, Z.; Ma, X.; Chen, D. Evaluation of feature selection methods for object-based land cover mapping of unmanned aerial vehicle imagery using random forest and support vector machine classifiers. ISPRS Int. J. Geo-Inf. 2017, 6, 51. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomforest. R News 2002, 2, 18–20. [Google Scholar]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Laliberte, A.S.; Rango, A. Texture and scale in object-based analysis of subdecimeter resolution unmanned aerial vehicle (UAV) imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 761–770. [Google Scholar] [CrossRef]
- Schöpfer, E.; Lang, S.; Albrecht, F. Object-Fate Analysis—Spatial Relationships for the Assessment of Object Transition and Correspondence; Springer: Berlin/Heidelberg, Germany, 2008; pp. 785–801. [Google Scholar]
- Freire, S.; Santos, T.; Navarro, A.; Soares, F.; Silva, J.D.; Afonso, N.; Fonseca, A.; Tenedório, J. Introducing mapping standards in the quality assessment of buildings extracted from very high resolution satellite imagery. ISPRS J. Photogramm. Remote Sens. 2014, 90, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Whiteside, T.G.; Maier, S.W.; Boggs, G.S. Area-based and location-based validation of classified image objects. Int. J. Appl. Earth Obs. 2014, 28, 117–130. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data—Principles and Practices, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009; p. 183. [Google Scholar]
- Tewkesbury, A.P.; Comber, A.J.; Tate, N.J.; Lamb, A.; Fisher, P.F. A critical synthesis of remotely sensed optical image change detection techniques. Remote Sens. Environ. 2015, 160, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Green, E.P.; Edwards, A.J. Remote Sensing Handbook for Tropical Coastal Management; UNESCO: Paris, France, 2000; pp. 141–154. [Google Scholar]
- Hansen, M.C.; Defries, R.S.; Townshend, J.R.G.; Sohlberg, R. Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [Google Scholar] [CrossRef] [Green Version]
- Chegoonian, A.M.; Mokhtarzade, M.; Valadan Zoej, M.J. A comprehensive evaluation of classification algorithms for coral reef habitat mapping: Challenges related to quantity, quality, and impurity of training samples. Int. J. Remote Sens. 2017, 38, 4224–4243. [Google Scholar] [CrossRef]
- Cleve, C.; Kelly, M.; Kearns, F.R.; Moritz, M. Classification of the wildland-urban interface: A comparison of pixel- and object-based classifications using high-resolution aerial photography. Comput. Environ. Urban Syst. 2008, 32, 317–326. [Google Scholar] [CrossRef]
- Hamylton, S.M.; Puotinen, M. A meta-analysis of reef island response to environmental change on the great barrier reef. Earth Surf. Process. Landf. 2015, 40, 1006–1016. [Google Scholar] [CrossRef]
- Webb, A.P.; Kench, P.S. The dynamic response of reef islands to sea-level rise: Evidence from multi-decadal analysis of island change in the central Pacific. Glob. Planet. Chang. 2010, 72, 234–246. [Google Scholar] [CrossRef]
- Kayanne, H.; Aoki, K.; Suzuki, T.; Hongo, C.; Yamano, H.; Ide, Y.; Iwatsuka, Y.; Takahashi, K.; Katayama, H.; Sekimoto, T.; et al. Eco-geomorphic processes that maintain a small coral reef island: Ballast Island in the Ryukyu Islands, Japan. Geomorphology 2016, 271, 84–93. [Google Scholar] [CrossRef]
- Ford, M. Shoreline changes interpreted from multi-temporal aerial photographs and high resolution satellite images: Wotje atoll, marshall islands. Remote Sens. Environ. 2013, 135, 130–140. [Google Scholar] [CrossRef]
- Karpouzli, E.; Malthus, T.J.; Place, C.J. Hyperspectral discrimination of coral reef benthic communities in the western caribbean. Coral Reefs 2004, 23, 141–151. [Google Scholar] [CrossRef]
- Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. Object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 2011, 115, 1145–1161. [Google Scholar] [CrossRef]
Parameter | Zhongye Island | Taiping Island | Barque Canada Reef |
---|---|---|---|
Data | 22 April 2005 | 14 April 2004 | 20 May 2013 |
8 June 2010 | 20 February 2010 | 24 July 2015 | |
Sensor | QuickBird | QuickBird | WorldView-2 |
Spatial resolution (m) | MS 1: 2.4 | MS: 2.4 | MS: 2.0 |
PAN 2: 0.6 | PAN: 0.6 | PAN: 0.5 | |
Spectral band (μm) | Blue: 0.45–0.52 Green: 0.52–0.60 Red: 0.63–0.69 Near IR: 0.76–0.90 | Blue: 0.45–0.52 Green: 0.52–0.60 Red: 0.63–0.69 Near IR: 0.76–0.90 | Coastal: 0.400–0.450 |
Blue: 0.450–0.510 | |||
Green: 0.510–0.580 | |||
Yellow: 0.585–0.625 | |||
Red: 0.630–0.690 | |||
Red Edge: 0.705–0.745 | |||
NIR1: 0.770–0.895 | |||
NIR2: 0.860–1.040 |
Surface Type in Time 1 | Surface Type in Time 2 | Change Category |
---|---|---|
Vegetation | Buildings and infrastructures | Vegetation deterioration |
Bare land | ||
Beach | ||
Ocean | Sea level rise or coastal erosion | |
Beach | Buildings and infrastructures | Others |
Ocean | Sea level rise or coastal erosion | |
Vegetation | vegetation growth or plantation | |
Ocean | Buildings and infrastructures | Others |
Beach | Coastal accretion | |
Vegetation | Vegetation growth or plantation | |
Buildings and infrastructures | Vegetation | Vegetation growth or plantation |
Bare land | Others | |
Bare land | Beach | Coastal accretion |
Ocean | Sea level rise or coastal erosion | |
Vegetation | Vegetation growth or plantation | |
Buildings and infrastructures | Others |
Habitat Type in Time 1 | Habitat Type in Time 2 | Change Category |
---|---|---|
Sand | Algae-dominated | Algae growth |
Sand | Aquatic vegetation | Aquatic vegetation growth |
Rubble-dominated | Coral-dominated | Reef sediments extension |
Algae-dominated | Sand | Algae degradation |
Zhongye Island | Reference | ||||||
---|---|---|---|---|---|---|---|
Pixel Number | Coastal Accretion | No Change | Others | Sea Level Rise or Coastal Erosion | Vegetation Deterioration | Vegetation Growth or Plantation | Total |
Coastal accretion | 768 | 423 | 27 | 0 | 119 | 14 | 1351 |
No change | 84 | 17,882 | 42 | 18 | 311 | 821 | 19,158 |
Others | 52 | 1499 | 55 | 3 | 108 | 157 | 1874 |
Sea level rise or coastal erosion | 55 | 272 | 5 | 416 | 62 | 0 | 810 |
Vegetation deterioration | 66 | 1305 | 15 | 3 | 1113 | 46 | 2548 |
Vegetation growth or plantation | 33 | 1552 | 25 | 6 | 71 | 2165 | 3852 |
Total | 1058 | 22,933 | 169 | 446 | 1784 | 3203 | 29,593 |
PA (%) | 72.6 | 78 | 32.5 | 93.3 | 62.4 | 67.6 | |
UA (%) | 56.9 | 93.3 | 2.9 | 51.4 | 43.7 | 56.2 | |
Object Number | Coastal Accretion | No change | Others | Sea level rise or Coastal Erosion | Vegetation Deterioration | Vegetation Growth or Plantation | Total |
Coastal accretion | 28 | 56 | 0 | 0 | 1 | 0 | 85 |
No change | 10 | 2193 | 4 | 2 | 11 | 15 | 2235 |
Others | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Sea level rise or coastal erosion | 0 | 11 | 0 | 24 | 0 | 0 | 35 |
Vegetation deterioration | 1 | 28 | 1 | 0 | 36 | 0 | 66 |
Vegetation growth or plantation | 0 | 98 | 0 | 0 | 0 | 50 | 148 |
Total | 39 | 2386 | 5 | 26 | 48 | 65 | 2569 |
PA (%) | 71.8 | 91.9 | 0 | 92.3 | 75 | 76.9 | |
UA (%) | 32.9 | 98.1 | 0 | 68.6 | 54.6 | 33.8 | |
Object Area (m2) | Coastal Accretion | No Change | Others | Sea level Rise or Coastal Erosion | Vegetation Deterioration | Vegetation Growth or Plantation | Total |
Coastal accretion | 5598.2 | 5030.4 | 40.1 | 1.0 | 339.0 | 171.2 | 11,179.9 |
No change | 1575.5 | 548,933.2 | 474.1 | 465.3 | 6150.1 | 7051.3 | 564,649.3 |
Others | 2.1 | 162.3 | 904.0 | 0.0 | 57.5 | 38.4 | 1164.3 |
Sea level rise or coastal erosion | 107.8 | 1162.9 | 2.4 | 4866.3 | 21.0 | 0.0 | 6160.4 |
Vegetation deterioration | 75.4 | 5054.5 | 29.6 | 0.0 | 9404.8 | 71.9 | 14,636.2 |
Vegetation growth or plantation | 175.9 | 13,293.7 | 129.7 | 0.0 | 180.1 | 12,129.0 | 25,908.3 |
Total | 7534.8 | 573,636.9 | 1580.0 | 5332.5 | 16,152.5 | 19,461.8 | 623,698.4 |
PA (%) | 74.3 | 95.7 | 57.2 | 91.3 | 58.2 | 62.3 | |
UA (%) | 50.1 | 97.2 | 77.6 | 79 | 64.3 | 46.8 |
Taiping Island | Reference | ||||||
---|---|---|---|---|---|---|---|
Pixel Number | Coastal Accretion | No Change | Others | Sea Level Rise or Coastal Erosion | Vegetation Deterioration | Vegetation Growth or Plantation | Total |
Coastal accretion | 2552 | 1159 | 284 | 3 | 410 | 53 | 4461 |
No change | 153 | 21,155 | 453 | 26 | 1092 | 538 | 23,417 |
Others | 76 | 724 | 1188 | 5 | 747 | 27 | 2767 |
Sea level rise or coastal erosion | 24 | 759 | 200 | 708 | 237 | 131 | 2059 |
Vegetation deterioration | 49 | 2423 | 461 | 36 | 4435 | 80 | 7484 |
Vegetation growth or plantation | 41 | 4623 | 625 | 56 | 338 | 3021 | 8704 |
Total | 2895 | 30,843 | 3211 | 834 | 7259 | 3850 | 48,892 |
PA (%) | 88.2 | 68.6 | 37 | 84.9 | 61.1 | 78.5 | |
UA (%) | 57.2 | 90.3 | 42.9 | 34.4 | 59.3 | 34.7 | |
Object Number | Coastal Accretion | No Change | Others | Sea Level Rise or Coastal Erosion | Vegetation Deterioration | Vegetation Growth or Plantation | Total |
Coastal accretion | 60 | 37 | 6 | 0 | 0 | 0 | 103 |
No change | 5 | 1479 | 45 | 4 | 48 | 33 | 1614 |
Others | 0 | 5 | 30 | 2 | 7 | 0 | 44 |
Sea level rise or coastal erosion | 0 | 3 | 0 | 5 | 0 | 0 | 8 |
Vegetation deterioration | 1 | 34 | 39 | 1 | 179 | 1 | 255 |
Vegetation growth or plantation | 0 | 38 | 1 | 0 | 0 | 42 | 81 |
Total | 66 | 1596 | 121 | 12 | 234 | 76 | 2105 |
PA (%) | 90.9 | 92.7 | 24.8 | 41.7 | 76.5 | 55.3 | |
UA (%) | 58.3 | 91.6 | 68.2 | 62.5 | 70.2 | 51.9 | |
Object Area (m2) | Coastal Accretion | No Change | Others | Sea Level Rise or Coastal Erosion | Vegetation Deterioration | Vegetation Growth or Plantation | Total |
Coastal accretion | 14,814.0 | 3941.3 | 480.3 | 4.3 | 0.0 | 14.4 | 19,254.2 |
No change | 1681.9 | 531,685.4 | 8714.4 | 647.4 | 16,714.3 | 11,431.4 | 570,874.9 |
Others | 100.1 | 2496.6 | 17,754.6 | 187.6 | 3472.3 | 476.3 | 24,487.5 |
Sea level rise or coastal erosion | 1.5 | 484.7 | 31.6 | 1791.2 | 0.1 | 0.0 | 2309.1 |
Vegetation deterioration | 103.0 | 14,283.9 | 9323.4 | 182.7 | 60,621.0 | 368.9 | 84,882.8 |
Vegetation growth or plantation | 60.9 | 6555.8 | 597.7 | 0.0 | 341.5 | 13,696.1 | 21,252.1 |
Total | 16,761.5 | 559,447.6 | 36,902.0 | 2813.2 | 81,149.3 | 25,987.1 | 723,060.5 |
PA (%) | 88.4 | 95 | 48.1 | 63.7 | 74.7 | 52.7 | |
UA (%) | 76.9 | 93.1 | 72.5 | 77.6 | 71.4 | 64.5 |
Barque Canada Reef Site 1 | Reference | |||||
---|---|---|---|---|---|---|
Pixel Number | Reef Sediments Extension | Aquatic Vegetation Growth | Algae Degradation | Algae Growth | No Change | Total |
Reef sediments extension | 3289 | 0 | 111 | 31 | 9802 | 13,233 |
Aquatic vegetation growth | 97 | 988 | 169 | 2595 | 58,638 | 62,487 |
Algae degradation | 631 | 35 | 1100 | 354 | 17,922 | 20,042 |
Algae growth | 26 | 68 | 25 | 11,380 | 56,983 | 68,482 |
No change | 190 | 7 | 101 | 849 | 157,281 | 158,428 |
Total | 4233 | 1098 | 1506 | 15,209 | 300,626 | 322,672 |
PA (%) | 77.7 | 90 | 73 | 74.8 | 52.3 | |
UA (%) | 24.9 | 1.6 | 5.5 | 16.6 | 99.3 | |
Object Number | Reef Sediments Extension | Aquatic Vegetation Growth | Algae Degradation | Algae Growth | No Change | Total |
Reef sediments extension | 67 | 0 | 3 | 0 | 55 | 125 |
Aquatic vegetation growth | 0 | 4 | 0 | 0 | 4 | 8 |
Algae degradation | 0 | 0 | 7 | 0 | 10 | 17 |
Algae growth | 0 | 8 | 1 | 189 | 389 | 587 |
No change | 4 | 4 | 7 | 51 | 5832 | 5898 |
Total | 71 | 16 | 18 | 240 | 6290 | 6635 |
PA (%) | 94.4 | 25 | 38.9 | 78.8 | 92.7 | |
UA (%) | 53.6 | 50 | 41.2 | 32.2 | 98.9 | |
Object Area (m2) | Reef Sediments Extension | Aquatic Vegetation Growth | Algae Degradation | Algae Growth | No Change | Total |
Reef sediments extension | 16,801.0 | 0.0 | 385.3 | 8.8 | 10,975.3 | 28,170.3 |
Aquatic vegetation growth | 0.0 | 4283.2 | 0.0 | 446.8 | 1715.5 | 6445.5 |
Algae degradation | 0.0 | 0.0 | 4202.0 | 125.3 | 2392.5 | 6719.8 |
Algae growth | 9.8 | 1538.2 | 378.0 | 56,388.9 | 82,227.6 | 140,542.5 |
No change | 3503.6 | 1654.2 | 3041.3 | 16,045.6 | 2,044,158.7 | 2,068,403.3 |
Total | 20,314.3 | 7475.6 | 8006.5 | 73,015.3 | 2,141,469.5 | 2,250,281.3 |
PA (%) | 82.7 | 57.3 | 52.5 | 77.2 | 95.5 | |
UA (%) | 59.6 | 66.5 | 62.5 | 40.1 | 98.8 |
Barque Canada Reef Site 2 | Reference | ||||
---|---|---|---|---|---|
Pixel Number | Reef Sediments Extension | Aquatic Vegetation Growth | Algae Growth | No Change | Total |
Reef sediments extension | 5356 | 36 | 0 | 13,995 | 19,387 |
Aquatic vegetation growth | 8 | 6919 | 648 | 39,685 | 47,260 |
Algae growth | 0 | 1519 | 3240 | 939 | 5698 |
No change | 252 | 1803 | 137 | 246,847 | 249,039 |
Total | 5616 | 10,277 | 4025 | 301,466 | 321,384 |
PA (%) | 95.4 | 67.3 | 80.5 | 81.9 | |
UA (%) | 27.6 | 14.6 | 56.9 | 99.1 | |
Object Number | Reef Sediments Extension | Aquatic Vegetation Growth | Algae Growth | No Change | Total |
Reef sediments extension | 102 | 0 | 0 | 206 | 308 |
Aquatic vegetation growth | 0 | 167 | 17 | 187 | 371 |
Algae growth | 0 | 10 | 42 | 19 | 71 |
No change | 0 | 14 | 2 | 7253 | 7269 |
Total | 102 | 191 | 61 | 7665 | 8019 |
PA (%) | 100 | 87.4 | 68.9 | 94.6 | |
UA (%) | 33.1 | 45 | 59.2 | 99.8 | |
Object Area (m2) | Reef Sediments Extension | Aquatic Vegetation Growth | Algae Growth | No Change | Total |
Reef sediments extension | 27,893.8 | 0.0 | 0.0 | 39,508.3 | 67,402.0 |
Aquatic vegetation growth | 0.0 | 94,803.5 | 2853.3 | 51,576.4 | 149,233.2 |
Algae growth | 0.0 | 2788.3 | 18,071.5 | 3957.3 | 24,817.0 |
No change | 0.0 | 5759.0 | 467.5 | 3,000,580.8 | 3,006,807.2 |
Total | 27,893.8 | 103,350.7 | 21,392.3 | 3,095,622.7 | 3,248,259.5 |
PA (%) | 100 | 91.7 | 84.5 | 96.9 | |
UA (%) | 41.4 | 63.5 | 72.8 | 99.8 |
|Z| 1 | Zhongye Island | Taiping Island | Barque Canada Reef | |||
---|---|---|---|---|---|---|
Site 1 | Site 2 | |||||
PBCD | Pixel-number-based | individual | 178.36 | 102.84 | 63.41 | 135.87 |
OBCD | Object-number-based | individual | 38.67 | 18.64 | 24.55 | 32.12 |
OBCD vs. PBCD | 7.40 | 0.60 | 17.60 | 14.38 | ||
Object-area-based | individual | 802.98 | 335.37 | 488.63 | 880.72 | |
OBCD vs. PBCD | 60.47 | 19.36 | 175.99 | 165.59 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Ma, L.; Fu, T.; Zhang, G.; Yao, M.; Li, M. Change Detection in Coral Reef Environment Using High-Resolution Images: Comparison of Object-Based and Pixel-Based Paradigms. ISPRS Int. J. Geo-Inf. 2018, 7, 441. https://doi.org/10.3390/ijgi7110441
Zhou Z, Ma L, Fu T, Zhang G, Yao M, Li M. Change Detection in Coral Reef Environment Using High-Resolution Images: Comparison of Object-Based and Pixel-Based Paradigms. ISPRS International Journal of Geo-Information. 2018; 7(11):441. https://doi.org/10.3390/ijgi7110441
Chicago/Turabian StyleZhou, Zhenjin, Lei Ma, Tengyu Fu, Ge Zhang, Mengru Yao, and Manchun Li. 2018. "Change Detection in Coral Reef Environment Using High-Resolution Images: Comparison of Object-Based and Pixel-Based Paradigms" ISPRS International Journal of Geo-Information 7, no. 11: 441. https://doi.org/10.3390/ijgi7110441