Performance of Selected Ionospheric Models in Multi-Global Navigation Satellite System Single-Frequency Positioning over China
<p>Geographical distribution of the selective MGEX (blue) and CMONOC (red) stations.</p> "> Figure 2
<p>Geomagnetic Kp index and F10.7 values on 1–28 February 2019.</p> "> Figure 3
<p>Positioning errors of b1 SF-SPP with different ionospheric models (GPS-Klo, BDS-Klo, BDS-Grid and GIM) in (<b>a</b>) single-system or (<b>b</b>) multi-system at SNMX station (DoY 36 in 2019, sum of Kp = 0.88, F10.7 = 71 sfu). Where, e.g., GPS-Klo-GRC represents the SF-SPP results using data of GPS + GLONASS + BDS with ionosphere delay corrected using the GPS-Klo model, and the abbreviation G, R and C represent GPS, GLONASS and BDS, respectively.</p> "> Figure 4
<p>Mean number of satellites and mean PDOP for different SF-SPP processing scenarios at 10 selected stations on 5 February 2019, (<b>a</b>) b1 SPP; (<b>b</b>) b2 SPP; the abbreviation G, R and C represent GPS, GLONASS and BDS, respectively.</p> "> Figure 5
<p>Comparison of positioning error of b1 SF-PPP with different schemes for GPS, GLONASS and GPS + GLONASS + BDS solutions at QHGC station (DoY 35 in 2019, sum of Kp = 1.25, F10.7 = 71 sfu). The corresponding satellite numbers are represented by the yellow curve. The abbreviation “Cons” represents “Constrained”.</p> "> Figure 6
<p>Average convergence time of SF-PPP with different schemes for GPS-only, GLONASS-only, BDS-only, GPS + GLONASS, GPS + BDS and GPS + GLONASS + BDS solutions using datasets at 10 stations over one month.</p> ">
Abstract
:1. Introduction
2. Multi-GNSS Positioning Models
2.1. Multi-GNSS SF-SPP
2.2. Multi-GNSS SF-PPP
3. Ionospheric Correction Models
3.1. GPS-Klo
3.2. BDS-Klo
3.3. BDS-Grid
3.4. GIM
4. Experimental Data and Processing Strategy
5. Performance of Single-Frequency SPP
6. Performance of Single-Frequency PPP
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
3D | Three-dimensional |
BDS | BeiDou Navigation Satellite System |
CODE | Center for Orbit Determination in Europe |
CMONOC | Crustal Movement Observation Network of China |
DoY | Day of Year |
DCB | Differential Code Bias |
ECEF | Earth-Centered-Earth-Fixed |
FDMA | Frequency Division Multiple Access |
GRAPHIC | Group and Phase Ionospheric Correction |
GIM | Global Ionosphere Maps |
GNSS | Global Navigation Satellite System |
GEO | Geostationary Earth Orbit |
IFB | Inter-Frequency Bias |
IGS | International GNSS Service |
IPP | Ionospheric Pierce Point |
IAAC | Ionosphere Associate Analysis Center |
IF | Ionosphere-Free |
IGPs | Ionospheric Grid Point |
IGSO | Inclined Geosynchronous Orbit |
ISB | Inter-System Bias |
LT | Local Time |
MGEX | Multi-GNSS Experiment |
MEO | Medium Earth Orbit |
PPP | Precise Point Positioning |
PNT | Positioning, Navigation and Timing |
PCO | Phase Center Offset |
PCV | Phase Center Variation |
SPP | Standard Point Positioning |
SBAS | Satellite-Based Augmentation Systems |
SF | Single-Frequency |
TGD | Timing Group Delay |
TECU | Total Electron Content Unit |
UCD | Uncalibrated Code Delay |
UPD | Uncalibrated Phase Delay |
VTEC | Vertical Total Electron Content |
WAAS | Wide-Area Augmentation System |
ZWD | Zenith Wet Delay |
References
- Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise point positioning for the efficient and robust analysis of GPS data from large network. J. Geophys. Res. 1997, 102, 5005–5017. [Google Scholar] [CrossRef]
- Kouba, J.; Heroux, P. Precise point positioning using IGS orbit and clock products. GPS Solut. 2001, 5, 12–28. [Google Scholar] [CrossRef]
- Ovstedal, O. Absolute positioning with single-frequency GPS receivers. GPS Solut. 2002, 5, 33–44. [Google Scholar] [CrossRef]
- Cai, C.; Liu, Z.; Luo, X. Single-frequency ionosphere-free precise point positioning using combined GPS and GLONASS observations. J. Navig. 2013, 66, 417–434. [Google Scholar] [CrossRef]
- Sterle, O.; Stopar, B.; Preseren, P.P. Single-frequency precise point positioning: An analytical approach. J. Geod. 2015, 89, 793–810. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, Z. Anomalies in broadcast ionospheric coefficients recorded by GPS receivers over the past two solar cycles (1992–2013). GPS Solut. 2016, 20, 23–37. [Google Scholar] [CrossRef]
- Klobuchar, J.A. Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Trans. Aerosp. Electron. Syst. 1987, 23, 325–331. [Google Scholar] [CrossRef]
- Schaer, S. Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System. Ph.D. Thesis, University of Bern, Bern, Switzerland, 1999. [Google Scholar]
- Le, A.Q.; Tiberius, C. Single-frequency precise point positioning with optimal filtering. GPS Solut. 2007, 11, 61–69. [Google Scholar] [CrossRef]
- Wu, X.; Hu, X.; Wang, G.; Zhong, H.; Tang, C. Evaluation of COMPASS ionospheric model in GNSS positioning. Adv. Space Res. 2013, 51, 959–968. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, J.; Tang, B.; Cao, Y.; Fan, J. Evaluation of COMPASS ionospheric grid. GPS Solut. 2014, 18, 639–649. [Google Scholar] [CrossRef]
- Radicella, S.M. The NeQuick model genesis, uses and evolution. Ann. Geophys. 2009, 52, 417–422. [Google Scholar]
- Choy, S.; Silcock, D. Single-frequency ionosphere-free precise point positioning: A cross-correlation problem? J. Geod. Sci. 2011, 1, 314–323. [Google Scholar] [CrossRef]
- Shi, C.; Gu, S.; Lou, Y.; Ge, M. An improved approach to model ionospheric delays for single-frequency precise point positioning. Adv. Space Res. 2012, 49, 1698–1708. [Google Scholar] [CrossRef]
- Montenbruck, O. Kinematic GPS positioning of LEO satellites using ionosphere-free single-frequency measurements. Aerosp. Sci. Technol. 2003, 7, 396–405. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, Z.; Ge, M.; Niu, X.; Huang, L.; Tu, R.; Li, X. On the convergence of ionospheric constrained precise point positioning (IC-PPP) based on undifferential uncombined raw GNSS observations. Sensors 2013, 13, 15708–15725. [Google Scholar] [CrossRef]
- Zhou, F.; Dong, D.; Li, P.; Li, X.; Schuh, H. Influence of stochastic modeling for inter-system biases on multi-GNSS undifferenced and uncombined precise point positioning. GPS Solut. 2019, 23, 59. [Google Scholar] [CrossRef]
- Shi, C.; Yi, W.; Song, W.; Lou, Y.; Yao, Y.; Zhang, R. GLONASS pseudorange inter-channel biases and their effects on combined GPS/GLONASS precise point positioning. GPS Solut. 2013, 17, 439–451. [Google Scholar]
- Zhou, F.; Dong, D.; Ge, M.; Li, P.; Wickert, J.; Schuh, H. Simultaneous estimation of GLONASS pseudorange inter-frequency biases in precise point positioning using undifferenced and uncombined observations. GPS Solut. 2018, 22, 19. [Google Scholar] [CrossRef]
- Su, K.; Jin, S.; Hoque, M.M. Evaluation of ionospheric delay effects on multi-GNSS positioning performance. Remote Sens. 2019, 11, 171. [Google Scholar] [CrossRef]
- Pan, L.; Zhang, X.; Liu, J.; Li, X.; Li, X. Performance evaluation of single-frequency precise point positioning with GPS, GLONASS, BeiDou and Galileo. J. Navig. 2017, 70, 465–482. [Google Scholar] [CrossRef]
- Jakowski, N.; Hoque, M.M.; Mayer, C. A new global TEC model for estimating transionospheric radio wave propagation errors. J. Geod. 2011, 85, 965–974. [Google Scholar] [CrossRef]
- Hoque, M.M.; Jakowski, N. An alternative ionospheric correction model for global navigation satellite systems. J. Geod. 2015, 89, 391–406. [Google Scholar] [CrossRef]
- CSNO. BeiDou Navigation Satellite System Signal in Space Interface Control Document—Open Service Signal B3I (Version 1.0); China Satellite Navigation Office: Beijing, China, 2018.
- Schaer, S.; Gartner, W.; Feltens, J. IONEX: The ionosphere map exchange format vision 1. In Proceedings of the IGS AC Workshop, Darmstadt, Germany, 9–11 February 1998. [Google Scholar]
- Montenbruck, O.; Steigenberger, P.; Hauschild, A. Multi-GNSS signal-in-space range error assessment—Methology and results. Adv. Space Res. 2018, 61, 3020–3038. [Google Scholar] [CrossRef]
- Boehm, J.; Werl, B.; Schuh, H. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J. Geophys. Res. 2006, 111, B02406. [Google Scholar] [CrossRef]
- Boehm, J.; Moller, G.; Schindelegger, M.; Pain, G.; Weber, R. Development of an improved empirical model for slant delays in the troposphere (GPT2w). GPS Solut. 2015, 19, 433–441. [Google Scholar] [CrossRef]
- Gérard, P.; Luzum, B. IERS Conventions; IERS Technical 2010 Note 36; Verlag des Bundesamts für Kartographie und Geodäsie: Frankfurt am Main, Germany, 2010. [Google Scholar]
- Schonemann, E.S.; Becker, M.; Springer, T. A new approach for GNSS analysis in a multi-GNSS and multi-signal environment. J. Geod. Sci. 2011, 1, 204–214. [Google Scholar] [CrossRef]
Item | Models/Strategies |
---|---|
Data span | 1–28 February 2019 |
Frequency selection | GPS: L1/L2; GLONASS: G1/G2; BDS: B1/B2 |
Estimator | SPP: Least squares; PPP: Kalman filter |
Sampling rate | 30s |
Elevation cutoff angle | 10° |
Satellite orbit and clock | SPP: broadcast ephemeris PPP: fixed to GFZ final orbit and clock offset products |
Satellite TGD | Correct using broadcast ephemeris for SPP |
Satellite differential code bias (DCB) | Correct using MGEX DCB products for PPP |
Receiver and Satellite antenna | GPS and GLONASS PCO (phase center offset)/PCV (phase center variation) corrected with igs14.atx, BDS PCO corrected with the value released by ESA and PCV is not considered |
Tropospheric delay | Modified (GPT2w + SAAS + VMF [27,28]) for the dry part and estimated for wet part as random-walk noise process |
Ionospheric delay | Corrected using different ionosphere model for SPP, estimated as random-walk noise process for PPP |
Tidal effects | Consider solid tides, ocean loading and polar tides [29] |
Relativistic effects | Corrected by model |
Phase windup | Corrected by model |
Weighing strategy | Elevation-dependent weighing (1 for otherwise ) is used |
Station reference coordinates | IGS SINEX solutions |
Station coordinates | SPP: estimated as white noises PPP: estimated as constants |
Receiver clock | Estimated as white noise process |
Receiver ISB | Set up for GLONASS/BDS and estimated as random-walk noise process [17] |
GLONASS code IFB | Estimated for each GLONASS frequency |
Phase ambiguities | Estimated as float constants for each arc |
System | Iono-Corr | b1 | b2 | ||||||
---|---|---|---|---|---|---|---|---|---|
N | E | U | 3D | N | E | U | 3D | ||
G | GPS-Klo | 0.883 | 0.512 | 2.347 | 2.583 | 1.200 | 0.606 | 3.437 | 3.750 |
G | BDS-Klo | 0.770 | 0.474 | 1.508 | 1.762 | 1.016 | 0.546 | 2.090 | 2.398 |
G | BDS-Grid | 0.732 | 0.506 | 1.384 | 1.645 | 0.839 | 0.583 | 1.647 | 1.942 |
G | GIM | 0.684 | 0.456 | 1.246 | 1.493 | 0.835 | 0.494 | 1.469 | 1.764 |
R | GPS-Klo | 1.358 | 1.705 | 3.604 | 4.224 | 1.689 | 1.758 | 4.626 | 5.258 |
R | BDS-Klo | 1.288 | 1.694 | 3.213 | 3.856 | 1.611 | 1.736 | 4.051 | 4.698 |
R | BDS-Grid | 1.312 | 1.701 | 3.019 | 3.705 | 1.547 | 1.733 | 3.659 | 4.340 |
R | GIM | 1.164 | 1.681 | 2.875 | 3.529 | 1.336 | 1.735 | 3.273 | 3.940 |
C | GPS-Klo | 0.777 | 0.519 | 2.007 | 2.245 | 1.191 | 0.664 | 3.436 | 3.721 |
C | BDS-Klo | 0.669 | 0.490 | 1.422 | 1.654 | 1.007 | 0.632 | 2.383 | 2.670 |
C | BDS-Grid | 0.628 | 0.499 | 1.261 | 1.496 | 0.912 | 0.591 | 1.739 | 2.054 |
C | GIM | 0.593 | 0.473 | 1.110 | 1.347 | 0.892 | 0.589 | 1.672 | 1.986 |
GR | GPS-Klo | 0.855 | 0.510 | 2.263 | 2.499 | 1.172 | 0.601 | 3.269 | 3.577 |
GR | BDS-Klo | 0.738 | 0.469 | 1.453 | 1.701 | 0.998 | 0.536 | 2.024 | 2.333 |
GR | BDS-Grid | 0.694 | 0.505 | 1.364 | 1.612 | 0.786 | 0.575 | 1.559 | 1.841 |
GR | GIM | 0.633 | 0.451 | 1.171 | 1.407 | 0.787 | 0.487 | 1.424 | 1.704 |
GC | GPS-Klo | 0.724 | 0.420 | 1.989 | 2.201 | 1.094 | 0.540 | 3.077 | 3.376 |
GC | BDS-Klo | 0.601 | 0.370 | 1.368 | 1.551 | 0.891 | 0.482 | 1.576 | 1.887 |
GC | BDS-Grid | 0.515 | 0.379 | 0.907 | 1.111 | 0.694 | 0.457 | 1.343 | 1.581 |
GC | GIM | 0.495 | 0.349 | 0.788 | 0.998 | 0.706 | 0.426 | 1.185 | 1.455 |
GRC | GPS-Klo | 0.718 | 0.419 | 1.952 | 2.165 | 1.080 | 0.541 | 2.907 | 3.215 |
GRC | BDS-Klo | 0.597 | 0.367 | 1.333 | 1.516 | 0.864 | 0.471 | 1.496 | 1.803 |
GRC | BDS-Grid | 0.494 | 0.370 | 0.873 | 1.070 | 0.671 | 0.447 | 1.293 | 1.525 |
GRC | GIM | 0.490 | 0.347 | 0.781 | 0.989 | 0.701 | 0.423 | 1.176 | 1.443 |
System | Iono-Corr | b1 | b2 | ||||||
---|---|---|---|---|---|---|---|---|---|
N | E | U | 3D | N | E | U | 3D | ||
G | GRAPHIC | 1.43 | 3.06 | 5.01 | 6.09 | 1.56 | 3.04 | 9.13 | 9.91 |
G | GPS-Klo-Cons | 2.12 | 4.12 | 5.14 | 6.98 | 2.30 | 4.90 | 9.99 | 11.54 |
G | BDS-Klo-Cons | 2.14 | 3.58 | 5.18 | 6.70 | 2.37 | 4.40 | 10.29 | 11.67 |
G | BDS-Grid-Cons | 2.43 | 3.36 | 5.01 | 6.58 | 2.25 | 4.00 | 8.80 | 10.15 |
G | GIM-Cons | 2.24 | 3.34 | 4.88 | 6.38 | 2.34 | 3.59 | 9.10 | 10.31 |
R | GRAPHIC | 1.80 | 3.64 | 5.92 | 7.19 | 1.91 | 3.86 | 8.59 | 9.62 |
R | GPS-Klo-Cons | 2.44 | 4.58 | 7.14 | 8.89 | 2.38 | 5.20 | 10.31 | 11.86 |
R | BDS-Klo-Cons | 2.38 | 4.14 | 7.34 | 8.80 | 2.38 | 4.76 | 10.52 | 11.81 |
R | BDS-Grid-Cons | 2.49 | 4.12 | 6.62 | 8.18 | 2.56 | 4.69 | 8.86 | 10.45 |
R | GIM-Cons | 2.34 | 4.09 | 6.44 | 8.05 | 2.29 | 3.85 | 9.23 | 10.43 |
C | GRAPHIC | 5.83 | 8.20 | 18.29 | 20.92 | 5.59 | 7.20 | 15.47 | 18.04 |
C | GPS-Klo-Cons | 6.80 | 9.33 | 19.52 | 22.77 | 5.67 | 8.52 | 15.31 | 18.82 |
C | BDS-Klo-Cons | 6.84 | 8.88 | 19.88 | 22.90 | 5.37 | 7.04 | 15.56 | 18.31 |
C | BDS-Grid-Cons | 7.08 | 9.31 | 18.07 | 21.58 | 5.90 | 8.18 | 15.33 | 18.52 |
C | GIM-Cons | 6.47 | 8.66 | 17.61 | 20.96 | 5.37 | 7.43 | 14.61 | 17.65 |
GR | GRAPHIC | 1.40 | 2.46 | 4.85 | 5.66 | 1.27 | 2.47 | 8.56 | 9.14 |
GR | GPS-Klo-Cons | 1.87 | 3.64 | 5.15 | 6.66 | 1.89 | 4.35 | 9.97 | 11.14 |
GR | BDS-Klo-Cons | 1.85 | 3.15 | 5.27 | 6.47 | 1.98 | 4.15 | 10.28 | 11.49 |
GR | BDS-Grid-Cons | 1.89 | 2.88 | 4.79 | 5.96 | 2.02 | 3.37 | 8.73 | 9.76 |
GR | GIM-Cons | 1.83 | 3.01 | 4.63 | 5.91 | 1.89 | 3.13 | 8.94 | 9.86 |
GC | GRAPHIC | 1.44 | 3.04 | 4.92 | 6.01 | 1.55 | 3.03 | 9.00 | 9.78 |
GC | GPS-Klo-Cons | 2.08 | 4.10 | 5.14 | 6.95 | 2.27 | 5.02 | 9.66 | 11.36 |
GC | BDS-Klo-Cons | 2.10 | 3.70 | 5.19 | 6.76 | 2.22 | 4.48 | 10.16 | 11.52 |
GC | BDS-Grid-Cons | 2.40 | 3.45 | 5.05 | 6.65 | 2.41 | 4.28 | 8.81 | 10.35 |
GC | GIM-Cons | 2.16 | 3.34 | 4.89 | 6.35 | 2.33 | 3.48 | 9.10 | 10.27 |
GRC | GRAPHIC | 1.42 | 2.43 | 4.84 | 5.65 | 1.40 | 2.40 | 8.55 | 9.11 |
GRC | GPS-Klo-Cons | 1.89 | 3.83 | 5.01 | 6.62 | 1.96 | 4.29 | 10.06 | 11.28 |
GRC | BDS-Klo-Cons | 1.97 | 3.16 | 5.12 | 6.38 | 2.00 | 3.96 | 10.37 | 11.45 |
GRC | BDS-Grid-Cons | 2.02 | 2.98 | 4.99 | 6.21 | 2.15 | 3.50 | 8.43 | 9.58 |
GRC | GIM-Cons | 1.95 | 2.91 | 4.64 | 5.90 | 2.11 | 3.27 | 8.77 | 9.79 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, A.; Chen, J.; Zhang, Y.; Meng, L.; Wang, J. Performance of Selected Ionospheric Models in Multi-Global Navigation Satellite System Single-Frequency Positioning over China. Remote Sens. 2019, 11, 2070. https://doi.org/10.3390/rs11172070
Wang A, Chen J, Zhang Y, Meng L, Wang J. Performance of Selected Ionospheric Models in Multi-Global Navigation Satellite System Single-Frequency Positioning over China. Remote Sensing. 2019; 11(17):2070. https://doi.org/10.3390/rs11172070
Chicago/Turabian StyleWang, Ahao, Junping Chen, Yize Zhang, Lingdong Meng, and Jiexian Wang. 2019. "Performance of Selected Ionospheric Models in Multi-Global Navigation Satellite System Single-Frequency Positioning over China" Remote Sensing 11, no. 17: 2070. https://doi.org/10.3390/rs11172070
APA StyleWang, A., Chen, J., Zhang, Y., Meng, L., & Wang, J. (2019). Performance of Selected Ionospheric Models in Multi-Global Navigation Satellite System Single-Frequency Positioning over China. Remote Sensing, 11(17), 2070. https://doi.org/10.3390/rs11172070