Spatiotemporal Variability of Remote Sensing Ocean Net Primary Production and Major Forcing Factors in the Tropical Eastern Indian and Western Pacific Ocean
"> Figure 1
<p>Climatological ocean net primary production (NPP) during 1998–2016 in the study area, derived based on SeaWiFS and MODIS Chla using the VGPM algorithm.</p> "> Figure 2
<p>Seasonal NPP variability characterized by the first two EOF modes: (<b>a</b>,<b>b</b>) are the EOF spatial patterns (Unit: log10, mg C/m<sup>2</sup>/month); (<b>c</b>,<b>d</b>) are the time series of normalized principal components (PC).</p> "> Figure 3
<p>Interannual NPP variability characterized by the first EOF mode: (<b>a</b>) the EOF spatial pattern; (<b>b</b>) the normalized PC (red) along with MEI (blue) and DMI (green).</p> "> Figure 4
<p>Interannual NPP variability characterized by the second and third EOF modes: (<b>a</b>,<b>b</b>) the EOF spatial patterns; (<b>c</b>,<b>d</b>) the normalized PC (red) along with MEI (blue) and DMI (green); (<b>e</b>,<b>f</b>) the lagged correlations of PC with MEI and DMI, respectively.</p> "> Figure 5
<p>Long-term NPP trend during the period of 1998–2016. Points plotted are the statistically significant values (<span class="html-italic">p</span> < 0.1).</p> "> Figure 6
<p>Significance tests of IMFs in the (<b>a</b>) Bay of Bengal (BoB), (<b>b</b>) South China Sea (SCS), (<b>c</b>) southeastern Indian Ocean, (<b>d</b>) northwestern Pacific Ocean. Statistically significant IMFs were placed above the diagonal lines for the 95% (blue line) and 90% significance levels (magenta line).</p> "> Figure 7
<p>Raw time series (solid line in the top panel), trend (dashed red line in the top panel), and the significant IMFs for domain-averaged NPP (mg C/m<sup>2</sup>/month) in the (<b>a</b>) BoB, (<b>b</b>) SCS, (<b>c</b>) southeastern Indian Ocean, (<b>d</b>) northwestern Pacific Ocean.</p> "> Figure 8
<p>The time series and correlation coefficient of canonical coupled BPCCA modes associated with ENSO (left panel) and IOD (right panel), respectively. (<b>a1</b>) the canonical time series of NPP (green line) and Chla (red line) associated with ENSO, (<b>b1</b>) the canonical time series of NPP (green line) and Chla (red line) associated with IOD. (<b>a2</b>–<b>a6</b>,<b>b2</b>–<b>b6</b>) are the same as (<b>a1</b>,<b>b1</b>) but for the modes of NPP with SST, SLA, Rain, Wind, and CUR.</p> "> Figure 8 Cont.
<p>The time series and correlation coefficient of canonical coupled BPCCA modes associated with ENSO (left panel) and IOD (right panel), respectively. (<b>a1</b>) the canonical time series of NPP (green line) and Chla (red line) associated with ENSO, (<b>b1</b>) the canonical time series of NPP (green line) and Chla (red line) associated with IOD. (<b>a2</b>–<b>a6</b>,<b>b2</b>–<b>b6</b>) are the same as (<b>a1</b>,<b>b1</b>) but for the modes of NPP with SST, SLA, Rain, Wind, and CUR.</p> "> Figure 9
<p>The canonical coupled BPCCA modes associated with ENSO. (<b>a1</b>,<b>b1</b>) spatial correlation patterns of NPP and Chla for the first canonical pair labeled as CCA1 (NPP, Chla)-NPP and CCA1 (NPP, Chla)-Chla, respectively. (<b>a2</b>–<b>a6</b>,<b>b2</b>–<b>b6</b>) are the same as (<b>a1</b>,<b>b1</b>) but for the modes of NPP with SST, SLA, Rain, Wind, and CUR, respectively.</p> "> Figure 9 Cont.
<p>The canonical coupled BPCCA modes associated with ENSO. (<b>a1</b>,<b>b1</b>) spatial correlation patterns of NPP and Chla for the first canonical pair labeled as CCA1 (NPP, Chla)-NPP and CCA1 (NPP, Chla)-Chla, respectively. (<b>a2</b>–<b>a6</b>,<b>b2</b>–<b>b6</b>) are the same as (<b>a1</b>,<b>b1</b>) but for the modes of NPP with SST, SLA, Rain, Wind, and CUR, respectively.</p> "> Figure 10
<p>Same as <a href="#remotesensing-11-00391-f009" class="html-fig">Figure 9</a>, but for the canonical coupled CCA modes associated with IOD. (<b>a1</b>,<b>b1</b>) spatial correlation patterns of NPP and Chla for the fifth canonical pair labeled as CCA5 (NPP, Chla)-NPP and CCA5 (NPP, Chla)-Chla, respectively. (<b>a2</b>–<b>a6</b>,<b>b2</b>–<b>b6</b>) are similar as (<b>a1</b>,<b>b1</b>) but for the modes of NPP with SST, SLA, Rain, Wind, and CUR, respectively.</p> ">
Abstract
:1. Introduction
2. Datasets and Methods
2.1. Datasets
2.2. Data Preprocessing
2.3. Methods
3. Results and Analysis
3.1. Dominant Seasonal NPP Variability Patterns
3.2. Dominant Interannual NPP Variability Patterns
3.3. Long-Term Trend and Multiscale Oscillation Patterns of NPP
3.4. Covariability Patterns of NPP with Major Forcing Factors on Interannual Timescale
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Behrenfeld, M.J.; O’Malley, R.T.; Siegel, D.A.; McClain, C.R.; Sarmiento, J.L.; Feldman, G.C.; Milligan, A.J.; Falkowski, P.G.; Letelier, R.M.; Boss, E.S. Climate-driven trends in contemporary ocean productivity. Nature 2006, 444, 752–755. [Google Scholar] [CrossRef]
- Chavez, F.P.; Messié, M.; Pennington, J.T. Marine primary production in relation to climate variability and change. Ann. Rev. Mar. Sci. 2010, 3, 227–260. [Google Scholar] [CrossRef]
- Joo, H.T.; Son, S.H.; Park, J.W.; Kang, J.J.; Jeong, J.Y.; Lee, C.I.; Kang, C.K.; Sang, H.L. Long-Term Pattern of Primary Productivity in the East/Japan Sea Based on Ocean Color Data Derived from MODIS-Aqua. Remote Sens. 2016, 8, 25. [Google Scholar] [CrossRef]
- Rousseaux, C.S.; Gregg, W.W. Interannual variation in phytoplankton primary production at a global scale. Remote Sens. 2013, 6, 1–19. [Google Scholar] [CrossRef]
- Roxy, M.K.; Modi, A.; Murtugudde, R.; Valsala, V.; Panickal, S.; Kumar, S.P.; Ravichandran, M.; Vichi, M.; Lévy, M. A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean. Geophys. Res. Lett. 2016, 43, 826–833. [Google Scholar] [CrossRef] [Green Version]
- Wiggert, J.D.; Vialard, J.; Behrenfeld, M.J. Basinwide modification of dynamical and biogeochemical processes by the positive phase of the Indian Ocean Dipole during the SeaWiFS era. Indian Ocean Biogeochem. Process. Ecolog. Variab. 2009, 185, 385–407. [Google Scholar] [CrossRef]
- Currie, J.; Lengaigne, M.; Vialard, J.; Kaplan, D.; Aumont, O.; Naqvi, S.; Maury, O. Indian Ocean dipole and El Nino/southern oscillation impacts on regional chlorophyll anomalies in the Indian Ocean. Biogeosciences 2013, 10, 6677–6698. [Google Scholar] [CrossRef]
- Susanto, R.D.; Moore, T.S.; Marra, J. Ocean color variability in the Indonesian Seas during the SeaWiFS era. Geochem. Geophys. Geosys. 2006, 7. [Google Scholar] [CrossRef] [Green Version]
- McCreary, J.; Murtugudde, R.; Vialard, J.; Vinayachandran, P.; Wiggert, J.D.; Hood, R.R.; Shankar, D.; Shetye, S. Biophysical processes in the Indian Ocean. Indian Ocean Biogeochem. Process. Ecolog. Variab. 2009, 185, 9–32. [Google Scholar]
- Iskandar, I.; Rao, S.; Tozuka, T. Chlorophyll-a bloom along the southern coasts of Java and Sumatra during 2006. Int. J. Remote Sens. 2009, 30, 663–671. [Google Scholar] [CrossRef]
- Hood, R.R.; Beckley, L.E.; Wiggert, J.D. Biogeochemical and ecological impacts of boundary currents in the Indian Ocean. Prog. Oceanogr. 2017, 156, 290–325. [Google Scholar] [CrossRef]
- George, J.V.; Nuncio, M.; Chacko, R.; Anilkumar, N.; Noronha, S.B.; Patil, S.M.; Pavithran, S.; Alappattu, D.P.; Krishnan, K.; Achuthankutty, C. Role of physical processes in chlorophyll distribution in the western tropical Indian Ocean. J. Mar. Syst. 2013, 113, 1–12. [Google Scholar] [CrossRef]
- Strutton, P.G.; Coles, V.J.; Hood, R.R.; Matear, R.J.; McPhaden, M.J.; Phillips, H.E. Biogeochemical variability in the central equatorial Indian Ocean during the monsoon transition. Biogeosciences 2015, 12, 2367–2382. [Google Scholar] [CrossRef]
- Siswanto, E.; Tanaka, K. Phytoplankton Biomass Dynamics in the Strait of Malacca within the Period of the SeaWiFS Full Mission: Seasonal Cycles, Interannual Variations and Decadal-Scale Trends. Remote Sens. 2014, 6, 2718–2742. [Google Scholar] [CrossRef] [Green Version]
- Gierach, M.M.; Messié, M.; Lee, T.; Karnauskas, K.B.; Radenac, M.H. Biophysical responses near equatorial islands in the Western Pacific Ocean during El Nino/La Nina transitions. Geophys. Res. Lett. 2013, 40, 5473–5479. [Google Scholar] [CrossRef]
- Ryan, J.P.; Ueki, I.; Chao, Y.; Zhang, H.; Polito, P.S.; Chavez, F.P. Western Pacific modulation of large phytoplankton blooms in the central and eastern equatorial Pacific. J. Geophys. Res. Biogeosci. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.; Dong, Q.; Xue, C.; Wu, S. Seasonal and interannual variability of chlorophyll-a and associated physical synchronous variability in the western tropical Pacific. J. Mar. Syst. 2016, 158, 59–71. [Google Scholar] [CrossRef]
- Radenac, M.-H.; Messié, M.; Léger, F.; Bosc, C. A very oligotrophic zone observed from space in the equatorial Pacific warm pool. Remote Sens. Environ. 2013, 134, 224–233. [Google Scholar] [CrossRef] [Green Version]
- Turk, D.; Meinen, C.; Antoine, D.; McPhaden, M.; Lewis, M. Implications of changing El Niño patterns for biological dynamics in the equatorial Pacific Ocean. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Ayers, J.M.; Strutton, P.G.; Coles, V.J.; Hood, R.R.; Matear, R.J. Indonesian throughflow nutrient fluxes and their potential impact on Indian Ocean productivity. Geophys. Res. Lett. 2014, 41, 5060–5067. [Google Scholar] [CrossRef] [Green Version]
- Behrenfeld, M.J.; Falkowski, P.G. Photosynthetic Rates Derived from Satellite-Based Chlorophyll Concentration. Limnol. Oceanogr. 1997, 42, 1–20. [Google Scholar] [CrossRef]
- Campbell, J.; Antoine, D.; Armstrong, R.; Arrigo, K.; Balch, W.; Barber, R.; Behrenfeld, M.; Bidigare, R.; Bishop, J.; Carr, M.E. Comparison of algorithms for estimating ocean primary production from surface chlorophyll, temperature, and irradiance. Global Biogeochem. Cycl. 2002, 16, 1–15. [Google Scholar] [CrossRef]
- Carr, M.; Friedrichs, M.; Schmeltz, M.; Noguchi, A.; Antoine, D.; Arrigo, K.; Asanuma, I.; Aumont, O.; Barber, R.; Behrenfeld, M. A comparison of global estimates of marine primary production from ocean color. Deep-Sea Res. Part II 2006, 53, 741–770. [Google Scholar] [CrossRef] [Green Version]
- Taboada, F.G.; Barton, A.D.; Stock, C.A.; Dunne, J.; John, J.G. Seasonal to interannual predictability of oceanic net primary production inferred from satellite observations. Prog. Oceanogr. 2019, 170, 28–39. [Google Scholar] [CrossRef]
- Liao, X.; Ma, J.; Zhan, H. Effect of different types of El Niño on primary productivity in the South China Sea. Aquat. Ecosyst. Health Manag. 2012, 15, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Xue, C.; Song, W.; Qin, L.; Dong, Q.; Wen, X. A spatiotemporal mining framework for abnormal association patterns in marine environments with a time series of remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 105–114. [Google Scholar] [CrossRef]
- Venegas, S.; Mysak, L.; Straub, D. Atmosphere–ocean coupled variability in the South Atlantic. J. Clim. 1997, 10, 2904–2920. [Google Scholar] [CrossRef]
- Messié, M.; Chavez, F.P. A global analysis of ENSO synchrony: The oceans’ biological response to physical forcing. J. Geophys. Res. Oceans 2012, 117. [Google Scholar] [CrossRef]
- North, G.R.; Bell, T.L.; Cahalan, R.F.; Moeng, F.J. Sampling errors in the estimation of empirical orthogonal functions. Month. Weath. Rev. 1982, 110, 699–706. [Google Scholar] [CrossRef]
- Henson, S.A.; Sarmiento, J.L.; Dunne, J.P.; Bopp, L.; Lima, I.D.; Doney, S.C.; John, J.G.; Beaulieu, C. Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences 2010, 7, 621–640. [Google Scholar] [CrossRef] [Green Version]
- Huang, N.E.; Wu, Z. A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Rev. Geophys. 2008, 46. [Google Scholar] [CrossRef] [Green Version]
- Palacz, A.P.; Xue, H.; Armbrecht, C.; Zhang, C.; Chai, F. Seasonal and inter-annual changes in the surface chlorophyll of the South China Sea. J. Geophys. Res. Oceans 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Zhang, Y.; Shu, Q.; Zhao, C.; Wang, G.; Wu, Z.; Qiao, F. Spatiotemporal evolution of the chlorophyll a trend in the North Atlantic Ocean. Sci. Total Environ. 2018, 612, 1141–1148. [Google Scholar] [CrossRef]
- Barnett, T.; Preisendorfer, R. Origins and levels of monthly and seasonal forecast skill for United States surface air temperatures determined by canonical correlation analysis. Month. Weath. Rev. 1987, 115, 1825–1850. [Google Scholar] [CrossRef]
- Li, Q.; Wei, F.; Li, D. Interdecadal variation of East Asian summer monsoon and drought/flood distribution over eastern China in the last 159 years. Acta Geograp. Sin. 2011, 21, 579–593. [Google Scholar] [CrossRef]
- Bretherton, C.S.; Smith, C.; Wallace, J.M. An intercomparison of methods for finding coupled patterns in climate data. J. Clim. 1992, 5, 541–560. [Google Scholar] [CrossRef]
- Storch, H.V.; Zwiers, F.; Livezey, R. Statistical analysis in climate research. Nature 2000, 404, 544. [Google Scholar]
- Krüger, O.; Graßl, H. Southern Ocean phytoplankton increases cloud albedo and reduces precipitation. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Tang, D.; Kawamura, H.; Van Dien, T.; Lee, M. Offshore phytoplankton biomass increase and its oceanographic causes in the South China Sea. Mar. Ecol. Prog. Ser. 2004, 268, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Park, J.Y.; Kug, J.S.; Park, J.; Yeh, S.W.; Chan, J.J. Variability of chlorophyll associated with El Niño–Southern Oscillation and its possible biological feedback in the equatorial Pacific. J. Geophys. Res. Oceans 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Vinayachandran, P.N.; Francis, P.A.; Rao, S.A. INDIAN OCEAN DIPOLE: PROCESSES AND IMPACTS. Curr. Trend. Sci. 2009, 569–589. [Google Scholar]
- Girishkumar, M.S.; Ravichandran, M.; Pant, V. Observed chlorophyll-a bloom in the southern Bay of Bengal during winter 2006–2007. Int. J. Remote Sens. 2012, 33, 1264–1275. [Google Scholar] [CrossRef]
Variable | Data Source | Timespan | Resolution |
---|---|---|---|
NPP | SeaWiFS/MODIS Standard VGPM | Oct 1997–present | 9 km, monthly |
Chla | OC-CCI V3.1 | Sep 1997–present | 4 km, monthly |
SST | OI SST V2 | Dec 1981–present | 0.25°, daily |
SLA | AVISO | Dec 1992–present | 0.25°, monthly |
Rain | TRMM_3B43 V7 | Jan 1998–present | 0.25°, monthly |
Wind | CCMP V2.0 | Jan 1987–present | 0.25°, monthly |
CUR | CMEMS | Jan 1993–Dec 2016 | 0.083°, monthly |
Indices | PC1 | PC2 | PC3 |
---|---|---|---|
MEI | 0.46 | 0.65 | 0.05 |
DMI | 0.23 | 0.10 | 0.48 |
Regions | IMF | Mean Period/Month (Year) | Variance Contribution Rate/% |
---|---|---|---|
BoB | C2 | 10.43 | 29.16 |
C4 | 31.76 (2.6a) | 8.04 | |
C6 | 233.22 (19.4a) | 1.56 | |
SCS | C2 | 13.57 | 56.70 |
C3 | 19.62 (1.6a) | 14.98 | |
C4 | 73.41 (6.1a) | 4.12 | |
southeastern Indian Ocean | C2 | 13.28 | 82.44 |
C3 | 33.45 (2.8a) | 5.90 | |
C4 | 94.80 (7.9a) | 3.93 | |
C5 | 119.43 (9.9a) | 0.56 | |
northwestern Pacific Ocean | C2 | 14.38 | 78.91 |
C3 | 31.00 (2.6a) | 2.68 | |
C4 | 61.46 (5.1a) | 4.88 | |
C5 | 114.00 (9.5a) | 3.67 |
Variable | MEI | DMI | Variable | MEI | DMI |
---|---|---|---|---|---|
CCA1 (NPP, Chla)-NPP | 0.81 | 0.01 | CCA5 (NPP, Chla)-NPP | 0.20 | 0.45 |
CCA1 (NPP, Chla)-Chla | 0.81 | 0.01 | CCA5 (NPP, Chla)-Chla | 0.21 | 0.45 |
CCA1 (NPP, SST)-NPP | 0.68 | 0.39 | CCA3 (NPP, SST)-NPP | 0.18 | 0.39 |
CCA1 (NPP, SST)- SST | 0.65 | 0.37 | CCA3 (NPP, SST)- SST | 0.18 | 0.39 |
CCA1 (NPP, SLA)-NPP | 0.75 | 0.28 | CCA4 (NPP, SLA)-NPP | 0.02 | 0.35 |
CCA1 (NPP, SLA)- SLA | 0.74 | 0.29 | CCA4 (NPP, SLA)- SLA | 0.03 | 0.36 |
CCA1 (NPP, Rain)-NPP | 0.78 | 0.27 | CCA3 (NPP, Rain)-NPP | 0.24 | 0.43 |
CCA1 (NPP, Rain)- Rain | 0.76 | 0.27 | CCA3 (NPP, Rain)- Rain | 0.23 | 0.41 |
CCA1 (NPP, WindUV)-NPP | 0.35 | 0.20 | CCA2 (NPP, WindUV)-NPP | 0.18 | 0.53 |
CCA1 (NPP, WindUV)- WindUV | 0.32 | 0.17 | CCA2 (NPP, WindUV)- WindUV | 0.19 | 0.46 |
CCA1 (NPP, WindW)-NPP | 0.36 | 0.27 | CCA3 (NPP, WindW)-NPP | 0.24 | 0.34 |
CCA1 (NPP, WindW)-WindW | 0.33 | 0.27 | CCA3 (NPP, WindW)-WindW | 0.24 | 0.26 |
CCA1 (NPP, CURUV)-NPP | 0.66 | 0.34 | CCA5 (NPP, CURUV)-NPP | 0.08 | 0.37 |
CCA1 (NPP, CURUV)-CURUV | 0.66 | 0.35 | CCA5 (NPP, CURUV)-CURUV | 0.07 | 0.34 |
CCA1 (NPP, CURW)-NPP | 0.67 | 0.34 | CCA2 (NPP, CURW)-NPP | 0.03 | 0.45 |
CCA1 (NPP, CURW)-CURW | 0.67 | 0.33 | CCA2 (NPP, CURW)-CURW | 0.03 | 0.44 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, F.; Dong, Q.; Xiang, K.; Yin, Z.; Li, Y.; Liu, J. Spatiotemporal Variability of Remote Sensing Ocean Net Primary Production and Major Forcing Factors in the Tropical Eastern Indian and Western Pacific Ocean. Remote Sens. 2019, 11, 391. https://doi.org/10.3390/rs11040391
Kong F, Dong Q, Xiang K, Yin Z, Li Y, Liu J. Spatiotemporal Variability of Remote Sensing Ocean Net Primary Production and Major Forcing Factors in the Tropical Eastern Indian and Western Pacific Ocean. Remote Sensing. 2019; 11(4):391. https://doi.org/10.3390/rs11040391
Chicago/Turabian StyleKong, Fanping, Qing Dong, Kunsheng Xiang, Zi Yin, Yanyan Li, and Jingyi Liu. 2019. "Spatiotemporal Variability of Remote Sensing Ocean Net Primary Production and Major Forcing Factors in the Tropical Eastern Indian and Western Pacific Ocean" Remote Sensing 11, no. 4: 391. https://doi.org/10.3390/rs11040391