Long-Term Annual Mapping of Four Cities on Different Continents by Applying a Deep Information Learning Method to Landsat Data
"> Figure 1
<p>Study areas in RGB-5, 4, 3 include: (<b>a</b>) Beijing-123/32 (path/row), China; (<b>b</b>) New York-130/322, United States of America; (<b>c</b>) Melbourne-93/86, Australia; and (<b>d</b>) Munich-193/26, Germany. The dotted line represents the scene extent in each study area, and the box represents the normal Worldwide Reference System (WRS-2) boundary.</p> "> Figure 2
<p>Temporal distributions (DOY, day of year) of adopted Landsat scenes for (<b>a</b>) Beijing-123/032; (<b>b</b>) New York-130/322); (<b>c</b>) Melbourne-93/86; and (<b>d</b>) Munich-193/026.</p> "> Figure 3
<p>Flowchart of the proposed urban extraction framework. Solid black arrows represent training step, in which the model is initialized by feeding in labeled source data during offline training. Dotted black arrows indicate online optimization steps in which the initial model is fine-tuned, rendering it more specialized for new target data. Blue arrows represent input and output processes.</p> "> Figure 4
<p>Original classification maps for an urban region (Beijing city center) and several regions (Shunyi: suburban-1, Changping: suburban-2, and Langfang: suburban-3) on different dates. Note that the selected dates differ by region. In each panel, the color map shows the original Landsat data with RGB-5, 4, 3, and the binary map shows the extracted urban areas (white). In the latter set of maps, gray indicates non-urban areas and black indicates that data are unavailable due to cloud contamination or other reasons.</p> "> Figure 5
<p>Time series of overall accuracy for changes detected in and around Beijing during 1984–2016. The method proposed in this paper (dark dashed line) is compared against that employed by Li et al. [<a href="#B21-remotesensing-10-00471" class="html-bibr">21</a>] (grey dotted line).</p> "> Figure 6
<p>Urban expansion in Beijing during 1984–2016. The map shows the current distribution of urban area (color shading) with sites that were built earlier taking lower values (blue) and sits that were built more recently taking higher values (red). Two magnified insets show the changes: (<b>A</b>) zoomed-in view of Langfang region, and (<b>B</b>) zoomed-in view of Beijing Capital airport region. The corresponding Thematic Mapper (TM) images of Langfang and Beijing Capital airport are also shown using RGB-5, 4, 3 representations of images collected on 19 July 1985 and 20 August 2014, respectively.</p> "> Figure 7
<p>Original classification maps for the urban and suburban regions of New York (<b>left</b>), Melbourne (<b>center</b>), and Munich (<b>right</b>) on different dates. Color maps show original Landsat data with RGB-5, 4, 3. Binary maps show extracted urban areas (white) and non-urban areas (gray), with black indicating cloud contamination or missing data. New York Suburban-1 and Suburban-2 correspond to Levittown and Stanford, respectively; and Melbourne Suburban-1 and Suburban-2 correspond to Geelong and Ballarat; and Munich-suburban-S1 and Suburban-2 correspond to Munich airport and West-Munich.</p> "> Figure 8
<p>Time series of change detection accuracy for New York, Melbourne, and Munich during 1984–2016.</p> "> Figure 9
<p>Urban expansion during 1984–2016 in New York, with insets providing magnified views of (<b>A</b>) Central Park and (<b>B</b>) Levittown. TM images corresponding to the beginning and end of the analysis period are also shown.</p> "> Figure 10
<p>Urban expansion during 1984–2016 in Melbourne, with insets providing magnified views of (<b>A</b>) Willerby and (<b>B</b>) Hume. TM images corresponding to the beginning and end of the analysis period are also shown.</p> "> Figure 11
<p>Urban expansion during 1984–2016 in Munich, with insets providing magnified views of (<b>A</b>) Munich city center and (<b>B</b>) Munich airport. TM images corresponding to the beginning and end of the analysis period are also shown.</p> "> Figure 12
<p>Spectral curves for urban and non-urban areas in different seasons and study areas: (<b>a</b>) spectral curves for urban areas during different seasons in Beijing; (<b>b</b>) annual mean spectral curves for urban and non-urban areas in Beijing; (<b>c</b>) spectral curves for four urban areas in the four analyzed cities acquired at similar day of year; and (<b>d</b>) spectral curves for urban areas averaged over the four analyzed cities.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Data Preprocessing and Collection
2.2.1. Preprocessing
2.2.2. Training Data Collection
2.2.3. Validation Data Collection
2.3. Method
2.3.1. Offline Training
2.3.2. Online Optimization
3. Results
3.1. Temporal Transfer
3.1.1. Performance of the Initial Classification
3.1.2. Urban Expansion
3.2. Spatial Transfer
3.2.1. Performance of the Initial Classification
3.2.2. Urban Expansion
3.3. Comparisons with State-of-the-Art Methods
4. Discussion
4.1. Applicability of Spectral Information from Landsat
4.2. Variations in Urban Expansion Patterns among Cities
4.3. Limitations of Transfer Learning for Urban Mapping
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Grey, W.M.F.; Luckman, A.J.; Holland, D. Mapping urban change in the UK using satellite radar interferometry. Remote Sens. Environ. 2003, 87, 16–22. [Google Scholar] [CrossRef]
- Schneider, A.; Friedl, M.A.; Potere, D. Mapping global urban areas using MODIS 500-m data: New methods and datasets based on ‘urban ecoregions’. Remote Sens. Environ. 2010, 114, 1733–1746. [Google Scholar] [CrossRef]
- Cao, X.; Chen, J.; Imura, H.; Higashi, O. A SVM-based method to extract urban areas from DMSP-OLS and SPOT VGT data. Remote Sens. Environ. 2009, 113, 2205–2209. [Google Scholar] [CrossRef]
- Foley, J.A.; Defries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Xiao, Y.; Ni, S. Changing patterns of urban-rural nutrient flows in China: Driving forces and options. Sci. Bull. 2017, 62, 83–91. [Google Scholar] [CrossRef]
- Li, X.; Li, W.; Middel, A.; Harlan, S.L.; Brazel, A.J.; Ii, B.L.T. Remote sensing of the surface urban heat island and land architecture in Phoenix, Arizona: Combined effects of land composition and configuration and cadastral–demographic–economic factors. Remote Sens. Environ. 2016, 174, 233–243. [Google Scholar] [CrossRef]
- Lu, D.; Tian, H.; Zhou, G.; Ge, H. Regional mapping of human settlements in southeastern China with multisensor remotely sensed data. Remote Sens. Environ. 2008, 112, 3668–3679. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, C.; Tao, P.; Haynie, S.; Fan, J. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities. Remote Sens. Environ. 2012, 124, 99–107. [Google Scholar] [CrossRef]
- Mertes, C.M.; Schneider, A.; Sulla-Menashe, D.; Tatem, A.J.; Tan, B. Detecting change in urban areas at continental scales with MODIS data. Remote Sens. Environ. 2015, 158, 331–347. [Google Scholar] [CrossRef]
- Boasson, E.; Howarth, P.J. Landsat digital enhancements for change detection in urban environments. Remote Sens. Environ. 1983, 13, 149–160. [Google Scholar]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Gong, P.; Howarth, P.J. The use of structural information for improving land-cover classification accuracies at the rural-urban fringe. Photogramm. Eng. Remote Sens. 1990, 56, 67–73. [Google Scholar]
- Song, X.P.; Sexton, J.O.; Huang, C.; Channan, S.; Townshend, J.R. Characterizing the magnitude, timing and duration of urban growth from time series of Landsat-based estimates of impervious cover. Remote Sens. Environ. 2016, 175, 1–13. [Google Scholar] [CrossRef]
- Wang, L.; Li, C.C.; Ying, Q.; Xiao, C.; Wang, X.Y.; Li, X.Y.; Hu, L.Y.; Liang, L.; Yu, L.; Huabing, H.; et al. China’s urban expansion from 1990 to 2010 determined with satellite remote sensing. Sci. Bull. 2012, 57, 2802–2812. [Google Scholar] [CrossRef]
- Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of Land-use and Land-Cover Change in Tropical Regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef]
- Yang, L.; Huang, C.; Homer, C.G.; Wylie, B.K.; Coan, M.J. An approach for mapping large-area impervious surfaces: Synergistic use of Landsat-7 ETM+ and high spatial resolution imagery. Can. J. Remote Sens. 2003, 29, 230–240. [Google Scholar] [CrossRef]
- Homer, C.; Huang, C.; Yang, L.; Wylie, B.; Coan, M. Development of a 2001 National Land-Cover Database for the United States. Photogramm. Eng. Remote Sens. 2004, 70, 829–840. [Google Scholar] [CrossRef]
- Schneider, A.; Mertes, C.M. Expansion and growth in Chinese cities, 1978–2010. Environ. Res. Lett. 2014, 9, 024008. [Google Scholar] [CrossRef]
- Sexton, J.O.; Song, X.P.; Huang, C.; Channan, S.; Baker, M.E.; Townshend, J.R. Urban growth of the Washington, D.C.–Baltimore, MD metropolitan region from 1984 to 2010 by annual, Landsat-based estimates of impervious cover. Remote Sens. Environ. 2013, 129, 42–53. [Google Scholar] [CrossRef]
- Li, X.; Gong, P.; Liang, L. A 30-year (1984–2013) record of annual urban dynamics of Beijing City derived from Landsat data. Remote Sens. Environ. 2015, 116, 78–90. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Jenerette, G.D.; Pauliet, S. Locally optimized separability enhancement indices for urban land cover mapping: Exploring thermal environmental consequences of rapid urbanization in Addis Ababa, Ethiopia. Remote Sens. Environ. 2016, 175, 14–31. [Google Scholar] [CrossRef]
- Shahtahmassebi, A.R.; Lin, Y.; Lin, L.; Atkinson, P.M.; Moore, N.; Wang, K.; He, S.; Huang, L.; Wu, J.; Shen, Z. Reconstructing Historical Land Cover Type and Complexity by Synergistic Use of Landsat Multispectral Scanner and CORONA. Remote Sens. 2017, 9, 682. [Google Scholar] [CrossRef]
- Yang, C.; Wu, G.; Ding, K.; Shi, T.; Li, Q.; Wang, J. Improving Land Use/Land Cover Classification by Integrating Pixel Unmixing and Decision Tree Methods. Remote Sens. 2017, 9, 1222. [Google Scholar] [CrossRef]
- Arai, K. A supervised Thematic Mapper classification with a purification of training samples. Int. J. Remote Sens. 2007, 13, 2039–2049. [Google Scholar] [CrossRef]
- Schneider, A. Monitoring land cover change in urban and peri-urban areas using dense time stacks of Landsat satellite data and a data mining approach. Remote Sens. Environ. 2012, 124, 689–704. [Google Scholar] [CrossRef]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? Adv. Neural Inf. Process. Syst. 2014, 27, 3320–3328. [Google Scholar]
- Marmanis, D.; Datcu, M.; Esch, T.; Stilla, U. Deep Learning Earth Observation Classification Using ImageNet Pretrained Networks. IEEE Geosci. Remote Sens. Lett. 2016, 13, 105–109. [Google Scholar] [CrossRef]
- Jean, N.; Burke, M.; Xie, M.; Davis, W.M.; Lobell, D.B.; Ermon, S. Combining satellite imagery and machine learning to predict poverty. Science 2016, 353, 790–794. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2018, 5, 8–36. [Google Scholar] [CrossRef]
- Lyu, H.; Lu, H.; Mou, L. Learning a Transferable Change Rule from a Recurrent Neural Network for Land Cover Change Detection. Remote Sens. 2016, 8, 506. [Google Scholar] [CrossRef]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.K. A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Cracknell, A.P.; Kanniah, K.D.; Tan, K.P.; Wang, L. Evaluation of MODIS gross primary productivity and land cover products for the humid tropics using oil palm trees in Peninsular Malaysia and Google Earth imagery. Int. J. Remote Sens. 2013, 34, 7400–7423. [Google Scholar] [CrossRef]
- Cracknell, A.P.; Kanniah, K.D.; Tan, K.P.; Lei, W. Towards the development of a regional version of MOD17 for the determination of gross and net primary productivity of oil palm trees. Int. J. Remote Sens. 2015, 36, 262–289. [Google Scholar] [CrossRef]
- Xian, G.; Homer, C.; Dewitz, J.; Fry, J.; Hossain, N.; Wickham, J. Change of Impervious Surface Area Between 2001 and 2006 in the Conterminous United States. Photogramm. Eng. Remote Sens. 2011, 77, 758–762. [Google Scholar]
- Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Xie, M.; Jean, N.; Burke, M.; Lobell, D.; Ermon, S. Transfer Learning from Deep Features for Remote Sensing and Poverty Mapping. arXiv, 2015; arXiv:1510.00098. [Google Scholar]
- Mou, L.; Ghamisi, P.; Zhu, X.X. Deep Recurrent Neural Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3639–3655. [Google Scholar] [CrossRef]
- Cohen, I.; Cozman, F.G.; Sebe, N.; Cirelo, M.C.; Huang, T.S. Semisupervised learning of classifiers: Theory, algorithms, and their application to human-computer interaction. IEEE Trans. Pattern Anal. 2004, 26, 1553–1566. [Google Scholar] [CrossRef] [PubMed]
- Tüske, Z.; Tahir, M.A.; Schlüter, R.; Ney, H. Integrating Gaussian mixtures into deep neural networks: Softmax layer with hidden variables. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, South Brisbane, Australia, 19–24 April 2015; pp. 4285–4289. [Google Scholar]
- Tieleman, T.; Hinton, G.G. Lecture 6.5—RmsProp: Divide the gradient by a running average of its recent magnitude. Neural Netw. Mach. Learn. 2012, 4, 26–31. [Google Scholar]
- Shi, L.; Ling, F.; Ge, Y.; Foody, G.M.; Li, X.; Wang, L.; Zhang, Y.; Du, Y. Impervious Surface Change Mapping with an Uncertainty-Based Spatial-Temporal Consistency Model: A Case Study in Wuhan City Using Landsat Time-Series Datasets from 1987 to 2016. Remote Sens. 2017, 9, 1148. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cutler, A.; Cutler, D.R.; Stevens, J.R. Random Forests. Mach. Learn. 2004, 45, 157–176. [Google Scholar]
- Tong, S.; Koller, D. Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 2001, 2, 45–66. [Google Scholar]
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2. [Google Scholar] [CrossRef]
- Mikolov, T.; Karafiát, M.; Burget, L.; Cernocký, J.; Khudanpur, S. Recurrent neural network based language model. In Proceedings of the 11th Annual Conference of the International Speech Communication Association, Chiba, Japan, 26–30 September 2010; pp. 1045–1048. [Google Scholar]
- Graves, A. Long Short-Term Memory. Neural Comput. 2014, 9, 1735–1780. [Google Scholar]
- Li, C.; Wang, J.; Wang, L.; Hu, L.; Gong, P. Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery. Remote Sens. 2014, 6, 964–983. [Google Scholar] [CrossRef]
- Li, C.; Gong, P.; Wang, J.; Zhu, Z.; Biging, G.S.; Yuan, C.; Hu, T.; Zhang, H.; Wang, Q.; Li, X. The first all-season sample set for mapping global land cover with Landsat-8 data. Sci. Bull. 2017, 7, 508–515. [Google Scholar] [CrossRef]
- Bartholomew, D.J.; Steele, F.; Galbraith, J.I.; Moustaki, I. Analysis of multivariate social science data. Struct. Equ. Model. Multidiscip. J. 2011, 18, 686–693. [Google Scholar]
- Mcgilvray, A. Sydney & Melbourne: A tale of two cities. Nature 2016, S58–S65. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, B.; Thau, D.; Moore, R. Building a Better Urban Picture: Combining Day and Night Remote Sensing Imagery. Remote Sens. 2015, 2015, 11887–11913. [Google Scholar] [CrossRef]
Year—DOY | FN | TN | FP | TP | OA | UA-N | UA-U | ||
---|---|---|---|---|---|---|---|---|---|
Beijing | 1984 | 1984229 | 314 | 9686 | 201 | 9799 | 0.97 | 0.97 | 0.98 |
1984277 | 258 | 9742 | 318 | 9682 | 0.97 | 0.97 | 0.97 | ||
Merged | 198 | 9802 | 54 | 9956 | 0.99 | 0.98 | 0.99 | ||
1994 | 1994160 | 1888 | 8112 | 36 | 9964 | 0.90 | 0.81 | 1.00 | |
1994256 | 164 | 9836 | 97 | 9903 | 0.99 | 0.98 | 0.99 | ||
1994336 | 1438 | 8562 | 569 | 9431 | 0.90 | 0.86 | 0.94 | ||
Merged | 118 | 9882 | 71 | 9929 | 0.99 | 0.99 | 0.99 | ||
2004 | 2004004 | 1024 | 8976 | 14 | 9986 | 0.95 | 0.90 | 1.00 | |
2004028 | 249 | 9483 | 166 | 9409 | 0.98 | 0.97 | 0.98 | ||
2004036 | 215 | 7158 | 161 | 8626 | 0.98 | 0.97 | 0.98 | ||
2004068 | 447 | 7902 | 135 | 8402 | 0.97 | 0.95 | 0.98 | ||
2004092 | 197 | 9506 | 173 | 9803 | 0.98 | 0.98 | 0.98 | ||
2004100 | 620 | 7968 | 78 | 8257 | 0.96 | 0.93 | 0.99 | ||
2004108 | 723 | 9511 | 123 | 9128 | 0.96 | 0.93 | 0.99 | ||
2004196 | 870 | 7260 | 25 | 7963 | 0.94 | 0.89 | 1.00 | ||
2004244 | 359 | 7469 | 19 | 8679 | 0.98 | 0.95 | 1.00 | ||
2004252 | 131 | 9640 | 68 | 9869 | 0.99 | 0.99 | 0.99 | ||
2004292 | 1608 | 8825 | 196 | 6158 | 0.89 | 0.85 | 0.97 | ||
2004300 | 244 | 9645 | 99 | 9754 | 0.98 | 0.98 | 0.99 | ||
2004308 | 527 | 7073 | 25 | 4981 | 0.96 | 0.93 | 1.00 | ||
2004324 | 619 | 7511 | 127 | 8363 | 0.96 | 0.92 | 0.99 | ||
2004332 | 509 | 8889 | 125 | 9078 | 0.97 | 0.95 | 0.99 | ||
2004340 | 322 | 7528 | 204 | 8484 | 0.97 | 0.96 | 0.98 | ||
Merged | 110 | 9890 | 17 | 9983 | 0.99 | 0.99 | 1.00 | ||
2014 | 2014015 | 1235 | 6533 | 1383 | 7362 | 0.84 | 0.84 | 0.84 | |
2014063 | 327 | 8754 | 30 | 7155 | 0.98 | 0.96 | 1.00 | ||
2014079 | 872 | 8228 | 735 | 7671 | 0.91 | 0.90 | 0.91 | ||
2014095 | 274 | 8347 | 532 | 8934 | 0.96 | 0.97 | 0.94 | ||
2014119 | 1099 | 7901 | 253 | 9747 | 0.93 | 0.88 | 0.97 | ||
2014127 | 1469 | 7571 | 40 | 7765 | 0.91 | 0.84 | 0.99 | ||
2014135 | 944 | 9036 | 326 | 9092 | 0.93 | 0.91 | 0.97 | ||
2014191 | 276 | 6834 | 15 | 7946 | 0.98 | 0.96 | 1.00 | ||
2014207 | 1053 | 8135 | 139 | 7551 | 0.93 | 0.89 | 0.98 | ||
2014231 | 493 | 9507 | 139 | 9615 | 0.97 | 0.95 | 0.99 | ||
2014239 | 616 | 8400 | 72 | 6398 | 0.96 | 0.93 | 0.99 | ||
2014247 | 985 | 9015 | 49 | 9951 | 0.95 | 0.90 | 1.00 | ||
2014279 | 945 | 9055 | 659 | 9341 | 0.92 | 0.91 | 0.93 | ||
2014287 | 356 | 8688 | 78 | 7728 | 0.97 | 0.96 | 0.99 | ||
2014335 | 693 | 8520 | 147 | 8402 | 0.95 | 0.92 | 0.98 | ||
2014351 | 1647 | 7080 | 65 | 7690 | 0.90 | 0.81 | 0.99 | ||
2014359 | 1510 | 7835 | 65 | 9925 | 0.92 | 0.84 | 0.99 | ||
Merged | 71 | 9929 | 28 | 9972 | 1.00 | 0.99 | 1.00 |
Year—DOY | FN | TN | FP | TP | OA | UA-N | UA-U | ||
---|---|---|---|---|---|---|---|---|---|
New York | 1986 | 1986087 | 529 | 8938 | 131 | 9869 | 0.97 | 0.94 | 0.99 |
1986151 | 148 | 9777 | 21 | 9752 | 0.99 | 0.99 | 1.00 | ||
1986295 | 435 | 9565 | 126 | 9080 | 0.97 | 0.96 | 0.99 | ||
Merged | 174 | 9826 | 12 | 9988 | 0.99 | 0.98 | 1.00 | ||
1997 | 1997149 | 98 | 5863 | 156 | 7100 | 0.98 | 0.98 | 0.98 | |
1997229 | 21 | 9979 | 28 | 7912 | 1.00 | 1.00 | 1.00 | ||
1997293 | 122 | 9736 | 69 | 8912 | 0.99 | 0.99 | 0.99 | ||
Merged | 17 | 9983 | 46 | 9954 | 1.00 | 1.00 | 1.00 | ||
2004 | 2004001 | 110 | 7870 | 85 | 5123 | 0.99 | 0.99 | 0.98 | |
2004017 | 85 | 5123 | 2 | 678 | 0.99 | 0.98 | 1.00 | ||
2004033 | 134 | 9866 | 40 | 9960 | 0.99 | 0.99 | 1.00 | ||
2004073 | 416 | 9584 | 400 | 9600 | 0.96 | 0.96 | 0.96 | ||
2004097 | 637 | 9363 | 266 | 9734 | 0.95 | 0.94 | 0.97 | ||
2004161 | 3700 | 6230 | 240 | 9776 | 0.80 | 0.63 | 0.98 | ||
2004185 | 544 | 9456 | 53 | 9947 | 0.97 | 0.95 | 0.99 | ||
2004193 | 303 | 9697 | 27 | 9973 | 0.98 | 0.97 | 1.00 | ||
2004233 | 386 | 9614 | 190 | 9910 | 0.97 | 0.96 | 0.98 | ||
2004257 | 335 | 6461 | 39 | 6830 | 0.97 | 0.95 | 0.99 | ||
2004281 | 167 | 9129 | 40 | 9960 | 0.99 | 0.98 | 1.00 | ||
Merged | 21 | 9979 | 8 | 9992 | 1.00 | 1.00 | 1.00 | ||
2014 | 2014100 | 340 | 9629 | 86 | 8850 | 0.98 | 0.97 | 0.99 | |
2014140 | 229 | 6805 | 14 | 5230 | 0.98 | 0.97 | 1.00 | ||
2014180 | 120 | 7653 | 57 | 9867 | 0.99 | 0.98 | 0.99 | ||
2014204 | 78 | 7021 | 135 | 6876 | 0.98 | 0.99 | 0.98 | ||
2014212 | 245 | 9021 | 157 | 8484 | 0.98 | 0.97 | 0.98 | ||
2014220 | 113 | 6792 | 151 | 5595 | 0.98 | 0.98 | 0.97 | ||
2014236 | 115 | 4811 | 197 | 5824 | 0.97 | 0.98 | 0.97 | ||
2014260 | 238 | 8913 | 63 | 8751 | 0.98 | 0.97 | 0.99 | ||
2014300 | 356 | 6393 | 51 | 3677 | 0.96 | 0.95 | 0.99 | ||
Merged | 170 | 9830 | 11 | 9927 | 0.99 | 0.98 | 1.00 | ||
Melbourne | 1986 | 1986231(Merged) | 573 | 9427 | 65 | 9935 | 0.97 | 0.94 | 0.99 |
1997 | 1997069 | 691 | 5689 | 57 | 9387 | 0.95 | 0.89 | 0.99 | |
1997085 | 59 | 9723 | 20 | 8576 | 1.00 | 0.99 | 1.00 | ||
1997101 | 139 | 8971 | 38 | 2528 | 0.98 | 0.98 | 0.99 | ||
1997149 | 439 | 8770 | 33 | 7739 | 0.97 | 0.95 | 1.00 | ||
1997309 | 340 | 9439 | 133 | 9524 | 0.98 | 0.97 | 0.99 | ||
1997325 | 371 | 9626 | 124 | 9871 | 0.98 | 0.96 | 0.99 | ||
Merged | 312 | 9688 | 10 | 9990 | 0.98 | 0.97 | 1.00 | ||
2004 | 2004001 | 224 | 6899 | 193 | 7837 | 0.97 | 0.97 | 0.98 | |
2004097 | 266 | 5686 | 542 | 6048 | 0.94 | 0.96 | 0.92 | ||
2004185 | 447 | 8054 | 68 | 7166 | 0.97 | 0.95 | 0.99 | ||
2004249 | 88 | 8981 | 12 | 9173 | 0.99 | 0.99 | 1.00 | ||
2004297 | 61 | 8152 | 31 | 9688 | 0.99 | 0.99 | 1.00 | ||
2004321 | 182 | 8486 | 21 | 7365 | 0.99 | 0.98 | 1.00 | ||
2004329 | 432 | 9304 | 116 | 9880 | 0.97 | 0.96 | 0.99 | ||
Merged | 49 | 9951 | 15 | 9985 | 1.00 | 1.00 | 1.00 | ||
2014 | 2014013 | 380 | 6710 | 19 | 8410 | 0.97 | 0.95 | 1.00 | |
2014037 | 1560 | 6050 | 2 | 7970 | 0.90 | 0.80 | 1.00 | ||
2014277 | 687 | 7718 | 45 | 8526 | 0.96 | 0.92 | 0.99 | ||
2014285 | 322 | 7597 | 74 | 8395 | 0.98 | 0.96 | 0.99 | ||
2014293 | 929 | 9071 | 23 | 9977 | 0.95 | 0.91 | 1.00 | ||
2014333 | 286 | 8972 | 108 | 8973 | 0.98 | 0.97 | 0.99 | ||
Merged | 148 | 9852 | 15 | 9985 | 0.99 | 0.99 | 1.00 | ||
Munich | 1986 | 1986196 | 1488 | 8510 | 150 | 9817 | 0.92 | 0.85 | 0.98 |
1986212 | 558 | 7973 | 19 | 5315 | 0.96 | 0.93 | 1.00 | ||
Merged | 354 | 9646 | 74 | 9926 | 0.98 | 0.96 | 0.99 | ||
1997 | 1997258(Merged) | 274 | 9726 | 186 | 9814 | 0.98 | 0.97 | 0.98 | |
2004 | 2004214 | 795 | 7312 | 6 | 4914 | 0.94 | 0.90 | 1.00 | |
2004222 | 1691 | 7403 | 182 | 8128 | 0.89 | 0.81 | 0.98 | ||
2004246 | 205 | 9787 | 35 | 9916 | 0.99 | 0.98 | 1.00 | ||
2004254 | 607 | 7126 | 104 | 8467 | 0.96 | 0.92 | 0.99 | ||
2004262 | 873 | 9118 | 70 | 9842 | 0.95 | 0.91 | 0.99 | ||
Merged | 241 | 9759 | 14 | 9986 | 0.99 | 0.98 | 1.00 | ||
2014 | 2014073 | 285 | 7890 | 105 | 8028 | 0.98 | 0.97 | 0.99 | |
2014089 | 2102 | 7271 | 317 | 8328 | 0.87 | 0.78 | 0.96 | ||
2014097 | 451 | 8722 | 287 | 5886 | 0.95 | 0.95 | 0.95 | ||
2014113 | 1120 | 8122 | 87 | 6344 | 0.92 | 0.88 | 0.99 | ||
2014161 | 614 | 8090 | 133 | 9513 | 0.96 | 0.93 | 0.99 | ||
Merged | 282 | 9718 | 96 | 9904 | 0.98 | 0.97 | 0.99 |
SVM-RBF (%) | RF (%) | RNN-LSTM (%) | Proposed Framework (%) | ||
---|---|---|---|---|---|
Temporal transfer | Beijing | 68.63 | 71.38 | 76.25 | 81.87 |
Spatial transfer | New York | 69.13 | 72.75 | 80.63 | 82.08 |
Melbourne | 71.25 | 67.63 | 85.88 | 84.75 | |
Munich | 79.25 | 78.2 | 86.87 | 90.63 | |
Run-Time (min) | - | 7.53 | 0.37 | 0.78 | 0.82 |
Intra-Class Distance | Inter-Class Distance | |||
---|---|---|---|---|
Non-Urban | Urban | Non-Urban To Urban | ||
Temporal Transfer | Spectral features | 0.72 | 0.41 | 0.68 |
Deep Features | 0.55 | 0.37 | 1.04 | |
Spatial Transfer | Spectral features | 0.43 | 0.48 | 0.42 |
Deep Features | 0.37 | 0.4 | 0.51 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, H.; Lu, H.; Mou, L.; Li, W.; Wright, J.; Li, X.; Li, X.; Zhu, X.X.; Wang, J.; Yu, L.; et al. Long-Term Annual Mapping of Four Cities on Different Continents by Applying a Deep Information Learning Method to Landsat Data. Remote Sens. 2018, 10, 471. https://doi.org/10.3390/rs10030471
Lyu H, Lu H, Mou L, Li W, Wright J, Li X, Li X, Zhu XX, Wang J, Yu L, et al. Long-Term Annual Mapping of Four Cities on Different Continents by Applying a Deep Information Learning Method to Landsat Data. Remote Sensing. 2018; 10(3):471. https://doi.org/10.3390/rs10030471
Chicago/Turabian StyleLyu, Haobo, Hui Lu, Lichao Mou, Wenyu Li, Jonathon Wright, Xuecao Li, Xinlu Li, Xiao Xiang Zhu, Jie Wang, Le Yu, and et al. 2018. "Long-Term Annual Mapping of Four Cities on Different Continents by Applying a Deep Information Learning Method to Landsat Data" Remote Sensing 10, no. 3: 471. https://doi.org/10.3390/rs10030471
APA StyleLyu, H., Lu, H., Mou, L., Li, W., Wright, J., Li, X., Li, X., Zhu, X. X., Wang, J., Yu, L., & Gong, P. (2018). Long-Term Annual Mapping of Four Cities on Different Continents by Applying a Deep Information Learning Method to Landsat Data. Remote Sensing, 10(3), 471. https://doi.org/10.3390/rs10030471