Improving Land Use/Land Cover Classification by Integrating Pixel Unmixing and Decision Tree Methods
"> Figure 1
<p>Location of Yunlong Reservoir Basin.</p> "> Figure 2
<p>Methodological framework for proposed improved decision tree method. The abundance data derived from mixed pixel decomposition as the most important features together with other features to establish multi-feature dataset for decision tree, then using a three-dimensional (3D) Terrain model to select training samples (ROIs) of land use/land cover (LULC), finally decision tree algorithms (QUEST, CRUISE, See5.0/C5.0) were used to mine potential ROIs rules of LULC, and complete LULC classification.</p> "> Figure 3
<p>The flow chart of 3D terrain-aided ROI selection.</p> "> Figure 4
<p>GPS points for LULC analysis in the study area.</p> "> Figure 5
<p>Endmember abundance maps of mixed pixel unmixing, (<b>a</b>) Grassland abundance, (<b>b</b>) Water abundance, (<b>c</b>) Arable land (including crops) abundance, (<b>d</b>) Arboreal forest abundance, (<b>e</b>) Low albedo abundance, (<b>f</b>) Arable land (no crops) abundance, (<b>g</b>) Desert and bare surface abundance, (<b>h</b>) High albedo abundance, and (<b>i</b>) Sparse shrub abundance. The range of abundance values is 0–1, and the brighter (values closer to 1) indicates the greater probability of approaching pure pixel.</p> "> Figure 6
<p>Land use/land cover classification results derived from the original and improved decision tree, respectively.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Landsat-8 OLI Image
2.2.2. Digital Elevation Model (DEM)
2.2.3. Ground Spectral Measurements
2.2.4. LULC Classification Validation Data
2.3. Methods
2.3.1. Mixed Pixel Decomposition
2.3.2. Construction of an Improved Decision Tree Feature Dataset
2.3.3. Training Sample Selection by 3D Terrain
2.3.4. Implementing Improved Decision Tree
2.3.5. Accuracy Evaluation
3. Results
3.1. Mixed Pixel Decomposition
3.2. LULC Classification
3.3. Classification Error Analysis
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sophia, S.R.; Rwanga, J.; Ndambuki, M. Accuracy assessment of land use/land cover classification using remote sensing and GIS. Int. J. Geosci. 2017, 8, 611–622. [Google Scholar] [CrossRef]
- Punia, M.J.; Joshi, P.K.; Porwal, M.C. Decision tree classification of land use land cover for Delhi, India using IRS-P6 AWiFS data. Expert Syst. Appl. 2011, 38, 5577–5583. [Google Scholar] [CrossRef]
- Xu, C.G.; Anwar, A. Based on the decision tree classification of remote sensing image classification method application. Appl. Mech. Mater. 2013, 316, 193–196. [Google Scholar] [CrossRef]
- Jenkins, B.K.; Tanguay, A. Handbook of Neural Computing and Neural Networks; MIT Press: Boston, MA, USA, 1995; pp. 10–157. [Google Scholar]
- Han, L.Q. Artificial Neural Network; Beijing University of Posts and Telecommunications Press: Beijing, China, 2006; pp. 56–216. [Google Scholar]
- Dong, J.; Hu, S.X. The research progress and prospects of chaotic neural network. Inf. Control 1997, 26, 360–368. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Leaning Theory, 2nd ed.; Springer: New York, NY, USA, 2000; pp. 10–157. [Google Scholar]
- Corinna, C.; Vladimir, V. Support vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Zadeh, L.A. Soft computing, fuzzy logic and recognition technology. In Proceedings of the IEEE World Congress on Computational Intelligence, Anchorage, AK, USA, 4–9 May 1998; pp. 1678–1679. [Google Scholar]
- Nuaek, D.; Kurse, R. A neuro-fuzzy method to learn fuzzy classification rules from data. Fuzzy Sets Syst. 1997, 89, 277–288. [Google Scholar] [CrossRef]
- Richard, O.; Duda, P.E.; Hart, D.G. Pattern Classification, 2nd ed.; China Machine Press: Beijing, China, 2004; pp. 192–195. [Google Scholar]
- Li, C.K.; Fang, W.; Dong, X.J. Research on the classification of high resolution image based on object-oriented and class rule. Int. Arch. Photogramm. Remote Sens. 2015, XL, 75–80. [Google Scholar] [CrossRef]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 2004, 58, 239–258. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Huang, G.; Zhao, Z. Object-Oriented classification of Polarimetric SAR imagery based on texture features. Int. Symp. Image Data Fusion 2011. [Google Scholar] [CrossRef]
- Friedl, M.A.; Brodley, C.E. Decision tree classification of land cover from remotely sensed data. Remote Sen. Environ. 1997, 61, 399–409. [Google Scholar] [CrossRef]
- Simard, M.; Saatchi, S.S.; Grandi, G.D. The use of decision tree and multi-scale texture for classification of JERS-1 SAR data over tropical forest. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2310–2321. [Google Scholar] [CrossRef]
- Pavuluri, M.K.; Ramanathan, S.; Daniel, Z. A rule-based classifier using classification and regression tree (CART) approach for urban landscape dynamics. In Proceedings of the Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; pp. 24–28. [Google Scholar]
- Dai, E.; Zhuo, W.U.; Haihua, L.U.; Hua, F.U. Linear spectral unmixing-based method for the detection of land cover change in Naidong County, Qinghai-Tibet Plateau. Prog. Geogr. 2015, 34, 854–861. [Google Scholar] [CrossRef]
- Charles, I.; Arnon, K. A review of mixture modeling techniques for sub-pixel land cover estimation. Remote Sens. Rev. 1996, 13, 161–186. [Google Scholar] [CrossRef]
- Roberts, D.A.; Gardner, M.; Church, R.; Ustin, S.; Scheer, G.; Green, R.O. Mapping chaparral in the Santa Monica Mountains using multiple end member spectral mixture mode. Remote Sens. Environ. 1998, 65, 267–279. [Google Scholar] [CrossRef]
- Rashed, T.; Weeks, J.R.; Gadalla, M.S.; Hill, A.G. Revealing the anatomy of cities through spectral mixture analysis of multispectral satellite imagery: A case study of the Greater Cairo Region, Egypt. Geocarto Int. 2001, 16, 5–16. [Google Scholar] [CrossRef]
- Rashed, T.; Weeks, J.R. Measuring the physical composition of urban morphology using multiple end-member spectral mixture models. Photogramm. Eng. Remote Sens. 2003, 69, 1011–1020. [Google Scholar] [CrossRef]
- Smith, M.O.; Ustin, S.L.; Adams, J.B.; Gillespie, A.R.; Smith, M.O. Vegetation in deserts: I. A regional measure of abundance from multispectral images. Remote Sens. Environ. 1990, 31, 1–26. [Google Scholar] [CrossRef]
- Roberts, D.A.; Smith, M.O.; Adams, J.B. Green vegetation, non-photosynthetic vegetation, and soil in AVIRIS. Remote Sens. Environ. 1993, 44, 255–269. [Google Scholar] [CrossRef]
- Xu, N.; Hu, Y.X.; Lei, B.; Zhang, C.; Wang, D.M.; Shi, T. Automated mineral information extraction based on PPI algorithm for hyperspectral imagery. Sci. Surv. Mapp. 2013, 38, 138–141. [Google Scholar] [CrossRef]
- Chang, C.I.; Plaza, A. A fast iterative algorithm for implementation of pixel purity index. IEEE Geosci. Remote Sens. Lett. 2006, 3, 63–67. [Google Scholar] [CrossRef]
- Liu, W.G.; Tang, F.L.; Liu, S.J. The southwest drought on different forest vegetation watershed-taking Songhuaba Reservoir and Yun Long Reservoir as an example. For. Econ. 2012, 10, 12–17. [Google Scholar]
- United State Geological Survey. GloVis. Available online: https://glovis.usgs.gov/ (accessed on 4 August 2017).
- Xu, M.; Du, B.; Zhang, L. Spatial-spectral information based abundance-constrained endmember extraction methods. J. Sel. Top. Appl. 2014, 7, 2004–2015. [Google Scholar] [CrossRef]
- Wu, J.C.; Tsuei, G.C. Comparison of hyperspectral endmember extraction algorithms. J. Appl. Remote Sens. 2013, 7, 073525. [Google Scholar] [CrossRef]
- Weng, F.; Pu, R. Mapping and assessing of urban impervious areas using multiple endmember spectral mixture analysis: A case study in the city of Tampa, Florida. Geocarto Int. 2013, 28, 594–615. [Google Scholar] [CrossRef]
- Nie, M.; Liu, Z.; He, X.; Qiu, Q.; Zhang, Y. End-member extraction based on segmented vertex component analysis in hyperspectral images. Appl. Opt. 2017, 56, 2476–2480. [Google Scholar] [CrossRef] [PubMed]
- Heylen, R.; Parente, M.; Scheunders, P. Estimation of the number of endmembers in a hyperspectral image via the Hubness phenomenon. IEEE Trans. Geosci. Remote Sens. 2017, 99, 1–10. [Google Scholar] [CrossRef]
- Dópido, I.; Li, J.; Gamba, P.; Plaza, A. A new hybrid strategy combining semisupervised classification and unmixing of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3619–3629. [Google Scholar] [CrossRef]
- Quinlan, J.R. Induction on decision tree. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef]
- Rajeswari, K.; Preeti, K. Selection of significant features using decision tree classifiers. Preeti Kumari Int. J. Eng. Res. Appl. 2014, 4, 48–51. [Google Scholar]
- Racoviteanu, A.; Williams, M.W. Decision tree and texture analysis for mapping debris-covered glaciers in the Kangchenjunga area, Eastern Himalaya. Remote Sens. 2012, 4, 3078–3109. [Google Scholar] [CrossRef]
- Landgrebe, D. A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 2002, 21, 660–674. [Google Scholar] [CrossRef]
- Guan, L.; Xie, W.; Pei, J. Segmented minimum noise fraction transformation for efficient feature extraction of hyperspectral images. Pattern Recogn. 2015, 48, 3216–3226. [Google Scholar] [CrossRef]
- Yang, C.; Wang, J.L.; Qu, L.Q.; Li, S.H.; Sun, X.Q. Research on the extraction of surface feature abundance based on the least square mixed pixel decomposition. Sci. Surv. Mapp. 2017, 229, 147–158. [Google Scholar]
- Li, C.J.; Liu, L.Y.; Wang, J.H.; Wang, R.C. Comparison of Two Methods of Fusing Remote Sensing Images with Fidelity of Spectra Information. In Proceedings of the Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; pp. 1376–1385. [Google Scholar]
- Heinz, D.C.; Chang, C. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2002, 39, 529–545. [Google Scholar] [CrossRef]
- Zhang, F.F.; Sun, X.; Xue, L.Y.; Gao, L.R.; Liu, C.X. Hyperspectral mixed pixel decomposition policy merging simple linear iterative clustering. Trans. CSAE 2015, 31, 199–206. [Google Scholar] [CrossRef]
- Myneni, R.B.; Hall, F.G. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote Sens. 1995, 33, 481–486. [Google Scholar] [CrossRef]
- Halounová, L. Reclamation areas and their development studied by vegetation indices. Int. J. Digit. Earth 2008, 1, 155–164. [Google Scholar] [CrossRef]
- Zhao, Y.S. Principles and Methods of Analysis of Remote Sensing Applications; Science Press: Beijing, China, 2003; pp. 1–206. [Google Scholar]
- Dai, C.D. Remote Sensing Image Application Processing and Analysis; Tsinghua University Press: Beijing, China, 2004; pp. 45–187. [Google Scholar]
- Vanonckelen, S.; Lhermitte, S.; Rompaey, A.V. The effect of atmospheric and topographic correction methods on land cover classification accuracy. Int. J. Appl. Earth Obs. 2013, 24, 9–21. [Google Scholar] [CrossRef]
- Moreira, E.P.; Valeriano, M.M. Application and evaluation of topographic correction methods to improve land cover mapping using object-based classification. Int. J. Appl. Earth Obs. 2014, 32, 208–217. [Google Scholar] [CrossRef]
- Richards, J.A.; Jia, X. Remote Sensing Digital Image Analysis: An Introduction, 3rd ed.; Springer: New York, NY, USA, 2006; pp. 47–54. [Google Scholar]
- Sunil, B.; Shanka, P.; Maria, R. Per-pixel and object-oriented classification methods for mapping urban features using Ikonos satellite data. Appl. Geogr. 2010, 4, 650–665. [Google Scholar] [CrossRef]
- Zhu, X.F.; Pan, Y.; Zang, J.S.; Wang, S.; Gu, X.H.; Xu, C. The effects of training samples on the wheat planting areameasure accuracy in TM scale (I): The accuracy response of different classifiers to training samples. J. Remote Sens. 2007, 6, 826–836. [Google Scholar]
- Jin, H.; Stehman, S.V.; Mountrakis, G. Assessing the impact of training sample selection on accuracy of an urban classification: A case study in Denver, Colorado. Int. J. Remote Sens. 2014, 35, 2067–2081. [Google Scholar] [CrossRef]
- Bag, M.; Gauri, S.K.; Chakraborty, S. Feature-based decision rules for control charts pattern recognition: A comparison between CART and QUEST algorithm. Int. J. Ind. Eng. Comput. 2012, 3, 199–210. [Google Scholar] [CrossRef]
- JianSheng, W.U.; Pan, K.Y.; Peng, J.; Huang, X.L. Research on the accuracy of TM images land-use classification based on QUEST decision tree: A case study of Lijiang in Yunnan. Geogr. Res. 2012, 31, 1973–1980. [Google Scholar]
- Duan, H.; Deng, Z.; Deng, F. Classification of groundwater potential in Chaoyang area based on QUEST algorithm. In Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 890–893. [Google Scholar]
- Kim, H.; Loh, W.Y. Classification trees with unbiased multi-way splits. J. Am. Stat. Assoc. 2001, 96, 589–604. [Google Scholar] [CrossRef]
- Bai, X.; Wuliangha, B.; Hasiqiqige. The study of the remote sensing image classification based on C5.0 algorithm of decision tree. Remote Sens. Technol. Appl. 2014, 29, 338–343. [Google Scholar]
- Foody, G.M. Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy. Photogramm. Eng. Remote Sens. 2004, 70, 627–633. [Google Scholar] [CrossRef]
- Shi, T.; Liu, J.Z.; Hu, J.; Liu, H.; Wang, J.; Wu, G.F. New spectral metrics for mangrove forest identification. Remote Sens. Lett. 2016, 9, 885–894. [Google Scholar] [CrossRef]
Vegetation Index | Expression | Index Characteristics |
---|---|---|
NDVI | The range of NDVI values is [−1, 1], the greater the NDVI value, the more green vegetation cover there is. | |
PVI | PVI can better eliminate the influence of soil in background. | |
RVI | The value of RVI is greater than 1 for green healthy vegetation, while on a non-vegetated land surface (bare soil, water bodies, artificial buildings, serious disease, and insect pests or a vegetation dead zone), the RVI value is near 1. RVI is usually greater than 2. | |
EVI | EVI can correct for the influence of soil background and aerosol scattering. The range of values is [−1, 1], and green vegetation is generally [0.2–0.8]. | |
DVI | DVI is extremely sensitive to changes in soil background. |
Number | Feature Name | Expression Model |
---|---|---|
1 | Mean | |
2 | Variance | |
3 | Homogeneity | |
4 | Contract | |
5 | Dissimilarity | |
6 | Entropy | |
7 | Second Moment | |
8 | Correlation |
Encode | Feature Data | Encode | Feature Data |
---|---|---|---|
B1 | OLI1 | B20 | Arable land (including crops) abundance |
B2 | OLI2 | B21 | Arable land (no crops) abundance |
B3 | OLI3 | B22 | Desert and bare surface abundance |
B4 | OLI4 | B23 | High albedo abundance |
B5 | OLI5 | B24 | Sparse shrub abundance |
B6 | OLI6 | B25 | Arboreal forest abundance |
B7 | OLI7 | B26 | Low albedo abundance |
B8 | MNF1 | B27 | DEM |
B9 | MNF2 | B28 | Slop |
B10 | MNF3 | B29 | Aspect |
B11 | MNF4 | B30 | Other topographic elements |
B12 | ISODATA | B31 | Mean |
B13 | NDVI | B32 | Variance |
B14 | PVI | B33 | Homogeneity |
B15 | RVI | B34 | Contract |
B16 | EVI | B35 | Dissimilarity |
B17 | DVI | B36 | Entropy |
B18 | Grassland abundance | B37 | Second moment |
B19 | Water abundance | B38 | Correlation |
First Class | Second Class | Third Class |
---|---|---|
1 farming land | 12 arable land | - |
2 garden | - | - |
3 forest land | 31 arbor forest | 311 broad-leaved forest 312 coniferous forest |
32 sparse forest | - | |
33 sparse shrub | - | |
4 grassland | 41 natural grassland | 411 high coverage grassland 412 medium coverage grassland |
5 building region | - | - |
6 roads | - | - |
7 structure | 71 hardened surface | 711 revetment |
72 hydraulic facilities | 721 dams | |
73 other structures | - | |
8 artificial piling and digging land | - | - |
9 desert and bare surface | - | - |
10 water | - | - |
Number | Precision Index | Expression Model |
---|---|---|
1 | Overall accuracy | |
2 | Kappa coefficient |
Classification 2 | ||||
---|---|---|---|---|
Allocation | Correct | Incorrect | ||
Classification 1 | Correct | f11 | f12 | |
Incorrect | f21 | f22 | ||
Endmember Abundance Combination | RMSE Error | RMSE Mean Value |
---|---|---|
Grassland, water, arable land (including crops) | RMSE1 | 0.174913 |
Arboreal forest, high albedo, sparse shrub | RMSE2 | 0.174913 |
Arboreal forest, low albedo, arable land (including crops) | RMSE3 | 0.174914 |
Low albedo, desert and bare surface, arable land (no crops) | RMSE4 | 0.174913 |
Algorithms | Kappa Coefficient | Overall Accuracy | Algorithms | Kappa Coefficient | Overall Accuracy | ||
---|---|---|---|---|---|---|---|
Original decision tree | QUEST | 0.8409 | 87.84% | Improved decision tree | QUEST | 0.9519 | 96.26% |
CRUISE 1D | 0.7572 | 81.69% | CRUISE 1D | 0.8621 | 89.55% | ||
CRUISE 2D | 0.8111 | 85.81% | CRUISE 2D | 0.8971 | 92.14% | ||
See5.0/C5.0 | 0.7405 | 79.36% | See5.0/C5.0 | 0.8495 | 88.52% |
LULC Types | Original Decision Tree | Improved Decision Tree | ||||||
---|---|---|---|---|---|---|---|---|
QUEST | CRUISE 1D | CRUISE 2D | See5.0/C5.0 | QUEST | CRUISE 1D | CRUISE 2D | See5.0/C5.0 | |
Arable land | 154.15 | 163.50 | 169.40 | 162.00 | 154.18 | 163.70 | 169.47 | 162.03 |
Garden | 1.08 | 2.10 | 2.01 | 0.77 | 1.28 | 3.10 | 3.01 | 1.77 |
Coniferous forest | 350.29 | 381.53 | 379.21 | 361.97 | 356.29 | 381.53 | 379.14 | 361.99 |
Broad-leaved forest | 26.29 | 11.94 | 10.38 | 22.52 | 20.26 | 11.94 | 10.38 | 22.48 |
Sparse forest | 39.67 | 45.92 | 33.53 | 30.61 | 27.67 | 34.92 | 26.53 | 20.60 |
Sparse shrub | 66.87 | 55.61 | 70.86 | 50.03 | 76.87 | 65.41 | 76.86 | 59.04 |
Medium coverage grassland | 24.33 | 10.43 | 26.65 | 24.88 | 34.33 | 20.43 | 36.65 | 34.88 |
High coverage grassland | 32.44 | 27.83 | 27.25 | 36.77 | 17.44 | 11.82 | 10.25 | 24.77 |
Building region | 19.39 | 9.04 | 8.06 | 7.60 | 24.38 | 12.04 | 8.75 | 9.59 |
Roads | 6.85 | 10.28 | 1.47 | 7.58 | 6.86 | 13.29 | 1.48 | 7.59 |
Dams | 0.16 | 0.18 | 0.08 | 0.08 | 0.14 | 0.18 | 0.08 | 0.09 |
Revetment | 0.95 | 0.70 | 0.16 | 1.78 | 0.97 | 0.75 | 0.16 | 1.77 |
Other structure | 3.47 | 5.40 | 2.12 | 4.89 | 1.46 | 3.34 | 0.11 | 2.87 |
Artificial piling and digging land | 3.48 | 6.08 | 2.86 | 9.71 | 5.49 | 8.09 | 4.87 | 11.73 |
Desert and bare surface | 11.35 | 9.29 | 12.64 | 18.55 | 11.33 | 9.24 | 12.54 | 18.45 |
Water | 6.97 | 6.10 | 5.53 | 6.17 | 6.99 | 6.15 | 5.63 | 6.27 |
Total | 745.94 | 745.93 | 745.91 | 745.92 | 745.94 | 745.93 | 745.91 | 745.92 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Wu, G.; Ding, K.; Shi, T.; Li, Q.; Wang, J. Improving Land Use/Land Cover Classification by Integrating Pixel Unmixing and Decision Tree Methods. Remote Sens. 2017, 9, 1222. https://doi.org/10.3390/rs9121222
Yang C, Wu G, Ding K, Shi T, Li Q, Wang J. Improving Land Use/Land Cover Classification by Integrating Pixel Unmixing and Decision Tree Methods. Remote Sensing. 2017; 9(12):1222. https://doi.org/10.3390/rs9121222
Chicago/Turabian StyleYang, Chao, Guofeng Wu, Kai Ding, Tiezhu Shi, Qingquan Li, and Jinliang Wang. 2017. "Improving Land Use/Land Cover Classification by Integrating Pixel Unmixing and Decision Tree Methods" Remote Sensing 9, no. 12: 1222. https://doi.org/10.3390/rs9121222
APA StyleYang, C., Wu, G., Ding, K., Shi, T., Li, Q., & Wang, J. (2017). Improving Land Use/Land Cover Classification by Integrating Pixel Unmixing and Decision Tree Methods. Remote Sensing, 9(12), 1222. https://doi.org/10.3390/rs9121222