Long-Term Changes in Water Clarity in Lake Liangzi Determined by Remote Sensing
<p>Distributions of sample sites and hydrological station in Lake Liangzi.</p> "> Figure 2
<p>The SDD algorithms for (<b>a</b>) the calibration of in situ measured SDDs and Landsat reflectance and (<b>b</b>) the validation of Landsat-estimated SDDs with in situ measured SDD. R<sub>Blue</sub> and R<sub>NIR</sub> represent the atmospherically corrected reflectance values of the blue band and near-infrared band in the Landsat images, respectively.</p> "> Figure 3
<p>Long-term trend in Landsat retrieved seasonal mean SDD of Lake Liangzi during the study period. Sp: spring; Su: summer; F: fall; W: winter.</p> "> Figure 4
<p>The (<b>a</b>) annual mean SDD and (<b>b</b>) seasonal mean SDD in Lake Liangzi.</p> "> Figure 5
<p>Maps of the averaged SDD retrieved from Landsat images from 2007 to 2016.</p> "> Figure 6
<p>Long-term trend in Landsat retrieved annual mean SDD of five regions in Lake Liangzi during the study.</p> "> Figure 7
<p>The increase in (<b>a</b>) population and (<b>b</b>) GDP in the Lake Liangzi basin from 2007 to 2016.</p> "> Figure 8
<p>Correlations of the SDD with (<b>a</b>) population and (<b>b</b>) GDP. Error bars represent SDD standard deviations.</p> "> Figure 9
<p>Variation in (<b>a</b>) monthly mean water levels, (<b>b</b>) monthly rainfall amounts, and (<b>c</b>) monthly mean air temperature in Lake Liangzi from 2007 to 2016.</p> "> Figure 10
<p>Correlations of the SDD with (<b>a</b>) water level, (<b>b</b>) rainfall amount, and (<b>c</b>) air temperature. Error bars represent SDD standard deviations.</p> "> Figure 11
<p>Long-term trends in the frequency of heavy rainfall from 1957 to 2016 in Lake Liangzi.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Sites and Water Quality Parameters Measurements
2.3. Satellite Data Acquisition and Process
2.4. Water Level, Rainfall, Air Temperature, Population, and GDP Data
2.5. Statistical Analysis and Accuracy Assessment
3. Results
3.1. In Situ SDD Characteristics
3.2. Algorithm Development and Validation
3.3. Variations in SDD
3.4. Relationships of Water Clarity with Population and GDP
3.5. Relationships between Water Clarity and Air Temperature, Water Levels, and Rainfall
4. Discussion
4.1. Predictive SDD Algorithm for Landsat Imagery
4.2. Potential Factors for Long-Term Changes in SDD
4.3. Implications of Decreasing SDD for Ecosystem Evolution
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhou, Y.Q.; Ma, J.R.; Zhang, Y.L.; Qin, B.Q.; Jeppesen, E.; Shi, K.; Brookes, J.D.; Spencer, R.G.M.; Zhu, G.W.; Gao, G. Improving water quality in China: Environmental investment pays dividends. Water Res. 2017, 118, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Bonansea, M.; Rodriguez, M.C.; Pinotti, L.; Ferrero, S. Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero Reservoir (Argentina). Remote Sens. Environ. 2015, 158, 28–41. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Shi, K.; Zhu, G.; Zhou, Y.; Zhang, Y.; Guo, Y. Monitoring spatiotemporal variations in nutrients in a large drinking water reservoir and their relationships with hydrological and meteorological conditions based on Landsat 8 imagery. Sci. Total Environ. 2017, 599, 1705–1717. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Zhang, Y.L.; Zhou, Y.Q.; Liu, X.H.; Zhu, G.W.; Qin, B.Q.; Gao, G. Long-term MODIS observations of cyanobacterial dynamics in lake taihu: Responses to nutrient enrichment and meteorological factors. Sci. Rep. 2017. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.L.; Giardino, C.; Li, L.H. Water optics and water colour remote sensing. Remote Sens. 2017, 9, 818. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, Y.; Guo, Y.; Xu, Y.; Liu, G.; Du, C. Landsat-based long-term monitoring of total suspended matter concentration pattern change in the wet season for Dongting lake, China. Remote Sens. 2015, 7, 13975–13999. [Google Scholar] [CrossRef]
- Tebbs, E.J.; Remedios, J.J.; Harper, D.M. Remote sensing of Chlorophyll-a as a measure of cyanobacterial biomass in Lake Bogoria, a hypertrophic, saline-alkaline, flamingo lake, using Landsat ETM. Remote Sens. Environ. 2013, 135, 92–106. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Shi, K.; Zha, Y.; Zhou, Y.; Liu, M. A Landsat 8 OLI-based, semianalytical model for estimating the total suspended matter concentration in the slightly turbid Xin’anjiang Reservoir (China). IEEE J. 2017, 9, 398–413. [Google Scholar] [CrossRef]
- Mccullough, I.M.; Loftin, C.S.; Sader, S.A. Combining lake and watershed characteristics with Landsat TM data for remote estimation of regional lake clarity. Remote Sens. Environ. 2012, 123, 109–115. [Google Scholar] [CrossRef]
- Olmanson, L.G.; Brezonik, P.L.; Finlay, J.C.; Bauer, M.E. Comparison of Landsat 8 and Landsat 7 for regional measurements of CDOM and water clarity in lakes. Remote Sens. Environ. 2016, 185, 119–128. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, Y.; Zhu, G.; Qin, B.; Pan, D. Deteriorating water clarity in shallow waters: Evidence from long term modis and in-situ observations. Int. J. Appl. Earth Obs. 2018, 68, 287–297. [Google Scholar] [CrossRef]
- Shang, S.L.; Lee, Z.; Shi, L.H.; Lin, G.; Wei, G.M.; Li, X.D. Changes in water clarity of the Bohai Sea: Observations from MODIS. Remote Sens. Environ. 2016, 186, 22–31. [Google Scholar] [CrossRef]
- Xu, X.; Yang, L.; Huang, X.; Li, Z.; Yu, D. Water brownification may not promote invasions of submerged non-native macrophytes. Hydrobiologia 2018, 817, 215–225. [Google Scholar] [CrossRef]
- Matthews, M.W. A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. Int. J. Remote Sens. 2011, 32, 6855–6899. [Google Scholar] [CrossRef]
- Juma, D.; Wang, H.T.; Li, F.T. Impacts of population growth and economic development on water quality of a lake: Case study of Lake Victoria Kenya water. Environ. Sci. Pollut. Res. 2014, 21, 5737–5746. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.T.; Ma, R.H.; Xu, X.F.; Kong, F.X.; Zhang, S.X.; Kong, W.J.; Hao, J.Y.; Shang, L.L. Two-decade reconstruction of algal blooms in China’s Lake Taihu. Environ. Sci. Technol. 2009, 43, 3522–3528. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Chen, L.D.; Sun, R.H.; Kong, P.R. Land use changes and socio-economic development strongly deteriorate river ecosystem health in one of the largest basins in China. Sci. Total Environ. 2018, 616, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.C.; Wang, X.L.; Yang, H.; Li, Y.M.; Wang, Y.H.; Chen, X.; Xu, L.J. Satellite data regarding the eutrophication response to human activities in the plateau lake Dianchi in China from 1974 to 2009. Sci. Total Environ. 2014, 485, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Goransson, G.; Larson, M.; Bendz, D. Variation in turbidity with precipitation and flow in a regulated river system-river Variation in turbidity with precipitation and flow in a regulated river system-river Göta Älv, SW Sweden. Hydrol. Earth Syst. Sci. 2013, 17, 2529–2542. [Google Scholar] [CrossRef]
- Khan, S.J.; Deere, D.; Leusch, F.D.L.; Humpage, A.; Jenkins, M.; Cunliffe, D. Extreme weather events: Should drinking water quality management systems adapt to changing risk profiles? Water Res. 2015, 85, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Murshed, M.F.; Aslam, Z.; Lewis, R.; Chow, C.; Wang, D.S.; Drikas, M.; van Leeuwen, J. Changes in the quality of river water before, during and after a major flood event associated with a La Niña cycle and treatment for drinking purposes. J. Environ. Sci. 2014, 26, 1985–1993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.L.; Shi, K.; Zhou, Y.Q.; Liu, X.H.; Qin, B.Q. Monitoring the river plume induced by heavy rainfall events in large, shallow, Lake Taihu using MODIS 250 m imagery. Remote Sens. Environ. 2016, 173, 109–121. [Google Scholar] [CrossRef]
- Xie, D.; Zhou, H.; Zhu, H.; Ji, H.; Li, N.; An, S. Differences in the regeneration traits of potamogeton crispus turions from macrophyte- and phytoplankton-dominated lakes. Sci. Rep. 2015, 5, 12907. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.L.; Jeppesen, E.; Liu, X.H.; Qin, B.Q.; Shi, K.; Zhou, Y.Q.; Thomaz, S.M.; Deng, J.M. Global loss of aquatic vegetation in lakes. Earth Sci. Rev. 2017, 173, 259–265. [Google Scholar] [CrossRef]
- Liu, G.H.; Li, E.H.; Yuan, L.Y.; Li, W. Occurrence of aquatic macrophytes in a eutrophic subtropical lake in relation to toxic wastewater and fish overstocking. J. Freshw. Ecol. 2008, 23, 13–19. [Google Scholar] [CrossRef]
- Lee, Z.; Shang, S.; Qi, L.; Yan, J.; Lin, G. A semi-analytical scheme to estimate secchi-disk depth from Landsat-8 measurements. Remote Sens. Environ. 2016, 177, 101–106. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D.; Remer, L.A.; Vermote, E.; Chu, A.; Holben, B. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res. Atoms. 1997, 102, 17051–17067. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Fu, D. Atmospheric correction of Hyperion imagery over estuarine waters: A case study of the Pearl River Estuary in southern China. Int. J. Remote Sens. 2017, 38, 199–210. [Google Scholar] [CrossRef]
- Zhang, M.; Hu, C.; English, D.; Carlson, P.; Muller-Karger, F.E.; Toro-Farmer, G.; Herwitz, S.R. Atmospheric correction of Aisa measurements over the Florida keys optically shallow waters: Challenges in radiometric calibration and aerosol selection. IEEE J. 2015, 8, 4189–4196. [Google Scholar] [CrossRef]
- Brezonik, P.; Menken, K.D.; Bauer, M. Landsat-based remote sensing of lake water quality characteristics, including Chlorophyll and colored dissolved organic matter (CDOM). Lake Reserv. Manag. 2005, 21, 373–382. [Google Scholar] [CrossRef]
- Sriwongsitanon, N.; Surakit, K.; Thianpopirug, S. Influence of atmospheric correction and number of sampling points on the accuracy of water clarity assessment using remote sensing application. J. Hydrol. 2011, 401, 203–220. [Google Scholar] [CrossRef]
- Tan, W.X.; Liu, P.C.; Liu, Y.; Yang, S.; Feng, S.N. A 30-year assessment of phytoplankton blooms in Erhai Lake using Landsat imagery: 1987 to 2016. Remote Sens. 2017, 9, 1265. [Google Scholar] [CrossRef]
- Olmanson, L.G.; Bauer, M.E.; Brezonik, P.L. A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes. Remote Sens. Environ. 2008, 112, 4086–4097. [Google Scholar] [CrossRef]
- Zhao, D.; Cai, Y.; Jiang, H.; Xu, D.; Zhang, W.; An, S. Estimation of water clarity in Taihu Lake and surrounding rivers using Landsat imagery. Adv. Water Resour. 2011, 34, 165–173. [Google Scholar] [CrossRef]
- Urbanski, J.A.; Wochna, A.; Bubak, I.; Grzybowski, W.; Lukawska-Matuszewska, K.; Łącka, M.; Śliwińska, S.; Wojtasiewicz, B.; Zajączkowski, M. Application of Landsat 8 imagery to regional-scale assessment of lake water quality. Int. J. Appl. Earth Obs. 2016, 51, 28–36. [Google Scholar] [CrossRef]
- Fleming-Lehtinen, V.; Laamanen, M. Long-term changes in secchi depth and the role of phytoplankton in explaining light attenuation in the Baltic Sea. Estuar. Coast. Shelf. Sci. 2012, 102, 1–10. [Google Scholar] [CrossRef]
- Capuzzo, E.; Stephens, D.; Silva, T.; Barry, J.; Forster, R.M. Decrease in water clarity of the southern and central North sea during the 20th century. Glob. Chang. Biol. 2015, 21, 2206–2214. [Google Scholar] [CrossRef] [PubMed]
- Cao, N.; Lee, H.; Jung, H.C.; Yu, H.W. Estimation of water level changes of large-scale Amazon wetlands using ALOS2 ScanSAR differential interferometry. Remote Sens. 2018, 10, 966. [Google Scholar] [CrossRef]
- Hongve, D.; Riise, G.; Kristiansen, J.F. Increased colour and organic acid concentrations in Norwegian forest lakes and drinking water–a result of increased precipitation? Aquat. Sci. 2004, 66, 231–238. [Google Scholar] [CrossRef]
- Zhang, K.; Dong, X.H.; Yang, X.D.; Kattel, G.; Zhao, Y.J.; Wang, R. Ecological shift and resilience in China’s lake systems during the last two centuries. Glob. Planet. Chang. 2018, 165, 147–159. [Google Scholar] [CrossRef]
- Alongi, D.M.; Chong, V.C.; Dixon, P.; Sasekumar, A.; Tirendi, F. The influence of fish cage aquaculture on pelagic carbon flow and water chemistry in tidally dominated mangrove estuaries of peninsular Malaysia. Mar. Environ. Res. 2003, 55, 313–333. [Google Scholar] [CrossRef]
- Fee, E.J.; Hecky, R.E.; Kasian, S.E.M.; Cruikshank, D.R. Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes. Limnol. Oceanogr. 1996, 41, 912–920. [Google Scholar] [CrossRef] [Green Version]
- Strock, K.E.; Theodore, N.; Gawley, W.G.; Ellsworth, A.C.; Saros, J.E. Increasing dissolved organic carbon concentrations in northern boreal lakes: Implications for lake water transparency and thermal structure. J. Geophys. Res. Biogeosci. 2017, 122, 1022–1035. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.; Foley, J.A.; Folke, C.; Walker, B. Catastrophic shifts in ecosystems. Nature 2001, 413, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, M.; Hosper, S.H.; Meijer, M.L.; Moss, B.; Jeppesen, E. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 1993, 8, 275–279. [Google Scholar] [CrossRef]
- Villamagna, A.M.; Murphy, B.R. Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): A review. Freshw. Biol. 2010, 55, 282–298. [Google Scholar] [CrossRef]
- Leach, T.H.; Beisner, B.E.; Carey, C.C.; Pernica, P.; Rose, K.C.; Huot, Y.; Brentrup, J.A.; Domaizon, I.; Grossart, H.P.; Ibelings, B.W.; et al. Patterns and drivers of deep Chlorophyll maxima structure in 100 lakes: The relative importance of light and thermal stratification. Limnol. Oceanogr. 2018, 63, 628–646. [Google Scholar] [CrossRef]
- Gobler, C.J.; Doherty, O.M.; Hattenrath-Lehmann, T.K.; Griffith, A.W.; Kang, Y.; Litaker, R.W. Ocean warming since 1982 has expanded the niche of toxic algal blooms in the north Atlantic and north Pacific oceans. Proc. Natl. Acad. Sci. USA 2017, 114, 4975–4980. [Google Scholar] [CrossRef] [PubMed]
- Henson, S.A.; Cole, H.S.; Hopkins, J.; Martin, A.P.; Yool, A. Detection of climate change-driven trends in phytoplankton phenology. Glob. Chang. Biol. 2018, 24, E101–E111. [Google Scholar] [CrossRef] [PubMed]
Calibration SDD Dataset (m) | Validation SDD Dataset (m) | |||||
---|---|---|---|---|---|---|
Min | Max | Mean ± SD | Min | Max | Mean ± SD | |
Spring (April and May) | 0.45 | 0.90 | 0.63 ± 0.10 | 0.40 | 1.00 | 0.66 ± 0.13 |
Summer (July and August) | 0.25 | 0.65 | 0.44 ± 0.09 | 0.25 | 0.60 | 0.42 ± 0.10 |
Fall (September and November) | 0.45 | 1.10 | 0.73 ± 0.12 | 0.50 | 1.15 | 0.75 ± 0.12 |
Winter (January and February) | 0.35 | 1.00 | 0.73 ± 0.13 | 0.40 | 1.00 | 0.72 ± 0.13 |
Total dataset | 0.25 | 1.10 | 0.63 ± 0.16 | 0.25 | 1.15 | 0.64 ± 0.17 |
Algorithms | R2 | p |
---|---|---|
ln(SDD) = 28.16 × RBlue − 72.38 × RNIR − 0.531 | 0.646 | <0.001 |
ln(SDD) = −6.781 × (RNIR/RBlue) + 2.023 | 0.806 | <0.001 |
ln(SDD) = −8.266 × (RNIR/RBlue) + 1.863 × RBlue + 2.386 | 0.813 | <0.001 |
ln(SDD) = −8.753 × (RNIR/RBlue) + 5.223 × RNIR + 2.552 | 0.860 | <0.001 |
Tau Correlation Coefficient | S | Z | p Value | |
---|---|---|---|---|
Whole lake | −0.392 | −67 | −3.069 | 0.002 |
Niushanhu | −0.480 | −82 | −3.752 | <0.001 |
Manjianghu | −0.345 | −59 | −2.690 | 0.007 |
Gaotanghu | −0.415 | −71 | −3.260 | 0.001 |
Qianjiangdahu | −0.421 | −72 | −3.296 | 0.001 |
Zhangqiaohu | −0.450 | −77 | −3.524 | <0.001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Huang, X.; Zhang, Y.; Yu, D. Long-Term Changes in Water Clarity in Lake Liangzi Determined by Remote Sensing. Remote Sens. 2018, 10, 1441. https://doi.org/10.3390/rs10091441
Xu X, Huang X, Zhang Y, Yu D. Long-Term Changes in Water Clarity in Lake Liangzi Determined by Remote Sensing. Remote Sensing. 2018; 10(9):1441. https://doi.org/10.3390/rs10091441
Chicago/Turabian StyleXu, Xuan, Xiaolong Huang, Yunlin Zhang, and Dan Yu. 2018. "Long-Term Changes in Water Clarity in Lake Liangzi Determined by Remote Sensing" Remote Sensing 10, no. 9: 1441. https://doi.org/10.3390/rs10091441
APA StyleXu, X., Huang, X., Zhang, Y., & Yu, D. (2018). Long-Term Changes in Water Clarity in Lake Liangzi Determined by Remote Sensing. Remote Sensing, 10(9), 1441. https://doi.org/10.3390/rs10091441