Landsat-Based Long-Term Monitoring of Total Suspended Matter Concentration Pattern Change in the Wet Season for Dongting Lake, China
"> Figure 1
<p>Location map of Dongting Lake in China. The pink points represent the sampling sites, and the red triangle and green rhombus represent the location of the Chenglingji hydrological site and the Yueyang meteorological site, respectively. The river’s direction of flow is the same as the alphabetical order of the name of each river.</p> "> Figure 2
<p>Scatter-plots of TSM-model calibration (<b>left</b>) between in situ TSM-measurement data and simulated Landsat-based derived R<sub>rs</sub>, and TSM-model validation (<b>right</b>) between measured and Rrs-based derived TSM using Equations (5–7). (<b>a</b>) & (<b>b</b>)based on Landsat 8 OLI sensor, (<b>c</b>) & (<b>d</b>)based on Landsat ETM<sup>+</sup>/TM sensor, (<b>e</b>) & (<b>f</b>)based on Landsat MSS sensor. TSM is the total suspended matter, OLI is the Operational Land Imager, ETM<sup>+</sup> is the Enhanced Thematic Mapper Plus, TM is the Thematic Mapper, and MSS is the Multispectral Scanner.</p> "> Figure 3
<p>Comparison of measured TSM and OLI-based TSM for Landsat 8.</p> "> Figure 4
<p>Derived-TSM pattern distribution snapshot map in the wet season at Dongting Lake from 1978 to 2013.</p> "> Figure 5
<p>Derived mean TSM for WDL and two sub-regions of EDL and SDL in the wet season, from 1978 to 2013. WDL is the Whole Dongting Lake, EDL is the East Dongting Lake, and SDL is the South Dongting Lake.</p> "> Figure 6
<p>Relationship between mean TSM and mean water level from July to August. The r of the data pairs in WDL (<b>a</b>) and EDL (<b>b</b>) show statistically significant correlations. Correlation analysis showed no significant correlation of the paired data in SDL (<b>c</b>).</p> "> Figure 7
<p>Relationship between mean TSM and mean water level from July to August for WDL (<b>a</b>); EDL (<b>b</b>) and SDL (<b>c</b>). The blue line is the regression line for the years 1978 to 1999 and the red line is the regression line for the years 2000 and 2013.</p> "> Figure 8
<p>Digital photo taken at EDL on 7 August 2013 showing sand mining vessels (<b>a</b>) and automatic unloading vessels (<b>b</b>).</p> "> Figure 9
<p>Relationship between precipitation data and mean TSM, 1978–2013. Precipitation data refers to total precipitation over seven days prior to the acquisition date of each Landsat image, measured at Yueyang meteorological station. Results show a statistically significant positive correlation for WDL, EDL and SDL.</p> "> Figure 10
<p>Relationship between mean TSM and wind speed, 1978–2013. No significant correlations were found for WDL, EDL or SDL.</p> ">
Abstract
:1. Introduction
- (1)
- Develop a model, based on the Landsat images, that addresses sensor-associated differences and atmospheric corrections to estimate TSM for inland lake water with extreme variation.
- (2)
- Document the long-term pattern in TSM variation in the wet season from 1978 to 2013 and understand its relationship to environmental factors and anthropogenic activities.
2. Materials and Methods
2.1. Study Area
2.2. Landsat Images Acquisition and Pre-Processing
Path/Row | Acquisition Date (YYYY/MM/DD) | Sensor | Spatial Resolution (m) |
---|---|---|---|
133/40 | 1978/08/06 | MSS | 60 |
123/40 | 1983/08/06 | MSS | 60 |
123/40 | 1984/08/16 | MSS | 60 |
123/40 | 1987/08/25 | TM | 30 |
123/40 | 1990/09/02 | TM | 30 |
123/40 | 1991/07/19 | TM | 30 |
123/40 | 1994/08/12 | TM | 30 |
123/40 | 1996/08/17 | TM | 30 |
123/40 | 1999/09/03 | ETM+ | 30 |
123/40 | 2000/07/27 | TM | 30 |
123/40 | 2001/07/22 | ETM+ | 30 |
123/40 | 2002/08/02 | TM | 30 |
123/40 | 2003/07/04 | ETM+ | 30 |
123/40 | 2004/07/22 | TM | 30 |
123/40 | 2005/07/25 | TM | 30 |
123/40 | 2006/08/13 | TM | 30 |
123/40 | 2007/07/31 | TM | 30 |
123/40 | 2009/08/21 | TM | 30 |
123/40 | 2013/07/31 | OLI | 30 |
*124/40 | 2013/08/07 | OLI | 30 |
2.3. Field Data Collection
2.3.1. Measurement of Spectral Reflectance
2.3.2. Water Sample Analysis
2.4. Hydrological and Meteorological Data
2.5. Statistical Analysis and Accuracy Assessment
3. Results
3.1. Data Distribution
Data Set | Statistics | Chla (μg/L) | TSM (mg/L) | ISM (mg/L) | OSM (mg/L) |
---|---|---|---|---|---|
N = 62 | Maximum | 124.2 | 101 | 93.3 | 24.7 |
Minimum | 1.9 | 4 | 2.3 | 0.7 | |
Mean | 28.7 | 36.4 | 27.5 | 5.9 | |
S.D. | 20.6 | 22.8 | 22.3 | 3.7 | |
C.V. | 71.8% | 62.6% | 81.2% | 62.7% |
3.2. Algorithm Development and Validation for Landsat
Landsat Sensor | Blue Band (μm) | Green Band (μm) | Red Band (μm) | NIR Band (μm) |
---|---|---|---|---|
OLI | 0.45–0.51 | 0.53–0.59 | 0.64–0.67 | 0.85–0.88 |
ETM+/TM | 0.45–0.52 | 0.52–0.60 | 0.63–0.69 | 0.77–0.90 |
MSS | 0.50–0.60 | 0.60–0.70 | 0.70–0.80 | 0.80–1.10 |
3.3. Landsat 8 OLI-Based Validation
3.4. Spatial Pattern Distribution of TSM
4. Discussion
4.1. Factors Affecting the Spatial and Temporal Changes in TSM
4.2. Suitability and Uncertainty of TSM-Derived Model
4.3. Long-Term Monitoring and Applications
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dihkan, M.; Karsli, F.; Guneroglu, A. Mapping total suspended matter concentrations in the Black Sea using Landsat TM multispectral satellite imagery. Fresenius Environ. Bull. 2011, 20, 262–269. [Google Scholar]
- Grove, M.K.; Bilotta, G.S.; Woockman, R.R.; Schwartz, J.S. Suspended sediment regimes in contrasting reference-condition freshwater ecosystems: Implications for water quality guidelines and management. Sci. Total Environ. 2015, 502, 481–492. [Google Scholar] [CrossRef]
- Cerco, C.F.; Kim, S.C.; Noel, M.R. Management modeling of suspended solids in the Chesapeake Bay, USA. Estuar. Coast. Shelf Sci. 2013, 116, 87–98. [Google Scholar] [CrossRef]
- Skarbovik, E.; Stalnacke, P.; Bogen, J.; Bonsnes, T.E. Impact of sampling frequency on mean concentrations and estimated loads of suspended sediment in a Norwegian river: Implications for water management. Sci. Total Environ. 2012, 433, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Duan, H.; Tang, J.; Chen, Z. Remote Sensing of Lake Water Environment; Science Press: Beijing, China, 2010. (In Chinese) [Google Scholar]
- Committee, I.L.E. Managing Lakes and Their Basins for Sustainable Use: A Report for Lake Managers and Stakeholders; International Lake Environment Committee Foundation: Otsu, Japan, 2005. [Google Scholar]
- Committee, W.L.V.; Government, S.P.; Centre, U.I.E.T.; Committee, I.L.E. World Lake Vision: A Call to Action; International Lake Environment Committee Foundation and United Nations Environment Programme: Otsu, Japan, 2003. [Google Scholar]
- Hu, C.; Deng, Z.M.; Xie, Y.H.; Chen, X.S.; Li, F. The risk assessment of sediment heavy metal pollution in the East Dongting Lake wetland. J. Chem. 2015, 2015. [Google Scholar] [CrossRef]
- Liang, J.; Liu, J.Y.; Yuan, X.Z.; Zeng, G.M.; Lai, X.; Li, X.D.; Wu, H.P.; Yuan, Y.J.; Li, F. Spatial and temporal variation of heavy metal risk and source in sediments of Dongting Lake wetland, Mid-South China. J. Environ. Sci. Health A 2015, 50, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Sun, Z.; Gao, Y. Three Gorges Reservoir operation effects on water level and ecological function of Poyang Lake. China Three Gorges Trib. 2010, 5, 19–22. (In Chinese) [Google Scholar]
- Morel, A. Optical modeling of the upper ocean in relation to its biogenous matter content (Case I Waters). J. Geophys. Res. Oceans 1988, 93, 1074–10768. [Google Scholar] [CrossRef]
- Zhang, M.W.; Dong, Q.; Cui, T.W.; Xue, C.J.; Zhang, S.L. Suspended sediment monitoring and assessment for Yellow River estuary from Landsat TM and ETM plus imagery. Remote Sens. Environ. 2014, 146, 136–147. [Google Scholar] [CrossRef]
- Massicotte, P.; Gratton, D.; Frenette, J.J.; Assani, A.A. Spatial and temporal evolution of the St. Lawrence River spectral profile: A 25-year case study using Landsat 5 and 7 imagery. Remote Sens. Environ. 2013, 136, 433–441. [Google Scholar] [CrossRef]
- Nechad, B.; Ruddick, K.G.; Park, Y. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sens. Environ. 2010, 114, 854–866. [Google Scholar] [CrossRef]
- Miller, R.L.; McKee, B.A. Using MODIS-Terra 250 m imagery to map concentrations of total suspended matter in coastal waters. Remote Sens. Environ. 2004, 93, 259–266. [Google Scholar] [CrossRef]
- Loveland, T.R.; Dwyer, J.L. Landsat: Building a strong future. Remote Sens. Environ. 2012, 122, 22–29. [Google Scholar] [CrossRef]
- Palmer, S.C.J.; Kutser, T.; Hunter, P.D. Remote sensing of inland waters: Challenges, progress and future directions. Remote Sens. Environ. 2015, 157, 1–8. [Google Scholar] [CrossRef]
- Singh, K.; Ghosh, M.; Sharma, S.R.; Kumar, P. Blue-Red-NIR model for chlorophyll-a retrieval in Hypersaline-Alkaline water using Landsat ETM plus sensor. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3553–3559. [Google Scholar] [CrossRef]
- Olmanson, L.G.; Brezonik, P.L.; Bauer, M.E. Geospatial and temporal analysis of a 20-year record of Landsat-based water clarity in Minnesota’s 10,000 lakes. J. Am. Water Resour. Assoc. 2014, 50, 748–761. [Google Scholar] [CrossRef]
- Giardino, C.; Pepe, M.; Brivio, P.A.; Ghezzi, P.; Zilioli, E. Detecting Chlorophyll, secchi disk depth and surface temperature in a Sub-alpine Lake using Landsat imagery. Sci. Total Environ. 2001, 268, 19–29. [Google Scholar] [CrossRef]
- Dekker, A.G.; Hoogenboom, H.J.; Goddijn, L.M.; Malthus, T.J.M. The relation between inherent optical properties and reflectance spectra in turbid inland waters. Remote Sens. Rev. 1997, 15, 59–74. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, S.; Zhou, Y.; Troy, A. Mapping the concentrations of total suspended matter in Lake Taihu, China, using Landsat-5 TM data. Int. J. Remote Sens. 2006, 27, 1177–1191. [Google Scholar] [CrossRef]
- Ma, R.H.; Dai, J.F. Investigation of chlorophyll-a and total suspended matter concentrations using Landsat ETM and field spectral measurement in Taihu Lake, China. Int. J. Remote Sens. 2005, 26, 2779–2795. [Google Scholar] [CrossRef]
- Ding, X.W.; Li, X.F. Monitoring of the water-area variations of Lake Dongting in China with Envisat ASAR images. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 894–901. [Google Scholar] [CrossRef]
- Deng, F.; Wang, X.L.; Cai, X.B.; Li, E.H.; Jiang, L.Z.; Li, H.; Yan, R.R. Analysis of the relationship between inundation frequency and wetland vegetation in Dongting Lake using remote sensing data. Ecohydrology 2014, 7, 717–726. [Google Scholar] [CrossRef]
- Wu, G.; Liu, L.; Chen, F.; Fei, T. Developing MODIS-based retrieval models of suspended particulate matter concentration in Dongting Lake, China. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 46–53. [Google Scholar] [CrossRef]
- Xu, M.; Zeng, G.M.; Xu, X.Y.; Huang, G.H.; Sun, W.; Jiang, X.Y. Application of Bayesian regularized BP Neural Network model for analysis of aquatic ecological data—A case study of chlorophyll-a prediction in Nanzui water area of Dongting Lake. J. Environ. Sci. China 2005, 17, 946–952. [Google Scholar] [PubMed]
- Wu, G.F.; Cui, L.J.; Liu, L.J.; Chen, F.Y.; Fei, T.; Liu, Y.L. Statistical model development and estimation of suspended particulate matter concentrations with Landsat 8 OLI images of Dongting Lake, China. Int. J. Remote Sens. 2015, 36, 343–360. [Google Scholar] [CrossRef]
- Chen, X.Q.; Yan, Y.X.; Fu, R.S.; Dou, X.P.; Zhang, E.F. Sediment transport from the Yangtze River, China, into the sea over the Post-Three Gorges Dam period: A discussion. Quat. Int. 2008, 186, 55–64. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D.; Remer, L.A.; Vermote, E.F.; Chu, A.; Holben, B.N. Operational remote sensing of tropospheric aerosol over land from EOS Moderate Resolution Imaging Spectroradiometer. J. Geophys. Res. Atmos. 1997, 102, 17051–17067. [Google Scholar] [CrossRef]
- Yuan, J.G.; Niu, Z.; Wang, X.P. Atmospheric correction of Hyperion hyperspectral image based on FLAASH. Spectrosc. Spectr. Anal. 2009, 29, 1181–1185. [Google Scholar]
- Nazeer, M.; Nichol, J.E.; Yung, Y.K. Evaluation of atmospheric correction models and Landsat surface reflectance product in an urban coastal environment. Int. J. Remote Sens. 2014, 35, 6271–6291. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Lv, H.; Wu, C.; Jin, X.; Yin, B.; Zhang, H. Suitability assessment of lake water quality monitoring on waterbody images acquired by HJ-1A hyperspectral imager: A case study of Lake Chaohu. J. Lake Sci. 2011, 23, 789–795. (In Chinese) [Google Scholar]
- Zeng, Q.; Zhao, Y.; Tian, L.Q.; Chen, X.L. Evaluation on the atmospheric correction methods for water color remote sensing by using HJ-1A/1B CCD image-taking Poyang Lake in China as a case. Spectrosc. Spectr. Anal. 2013, 33, 1320–1326. [Google Scholar]
- Yu, Z.F.; Chen, X.L.; Zhou, B.; Tian, L.Q.; Yuan, X.H.; Feng, L. Assessment of total suspended sediment concentrations in Poyang Lake using HJ-1A/1B CCD imagery. Chin. J. Oceanol. Limnol. 2012, 30, 295–304. [Google Scholar] [CrossRef]
- Tian, L.Q.; Lu, J.Z.; Chen, X.L.; Yu, Z.F.; Xiao, J.J.; Qiu, F.; Zhao, X. Atmospheric correction of HJ-1A/B CCD images over Chinese coastal waters using MODIS-Terra aerosol data. Sci. China Technol. Sci. 2010, 53, 191–195. [Google Scholar] [CrossRef]
- Moses, W.J.; Gitelson, A.A.; Perk, R.L.; Gurlin, D.; Rundquist, D.C.; Leavitt, B.C.; Barrow, T.M.; Brakhage, P. Estimation of chlorophyll-a concentration in turbid productive waters using airborne hyperspectral data. Water Res. 2012, 46, 993–1004. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Pan, D.; Bai, Y.; He, X.; Wang, D.; Wei, J.-A.; Zhang, L. Remote sensing observation of particulate organic carbon in the Pearl River estuary. Remote Sens. 2015, 7, 8683–8704. [Google Scholar] [CrossRef]
- Morel, A.; Mueller, J.L. Normalized water-leaving radiance and remote sensing reflectance: Bidirectional reflectance and other factors. Available online: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20020044099.pdf#page=54 (accessed on 25 April 2015).
- Tang, J.W.; Tian, G.L.; Wang, X.Y.; Wang, X.M.; Song, Q.J. The methods of water spectra measurement and analysis I: Above-water method. J. Remote Sens. Beijing 2004, 8, 37–44. [Google Scholar]
- Lorenzen, C.J. Determination of chlorophyll and Pheo-Pigments: Spectrophotometric equations1. Limnol. Oceanogr. 1967, 12, 343–346. [Google Scholar] [CrossRef]
- Chen, Y.W.; Chen, K.N.; Hu, Y.H. Discussion on possible error for phytoplankton chlorophyll-a concentration analysis using hot-ethanol extraction method. J. Lake Sci. 2006, 18, 550–552. (In Chinese) [Google Scholar]
- Huang, X. Eco-Investigation, Observation and Analysis of Lakes; Standard Press of China: Beijing, China, 1999. (In Chinese) [Google Scholar]
- Le, C.F.; Li, Y.M.; Zha, Y.; Sun, D.Y.; Huang, C.C.; Lu, H. A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China. Remote Sens. Environ. 2009, 113, 1175–1182. [Google Scholar] [CrossRef]
- Sun, D.Y.; Li, Y.M.; Wang, Q.; Lv, H.; Le, C.F.; Huang, C.C.; Gong, S.Q. Detection of suspended-matter concentrations in the shallow subtropical Lake Taihu, China, using the SVR model based on DSFS. IEEE Geosci. Remote Sens. 2010, 7, 816–820. [Google Scholar] [CrossRef]
- Bowers, D.G.; Braithwaite, K.M.; Nimmo-Smith, W.A.M.; Graham, G.W. Light scattering by particles suspended in the sea: The role of particle size and density. Cont. Shelf Res. 2009, 29, 1748–1755. [Google Scholar] [CrossRef]
- Onderka, M.; Pekárová, P. Retrieval of suspended particulate matter concentrations in the Danube River from Landsat ETM plus data. Sci. Total Environ. 2008, 397, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Doxaran, D.; Froidefond, J.-M.; Lavender, S.; Castaing, P. Spectral signature of highly turbid waters: Application with spot data to quantify suspended particulate matter concentrations. Remote Sens. Environ. 2002, 81, 149–161. [Google Scholar] [CrossRef]
- Zhang, B.; Li, J.; Shen, Q.; Chen, D. A bio-optical model based method of estimating total suspended matter of Lake Taihu from near-infrared remote sensing reflectance. Environ. Monit. Assess. 2008, 145, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.P.; Zhang, B.; Song, K.S.; Wang, Z.M.; Duan, H.T.; Chen, M.; Yang, F.; Li, F.X. Bio-optical model of total suspended matter based on reflectance in the Near-Infrared wave band for Case-II Waters. Spectrosc. Spectr. Anal. 2008, 28, 2273–2277. [Google Scholar]
- Song, K.S.; Lu, D.M.; Liu, D.W.; Wang, Z.M.; Li, L.; Zhang, B.; Wang, Y.D. Retrival of total suspended matter (TSM) using remotely sensed images in Shitoukoumen Reservior, northeast China. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, USA, 25–30 July 2010; pp. 405–408.
- Ma, W.; Xing, Q.; Chen, C.; Zhang, Y.; Yu, D.; Shi, P. Using the normalized peak area of remote sensing reflectance in the Near-Infrared region to estimate total suspended matter. Int. J. Remote Sens. 2011, 32, 7479–7486. [Google Scholar] [CrossRef]
- Teodoro, A.C.; Marcal, A.R.S.; Veloso-Gomes, F. Quantification of the total suspended matter concentration in the sea breaking zone from in situ measurements and remotely sensed data—Two empirical approaches. Available online: http://repositorio-aberto.up.pt/handle/10216/70171 (accessed on 20 June 2015).
- Bonacci, O.; Oskorus, D. The changes in the Lower Drava River water level, discharge and suspended sediment regime. Environ. Earth Sci. 2010, 59, 1661–1670. [Google Scholar]
- Dai, S.B.; Yang, S.L.; Zhu, J.; Gao, A.; Li, P. The role of Lake Dongting in regulating the sediment budget of the Yangtze River. Hydrol. Earth Syst. Sci. 2005, 9, 692–698. [Google Scholar]
- Peng, D.Z.; Xiong, L.H.; Guo, S.L.; Shu, N. Study of Dongting Lake area variation and its influence on water level using MODIS data. Hydrol. Sci. J. 2005, 50, 31–44. [Google Scholar]
- Wu, G.F.; de Leeuw, J.; Skidmore, A.K.; Prins, H.H.T.; Liu, Y.L. Concurrent monitoring of vessels and water turbidity enhances the strength of evidence in remotely sensed dredging impact assessment. Water Res. 2007, 41, 3271–3280. [Google Scholar]
- Lai, X.; Shankman, D.; Huber, C.; Yesou, H.; Huang, Q.; Jiang, J. Sand mining and increasing Poyang Lake’s discharge ability: A reassessment of causes for lake decline in China. J. Hydrol. 2014, 519, 1698–1706. [Google Scholar]
- Xu, K.; Milliman, J.D. Seasonal variations of sediment discharge from the Yangtze River before and after impoundment of the Three Gorges Dam. Geomorphology 2009, 104, 276–283. [Google Scholar]
- Hu, Y.-X.; Huang, J.-L.; Du, Y.; Han, P.-P.; Wang, J.-L.; Huang, W. Monitoring wetland vegetation pattern response to water-level change resulting from the Three Gorges Project in the two largest freshwater lakes of China. Ecol. Eng. 2015, 74, 274–285. [Google Scholar]
- Zhang, Z.; Chen, X.; Xu, C.-Y.; Hong, Y.; Hardy, J.; Sun, Z. Examining the influence of river-lake interaction on the drought and water resources in the Poyang Lake basin. J. Hydrol. 2015, 522, 510–521. [Google Scholar] [CrossRef]
- Lana-Renault, N.; Regues, D.; Marti-Bono, C.; Begueria, S.; Latron, J.; Nadal, E.; Serrano, P.; Garcia-Ruiz, J.M. Temporal variability in the relationships between precipitation, discharge and suspended sediment concentration in a small Mediterranean mountain catchment. Nord. Hydrol. 2007, 38, 139–150. [Google Scholar] [CrossRef]
- Li, Y.S.; Wang, G.X.; Qin, D.H.; Zhao, L.; Ding, Y.J. Study on the runoff and sediment-producing effects of precipitation in headwater areas of the Yangtze River and Yellow River, China. Environ. Geol. 2008, 56, 1–9. [Google Scholar]
- Zhang, J.C.; Peng, P.Z. A study on the relation between the variation of the precipitation in eastern Jianghuai watershed and sediment transport in Chihe River valley. Chin. Geogr. Sci. 2002, 12, 44–49. [Google Scholar] [CrossRef]
- Zhang, J.C.; Zhang, W.; Li, J.H.; Shi, Z.G.; Pu, S.Y. Relation between precipitation and sediment transport in the Dasha River watershed. Chin. Geogr. Sci. 2004, 14, 129–134. [Google Scholar] [CrossRef]
- Chen, Z.Q.; Hu, C.M.; Muller-Karger, F. Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery. Remote Sens. Environ. 2007, 109, 207–220. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.M.; Chen, X.L.; Song, Q.J. Influence of the Three Gorges Dam on total suspended matters in the Yangtze Estuary and its adjacent coastal waters: Observations from MODIS. Remote Sens. Environ. 2014, 140, 779–788. [Google Scholar] [CrossRef]
- Lane, R.R.; Day, J.W.; Marx, B.D.; Reyes, E.; Hyfield, E.; Day, J.N. The effects of riverine discharge on temperature, salinity, suspended sediment and chlorophyll a in a Mississippi delta estuary measured using a flow-through system. Estuar. Coast. Shelf Sci. 2007, 74, 145–154. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, Y.; Zhu, G.; Liu, X.; Zhou, Y.; Xu, H.; Qin, B.; Liu, G.; Li, Y. Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250 m MODIS-Aqua data. Remote Sens. Environ. 2015, 164, 43–56. [Google Scholar] [CrossRef]
- Han, X.; Chen, X.; Feng, L. Four decades of winter wetland changes in Poyang Lake based on Landsat observations between 1973 and 2013. Remote Sens. Environ. 2015, 156, 426–437. [Google Scholar] [CrossRef]
- Xinhuanet. China Launches High-Definition Earth Observation Satellite. Available online: http://news.xinhuanet.com/english/China/2013-04/26/c_132342607.htm (accessed on 25 April 2015).
- Nasaspaceflight. Chinese Long March 4B launches Gaofen-2 and BRITE-PL-2. Available online: http://www.nasaspaceflight.com/2014/08/chinese-long-march-4b-gaofen-2-brite-pl-2/ (accessed on 25 April 2015).
- EoPortal Directory. GF-1 (Gaofen-1) High-Resolution Imaging Satellite/CHEOS series of China. Available online: https://directory.eoportal.org/web/eoportal/satellite-missions/g/gaofen-1 (accessed on 25 April 2015).
- European Space Agency. Sentinel-3. Available online: http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-3 (accessed on 28 September 2015).
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Z.; Li, Y.; Guo, Y.; Xu, Y.; Liu, G.; Du, C. Landsat-Based Long-Term Monitoring of Total Suspended Matter Concentration Pattern Change in the Wet Season for Dongting Lake, China. Remote Sens. 2015, 7, 13975-13999. https://doi.org/10.3390/rs71013975
Zheng Z, Li Y, Guo Y, Xu Y, Liu G, Du C. Landsat-Based Long-Term Monitoring of Total Suspended Matter Concentration Pattern Change in the Wet Season for Dongting Lake, China. Remote Sensing. 2015; 7(10):13975-13999. https://doi.org/10.3390/rs71013975
Chicago/Turabian StyleZheng, Zhubin, Yunmei Li, Yulong Guo, Yifan Xu, Ge Liu, and Chenggong Du. 2015. "Landsat-Based Long-Term Monitoring of Total Suspended Matter Concentration Pattern Change in the Wet Season for Dongting Lake, China" Remote Sensing 7, no. 10: 13975-13999. https://doi.org/10.3390/rs71013975
APA StyleZheng, Z., Li, Y., Guo, Y., Xu, Y., Liu, G., & Du, C. (2015). Landsat-Based Long-Term Monitoring of Total Suspended Matter Concentration Pattern Change in the Wet Season for Dongting Lake, China. Remote Sensing, 7(10), 13975-13999. https://doi.org/10.3390/rs71013975