First in-Flight Radiometric Calibration of MUX and WFI on-Board CBERS-4
"> Figure 1
<p>Multispectral Camera (MUX), Wide-Field Imager (WFI), Operational Land Imager (OLI) and Enhanced Thematic Mapper Plus (ETM+) Spectral Response Function (SRF).</p> "> Figure 2
<p>(<b>a</b>) Algodones Dunes location; and (<b>b</b>) MUX/CBERS-4 image from study area. The red box indicates the location of the field campaign surface.</p> "> Figure 3
<p>Spectralon panel measurements collection.</p> "> Figure 4
<p>Libya-4 image from (<b>a</b>) Landsat-8/OLI (<b>b</b>) CBERS-4/MUX and (<b>c</b>) CBERS-4/WFI. The red box indicates the location of the study area.</p> "> Figure 5
<p>Average TOA reflectance profile of 224 EO-1 Hyperion images over Libya-4 from 2004 to 2014.</p> "> Figure 6
<p>Algodones Dunes image from (<b>a</b>) EO-1/Hyperion; (<b>b</b>) Landsat-7/EMT+; (<b>c</b>) CBERS-4/MUX and (<b>d</b>) CBERS-4/WFI. The five red boxes indicate the location of the five ROIs.</p> "> Figure 7
<p>(<b>a</b>) Spectral reflectance results of 160 × 300 m site at Algodones Dunes on 9 March 2015. The solid line shows the average reflectance and the dashed line shows the maximum and minimum variation of the average (±1σ); (<b>b</b>) Surface Coefficient of Variation in percentage.</p> "> Figure 8
<p>(<b>a</b>) Top of Atmosphere radiance predicted by MODTRAN and (<b>b</b>) relative uncertainty.</p> "> Figure 9
<p>Absolute radiometric calibration of MUX/CBERS-4.</p> "> Figure 10
<p>Absolute radiometric calibration of WFI/CBERS-4.</p> "> Figure 11
<p>TOA reflectance comparison between Landsat-7 ETM+ and CBERS-4 (MUX and WFI) after application of the SBAF.</p> ">
Abstract
:1. Introduction
2. CBERS-4: MUX and WFI
3. Reflectance-Based Approach
3.1. Field Campaign
3.2. Surface Reflectance
3.3. Atmospheric Characterization
3.4. Radiative Transfer Code
3.5. Image Analysis and Calibration Coefficients
4. Cross-Calibration
4.1. Spectral Band Adjustment Factor (SBAF)
4.2. Radiometric Formulation
5. Radiometric Coefficients Validation
6. Uncertainties
7. Results and Discussion
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ponzoni, F.J.; Zullo, J., Jr.; Lamparelli, R.A.C. In-flight absolute calibration of the CBERS-2 CCD sensor data. Ann. Braz. Acad. Sci. 2008, 80, 373–380. [Google Scholar] [CrossRef]
- Epiphanio, J.C.N. CBERS: Estado atual e future. In Proceedings of the Brazilian Remote Sensing Symposium, Natal, Brazil, 25–30 April 2009; pp. 2001–2008.
- Epiphanio, J.C.N. CBERS-3/4: Características e potencialidades. In Proceedings of the Brazilian Remote Sensing Symposium, Curitiba, Brazil, 30 April–5 May 2011; pp. 9009–9016.
- Thome, K.J.; Helder, D.L.; Aaron, D.; Dewald, J.D. Landsat-5 TM and Landsat-7 ETM+ absolute radiometric calibration using the reflectance-based method. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2777–2785. [Google Scholar] [CrossRef]
- Thome, K.J.; Markham, B.L.; Barker, J.L.; Slater, P.N.; Biggar, S.F. Radiometric calibration of Landsat. Photogramm Eng. Rem. Sens. 1997, 63, 853–858. [Google Scholar]
- Helder, D.L.; Markham, B.L.; Thome, K.J.; Barsi, J.A.; Chander, G.; Malla, R. Updated radiometric calibration for the Landsat-5 thematic mapper reflective bands. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3309–3325. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Markham, B.L.; Haque, M.D.O.; Barsi, J.A.; Micijevic, E.; Helder, D.L.; Thome, K.J.; Aaron, D.; Czapla-myers, J.S. Landsat-7 ETM+: 12 Years on-orbit reflective-band radiometric performance. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2056–2062. [Google Scholar] [CrossRef]
- Slater, P.N.; Biggar, S.F.; Holm, R.G.; Jackson, R.D.; Mao, Y.; Moran, M.S.; Palmer, J.M.; Yuan, B. Reflectance-and radiance-based methods for the in-flight absolute calibration of multispectral sensors. Remote Sens. Environ. 1987, 22, 11–37. [Google Scholar] [CrossRef]
- Thome, K.J. Absolute radiometric calibration of Landsat-7 ETM+ using the reflectance-based method. Remote Sens. Environ. 2001, 78, 27–38. [Google Scholar] [CrossRef]
- Ponzoni, F.J.; Zullo, J.J.R.; Lamparelli, R.A.C.; Pellegrino, G.Q.; Arnaud, Y. In-flight absolute calibration of the Landsat 5 TM on the test site salar de Uyuni. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2761–2766. [Google Scholar] [CrossRef]
- Teillet, P.M.; Markham, B.L.; Irish, R.R. Landsat cross-calibration based on near simultaneous imaging of common ground targets. Remote Sens. Environ. 2006, 102, 264–270. [Google Scholar] [CrossRef]
- Helder, D.L.; Bikash, B.; DanieL, L.M. Optimized identification of worldwide radiometric pseudo-invariant calibration sites. Can. J. Remote Sens. 2010, 36, 527–539. [Google Scholar] [CrossRef]
- Helder, D.L.; Thome, K.J.; Mishra, N.; Chander, G.; Xiong, X.; Angal, A.; Choi, T. Absolute radiometric calibration of Landsat using a pseudo invariant calibration site. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1360–1369. [Google Scholar] [CrossRef]
- Mishra, N.; Helder, D.L.; Angal, A.; Choi, J.; Xiong, X. Absolute calibration of optical satellite sensors using Libya 4 pseudo invariant calibration site. Remote Sens. 2014, 6, 1327–1346. [Google Scholar] [CrossRef]
- Cosnefroy, H.; Leroy, M.; Briottet, X. Selection of Sahara and Arabien desert sites for calibration of optical satellite sensors. Remote Sens. Environ. 1996, 58, 101–114. [Google Scholar] [CrossRef]
- Pinto, C.T.; Ponzoni, F.J.; Castro, R.M.; Griffith, D.J. Spectral uniformity evaluation of reference surfaces for airborne and orbital sensors absolute calibration. Braz. J. Geophys. 2012, 30, 263–275. [Google Scholar]
- Nicodemus, F.E.; Richmond, J.C.; Hsia, J.J.; Ginsberg, I.W.; Limperis, T. Geometrical Considerations and Nomenclature for Reflectance. National Bureau of Standards, United States department of Commerce, 1977. Available online: https://graphics.stanford.edu/courses/cs448–05-winter/papers/nicodemus-brdf-nist.pdf (accessed on 20 January 2016).
- Schaepman-strub, G.; Schapman, M.E.; Painter, T.H.; Dangel, S.; Martonchik, J.V. Reflectance quantities in optical remote sensing—Definitions and case studies. Remote Sens. Environ. 2006, 103, 27–42. [Google Scholar] [CrossRef]
- Milton, E.J. Principles of field spectroscopy. Int. J. Remote Sens. 1987, 8, 1807–1827. [Google Scholar] [CrossRef]
- Czapla-Myers, J.; McCorkel, J.; Anderson, N.; Thome, K.; Biggar, S.; Helder, D.; Aaron, D.; Leigh, L.; Mishra, N. The ground-based absolute radiometric calibration of Landsat 8 OLI. Remote Sens. 2015, 7, 600–626. [Google Scholar] [CrossRef]
- Hatchell, D.C. Analytical Spectral Devices Technical Guide, 3rd ed.; Analytical Spectral Devices: Boulder, CO, USA, 1999. [Google Scholar]
- Labsphere Inc. Setting the Standard in Light Measurement: Product Guide; Labsphere: Sutton, NH, USA, 2009. [Google Scholar]
- Helder, D.L.; Thome, K.; Aaron, D.; Leigh, L.; Czapla-Myers, J.; Leisso, N.; Biggar, S.; Anderson, N. Recent surface reflectance measurement campaigns with emphasis on best practices, SI traceability and uncertainty estimation. Metrologia 2012, 49, S21–S28. [Google Scholar] [CrossRef]
- Ehsani, A.R.; Reagan, J.A.; Erxleben, W.H. Design and performance analysis of an automated 10-channel solar radiometer instrument. J. Atmos. Ocean. Technol. 1998, 15, 697–707. [Google Scholar] [CrossRef]
- Schmid, B.; Wehrli, C. Comparison of sun photometer calibration by use of the Langley technique and the standard lamps. Appl. Opt. 1995, 34, 4500–4512. [Google Scholar] [CrossRef] [PubMed]
- Rollin, E.M. An introduction to the use of Sun-photometry for the atmospheric correction of airborne sensor data. Activities of the NERC EPFS in support of the NERC ARSF. In Proceedings of the ARSF Annual Meeting, Keyworth, UK, 2000.
- Pinto, C.T.; Ponzoni, F.J.; Barrientos, C.; Mattar, C.; Santamaría-Artigas, A.; Castro, R.M. Spectral and atmospheric characterization of a site at Atacama Desert for earth observation sensors calibration. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2227–2231. [Google Scholar] [CrossRef]
- Ponzoni, F.J.; Pinto, C.T.; Lamparelli, R.A.C.; Zullo, J., Jr.; Antunes, M.A.H. Calibração de Sensores Orbitais, 2nd ed.; Oficina de Textos: São José dos Campos, Brazil, 2015. [Google Scholar]
- Halthore, R.N.; Eck, T.F.; Holben, B.N.; Markham, B.L. Sun photometric measurements of atmospheric water vapor column abundance in the 940-nm band. J. Geophys. Res. Atmos. 1997, 102, 4343–4352. [Google Scholar] [CrossRef]
- Berk, A.; Anderson, G.P.; Acharya, P.K.; Shettle, E.P. MODTRAN 5.2.1 User’s Manual; Spectral Sciences Inc.: Burlington, MA, USA; Air Force Research Laboratory: Hanscom AFB, MA, USA, 2011. [Google Scholar]
- Ientilucci, E.J. Using MODTRAN Predicting Sensor-Reaching Radiance; Chester, F. Carlson Center for Imaging Science and Rochester Institute of Technology: Rochester, NY, USA, 2007. [Google Scholar]
- Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next Landsat satellite: The Landsat data continuity mission. Remote Sens. Environ. 2012, 122, 11–21. [Google Scholar] [CrossRef]
- Teillet, P.M.; Barker, J.L.; Markham, B.L.; Irish, R.R.; Fedosejevs, G.; Storey, J.C. Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets. Remote Sens. Environ. 2001, 78, 39–54. [Google Scholar] [CrossRef]
- Chander, G.; Mishra, N.; Helder, D.L.; Aaron, D.B.; Angal, A.; Choi, T.; Xiong, X.; Doelling, D.R. Applications of spectral band adjustment factors (SBAF) for cross-calibration. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1267–1281. [Google Scholar] [CrossRef]
- Henry, P.; Chander, G.; Fougnie, B.; Thomas, C.; Xiong, X. Assessment of spectral band impact on intercalibration over dessert sites using simulation based on EO-1 Hyperion data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1297–1308. [Google Scholar] [CrossRef]
- Markham, B.; Thome, K.J.; Barsi, J.A.; Kaita, E.; Helder, D.L.; Barker, J.L.; Scaramuzza, P.L. Landsat-7 ETM+ on-orbit reflective-band radiometric stability and absolute calibration. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2810–2820. [Google Scholar] [CrossRef]
- Joint Committee for Guides in Metrology and Bureau International des Poids et Mesures. Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement, 1st ed.; JCGM: Pavillon de Breteuil, France, 2008. [Google Scholar]
- Joint Committee for Guides in Metrology and Bureau International des Poids et Mesures. Evaluation of Measurement Data—Supplement 1 to the “Guide to the Expression of Uncertainty in measurement”—Propagation of Distributions Using a Monte Carlo Method, 1st ed.; JCGM: Pavillon de Breteuil, France, 2008. [Google Scholar]
- Chen, W.; Zhao, H.; Li, Z.; Jing, X.; Yan, L. Uncertainty evaluation of an in-flight absolute radiometric calibration using a statistical Monte Carlo method. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2925–2934. [Google Scholar] [CrossRef]
- Pinto, C.T.; Ponzoni, F.J.; Fonseca, L.M.G.; Castro, R.M. Simulação de Monte Carlo na avaliação das incertezas em parte do processo de calibração de sensores. In Proceedings of the Brazilian Remote Sensing Symposium, Foz do Iguaçu, Brazil, 13–18 April 2013; pp. 9131–9137.
- Biggar, S.F.; Slater, P.N.; Gellman, D.I. Uncertainties in the in-flight calibration of sensors with reference to measured ground sites in the 0.4–1.1 µm range. Remote Sens. Environ. 1994, 48, 245–252. [Google Scholar] [CrossRef]
- Scott, K.P.; Thome, K.J.; Bronwlee, M.R. Evaluation of the Railroad Valley Playa for use in vicarious calibration. Proc. SPIE 1996, 2818, 158–166. [Google Scholar]
- Gro, S.; Esselborn, M.; Wirth, M.; Fix, A.; Minikin, A. Airborne high spectral resolution lidar observation of pollution aerosol during EUCAARI-LONGREX. Atmos. Chem. Phys. 2013, 13, 2435–2444. [Google Scholar] [Green Version]
- Mishra, N.; Haque, M.O.; Leigh, L.; Aaron, D.; Helder, D.; Markham, B. Radiometric cross calibration of Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Remote Sens. 2014, 6, 12619–12638. [Google Scholar] [CrossRef]
- Bevington, P.R.; Robinson, D.K. Data Reduction and Error Analysis: For the Physical Sciences, 3rd ed.; McGraw-Hill Higher Education: New York, NY, USA, 2003. [Google Scholar]
Characteristic | MUX | WFI |
---|---|---|
Technique | Pushbroom | Pushbroom |
Altitude | 778 km | 778 km |
Swath Width | 120 km | 866 km |
Field of View (FOV) | ±4° | ±28.63° |
Spectral Bands (nm) | 450–520 (Blue) | 450–520 (Blue) |
520–590 (Green) | 520–590 (Green) | |
630–690 (Red) | 630–690 (Red) | |
770–890 (NIR) | 770–890 (NIR) | |
Spatial Resolution | 20 m | 64 m (nadir) |
Temporal Resolution | 26 days | 5 days |
Radiometric Resolution | 8 bits | 10 bits |
Spectral Bands (nm) | ESUNλ MUX (W/(m2·μm)) | ESUNλ WFI (W/(m2·μm)) |
---|---|---|
450–520 (Blue) | 1958 ± 35 | 1952 ± 35 |
520–590 (Green) | 1852 ± 29 | 1852 ± 29 |
630–690 (Red) | 1559 ± 18 | 1545 ± 18 |
770–890 (NIR) | 1091 ± 11 | 1098 ± 11 |
Satellite/Sensor | Date | Acquisition Time (UTC) | Path/Row | Solar Zenith Angle | Solar Azimuth Angle | Look Angle |
---|---|---|---|---|---|---|
Landsat 8/OLI | 11 July 2015 | 08:54 | 181/040 | 22.5° | 102.0° | Nadir |
CBERS-4/MUX | 7 July 2015 | 09:20 | 095/068 | 17.2° | 106.6° | Nadir |
CBERS-4/WFI | 7 July 2015 | 09:20 | 094/069 | 16.4° | 106.3° | Nadir |
Satellite/Sensor | Date | Acquisition Time (UTC) | Path/Row | Solar Zenith Angle | Solar Azimuth Angle | Look Angle |
---|---|---|---|---|---|---|
Landsat 7/ETM+ | 10 March 2015 | 18:15:28 | 39/37 | 43.7° | 143.5° | Nadir |
CBERS-4/MUX | 9 March 2015 | 18:33:29 | 238/63 | 42.1° | 151.9° | Nadir |
CBERS-4/WFI | 9 March 2015 | 18:33:29 | 238/63 | 42.1° | 151.9° | Nadir |
EO-1/Hyperion | 9 March 2015 | 17:10:40 | 39/37 | 53.6° | 126.3° | 18.1° |
9 March 2015 | |
Julian Day | 68 |
Local Time | 9:00–12:30 |
Aerosol Optical Depth at 550 nm (dimensionless) | 0.066 ± 0.017 |
Water vapor (g/cm2) | 1.055 ± 0.014 |
VIS (km) | 40.4 ± 2.3 |
Temperature (°C) | 23 ± 4 |
Pressure (hPa) | 999.64 ± 0.13 |
10 March 2015 | |
Julian Day | 69 |
Local Time | 9:00–12:30 |
Aerosol Optical Depth at 550 nm (dimensionless) | 0.046 ± 0.014 |
Water vapor (g/cm2) | 0.476 ± 0.005 |
VIS (km) | 48.0 ± 2.6 |
Temperature (°C) | 26 ± 3 |
Pressure (hPa) | 999.26 ± 0.26 |
Band | TOA Radiance Predicted by MODTRAN (W/(m2·sr·μm)) | Uncertainty (%) | Digital Number | Uncertainty (%) | TOA Radiance Predicted by MODTRAN (W/(m2·sr·μm)) | Uncertainty (%) | Digital Number | Uncertainty (%) |
---|---|---|---|---|---|---|---|---|
MUX | WFI | |||||||
Blue | 96 ± 3 | 3.1 | 56.3 ± 1.1 | 2.0 | 96 ± 3 | 3.1 | 258.8 ± 2.7 | 1.0 |
Green | 108 ± 4 | 3.7 | 66.8 ± 1.6 | 2.4 | 108 ± 4 | 3.7 | 212.7 ± 2.9 | 1.4 |
Red | 114 ± 5 | 4.4 | 74.2 ± 1.9 | 2.6 | 114 ± 5 | 4.4 | 320 ± 5 | 1.6 |
NIR | 91 ± 4 | 4.4 | 66.6 ± 1.6 | 2.4 | 93 ± 4 | 4.3 | 260 ± 3 | 1.2 |
Band | TOA Radiance from OLI (after Corrections) (W/(m2·sr·μm)) | Uncertainty (%) | Digital Number | Uncertainty (%) | TOA Radiance from OLI (after Corrections) (W/(m2·sr·μm)) | Uncertainty (%) | Digital Number | Uncertainty (%) |
---|---|---|---|---|---|---|---|---|
MUX | WFI | |||||||
Blue | 147 ± 4 | 2.7 | 90 ± 3 | 3.3 | 149 ± 4 | 2.7 | 379 ± 12 | 3.2 |
Green | 183 ± 5 | 2.7 | 112 ± 4 | 3.6 | 182 ± 5 | 2.7 | 373 ± 12 | 3.2 |
Red | 214 ± 6 | 2.8 | 131 ± 4 | 3.1 | 214 ± 6 | 2.8 | 590 ± 17 | 2.9 |
NIR | 171 ± 5 | 2.9 | 118 ± 4 | 3.4 | 173 ± 5 | 2.9 | 495 ± 13 | 2.6 |
Fit Equation: (Free Intercept) | Fit Equation: (Forced Zero Intercept) | |||||
---|---|---|---|---|---|---|
Band | Slope (Gi) (W/(m2·sr·μm))/DN | Uncertainty (%) | Intercept (offseti) (W/(m2·sr·μm)) | Uncertainty (%) | Slope (Gi) (W/(m2·sr·μm))/DN | Uncertainty (%) |
MUX | ||||||
Blue | 1.54 ± 0.21 | 13.6 | 9 ± 14 | 156 | 1.68 ± 0.05 | 3.0 |
Green | 1.64 ± 0.21 | 12.8 | −2 ± 17 | 850 | 1.62 ± 0.05 | 3.1 |
Red | 1.73 ± 0.19 | 11.0 | −14 ± 18 | 129 | 1.59 ± 0.05 | 3.1 |
NIR | 1.57 ± 0.18 | 11.5 | −13 ± 15 | 115 | 1.42 ± 0.05 | 3.5 |
WFI | ||||||
Blue | 0.44 ± 0.06 | 13.6 | −19 ± 18 | 95 | 0.379 ± 0.011 | 2.9 |
Green | 0.47 ± 0.05 | 10.6 | 8 ± 14 | 175 | 0.498 ± 0.014 | 2.8 |
Red | 0.37 ± 0.04 | 10.8 | −4 ± 15 | 375 | 0.360 ± 0.011 | 3.1 |
NIR | 0.34 ± 0.03 | 8.8 | 3 ± 12 | 400 | 0.351 ± 0.011 | 3.1 |
Band | Diff after SBAF ETM+/MUX | Diff after SBAF ETM+/WFI | Diff after SBAF ETM+/MUX | Diff after SBAF ETM+/WFI |
---|---|---|---|---|
ROI 1 | ||||
Blue | 4.62% | −7.25% | 0.27% | 2.93% |
Green | 6.77% | 9.87% | 8.52% | 3.34% |
Red | −7.82% | 2.30% | 5.78% | 5.92% |
NIR | −11.95% | 4.59% | 3.40% | 1.76% |
ROI 2 | ||||
Blue | 1.64% | −2.07% | 0.12% | 2.17% |
Green | 4.41% | 4.95% | 5.34% | 1.74% |
Red | −3.09% | −0.10% | 3.67% | 1.62% |
NIR | −5.71% | 0.25% | 1.94% | −1.38% |
ROI 3 | ||||
Blue | −1.41% | −3.63% | −2.09% | −1.05% |
Green | 1.18% | 0.77% | 1.68% | −0.70% |
Red | −1.56% | −1.12% | 0.71% | −0.69% |
NIR | −3.37% | −4.83% | −1.27% | −4.72% |
ROI 4 | ||||
Blue | 0.67% | −1.82% | −0.40% | 1.49% |
Green | 3.60% | 3.86% | 4.34% | 1.43% |
Red | −2.44% | −1.02% | 2.61% | 0.22% |
NIR | −3.89% | −2.12% | 1.41% | −2.75% |
ROI 5 | ||||
Blue | −0.11% | −2.30% | −1.36% | 1.24% |
Green | 2.09% | 1.07% | 2.76% | −1.14% |
Red | −3.23% | −0.81% | 0.34% | −0.04% |
NIR | −4.00% | −3.59% | −0.94% | −3.67% |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinto, C.; Ponzoni, F.; Castro, R.; Leigh, L.; Mishra, N.; Aaron, D.; Helder, D. First in-Flight Radiometric Calibration of MUX and WFI on-Board CBERS-4. Remote Sens. 2016, 8, 405. https://doi.org/10.3390/rs8050405
Pinto C, Ponzoni F, Castro R, Leigh L, Mishra N, Aaron D, Helder D. First in-Flight Radiometric Calibration of MUX and WFI on-Board CBERS-4. Remote Sensing. 2016; 8(5):405. https://doi.org/10.3390/rs8050405
Chicago/Turabian StylePinto, Cibele, Flávio Ponzoni, Ruy Castro, Larry Leigh, Nischal Mishra, David Aaron, and Dennis Helder. 2016. "First in-Flight Radiometric Calibration of MUX and WFI on-Board CBERS-4" Remote Sensing 8, no. 5: 405. https://doi.org/10.3390/rs8050405
APA StylePinto, C., Ponzoni, F., Castro, R., Leigh, L., Mishra, N., Aaron, D., & Helder, D. (2016). First in-Flight Radiometric Calibration of MUX and WFI on-Board CBERS-4. Remote Sensing, 8(5), 405. https://doi.org/10.3390/rs8050405