Absolute Calibration of Optical Satellite Sensors Using Libya 4 Pseudo Invariant Calibration Site
<p>Temporal uncertainties of various Saharan PICS.</p> ">
<p>Terra MODIS and ETM+ image over Libya 4. Upper two images are the full-sized MODIS and ETM+ images. The red rectangle in the bottom images marks the chosen region of interest (ROI) with latitude (min and max): 28.45, 28.64, longitude (min and max): 23.29, 23.4 and the size is about 19.75 km by 22.25 km. The spatial resolution of Terra MODIS (<b>Left</b>) is 250 m and that of Landsat (<b>Right</b>) is 30 m.</p> ">
<p>Terra MODIS and ETM+ image over Libya 4. Upper two images are the full-sized MODIS and ETM+ images. The red rectangle in the bottom images marks the chosen region of interest (ROI) with latitude (min and max): 28.45, 28.64, longitude (min and max): 23.29, 23.4 and the size is about 19.75 km by 22.25 km. The spatial resolution of Terra MODIS (<b>Left</b>) is 250 m and that of Landsat (<b>Right</b>) is 30 m.</p> ">
<p>Simple linear BRDF correction model for Libya 4 based on solar zenith angle.</p> ">
<p>Exponential model to express BRDF due to solar zenith angle as a function of wavelength for Libya 4.</p> ">
<p>Quadratic model to express BRDF due to view zenith angle as a function of wavelength for Libya 4.</p> ">
<p>Exponential model to express BRDF due to view zenith angle as a function of wavelength for Libya 4.</p> ">
<p>Magnitude and phase of cosine function used to model the atmospheric effects as a periodic sinusoid for Libya 4.</p> ">
<p>EO-1 Hyperion TOA reflectance profile.</p> ">
<p>Standard deviation of 108 EO-1 Hyperion TOA reflectance profile.</p> ">
Abstract
:1. Introduction
2. Libya 4 Pics and Satellite Observations
3. Development of Empirical Absolute Calibration Model Using Libya 4 Pics
3.1. Scaling the Hyperion to Terra MODIS
3.2. BRDF Model
3.2.1. BRDF Model for Solar Zenith Angle
3.2.2. BRDF Model for Viewing Zenith Angle
3.3. Development of Atmospheric Model
3.4. Validation of the Model Using Satellite Measurements
4. Summary and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cosnefroy, H.; Leroy, M.; Briottet, X. Selection and characterization of Saharan and Arabian desert sites for the calibration of optical satellite sensors. Remote Sens. Environ 1996, 58, 101–114. [Google Scholar]
- Chander, G.; Xiong, X.X.; Choi, T.Y.; Angal, A. Monitoring on-orbit calibration stability of the Terra MODIS and Landsat 7 ETM+ sensors using pseudo-invariant test sites. Remote Sens. Environ 2010, 114, 925–939. [Google Scholar]
- Rao, C.R.; Chen, J. Revised post-launch calibration of the visible and near-infrared channels of the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-14 spacecraft. Int. J. Remote Sens 1999, 20, 3485–3491. [Google Scholar]
- Heidinger, A.K.; Cao, C.; Sullivan, J.T. Using Moderate Resolution Imaging Spectrometer (MODIS) to calibrate advanced very high resolution radiometer reflectance channels. J. Geophys. Res 2002. [Google Scholar] [CrossRef]
- Smith, D.L.; Mutlow, C.T.; Rao, C.R.N. Calibration monitoring of the visible and near-infrared channels of the Along-Track Scanning Radiometer-2 by use of stable terrestrial sites. Appl. Opt 2002, 41, 515–523. [Google Scholar]
- Chander, G.; Mishra, N.; Helder, D.L.; Aaron, D.; Angal, A.; Choi, T.; Xiong, X.; Doelling, D. Applications of spectral band adjustment factors (SBAF) for cross-calibration. IEEE Trans. Geosci. Remote Sens 2013, 51, 1267–1281. [Google Scholar]
- Govaerts, Y.M.; Clerici, M.; Clerbaux, N. Operational calibration of the Meteosat radiometer VIS band. IEEE Trans. Geosci. Remote Sens 2004, 42, 1900–1914. [Google Scholar]
- Govaerts, Y.M.; Clerici, M. Evaluation of radiative transfer simulation over bright desert calibration sites. IEEE Trans. Geosci. Remote Sens 2004, 42, 176–187. [Google Scholar]
- Govaerts, Y.M.; Sterckx, S.; Adriaensen, S. Optical Sensor Calibration Using Simulated Radiances over Desert Sites. Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012.
- Bhatt, R.; Doelling, D.R.; Morstad, D.; Scarino, B.R.; Gopalan, A. Desert-based absolute calibration of successive geostationary visible sensors using a daily exoatmospheric radiance model. IEEE Trans. Geosci. Remote Sens 2013. [Google Scholar] [CrossRef]
- Helder, D.; Thome, K.J.; Mishra, N.; Chander, G.; Xiong, X.; Angal, A.; Choi, T. Absolute radiometric calibration of Landsat using a pseudo invariant calibration site. IEEE Trans. Geosci. Remote Sens 2013, 51, 1360–1369. [Google Scholar]
- Angal, A.; Xiong, X.X.; Choi, T.; Chander, G.; Mishra, N.; Helder, D.L. Impact of Terra MODIS Collection 6 on long-term trending comparisons with Landsat 7 ETM+ reflective solar bands. Remote Sens. Lett 2013, 4, 873–881. [Google Scholar]
- Teillet, P.M.; Barsi, J.A.; Chander, G.; Thome, K.J. Prime candidate earth targets for the post-launch radiometric calibration of space-based optical imaging instruments. Proc. SPIE 2007. [Google Scholar] [CrossRef]
- Morstad, D.L.; Helder, D.L. Use of Pseudo-Invariant Sites for Long-Term Sensor Calibration. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008.
- Helder, D.L.; Basnet, B.; Morstad, D.L. Optimized identification of worldwide radiometric pseudo-invariant calibration sites. Can. J. Remote Sens 2010, 36, 527–539. [Google Scholar]
- Chander, G.; Christopherson, J.B.; Stensaas, G.L.; Teillet, P.M. Online Catalogue of World-Wide Test Sites for the Post-Launch Characterization and Calibration of Optical Sensors. Proceedings of the International Astronautical Federation—58th International Astronautical Congress, Hyderabad, India, 24–28 September 2007.
- Barsi, J.A.; Markham, B.; Helder, D.L. In Flight Calibration of Optical Satellite Sensors Using Pseudo Invariant Calibration Sites. Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, IGARSS ’12, Munich, Germany, 22–27 July 2012.
- Choi, T.J.; Xiong, X.X.; Angal, A.; Chander, G. Spectral stability of the Libya 4 site using EO-1 Hyperion. Proc. SPIE 2013. [Google Scholar] [CrossRef]
- Lucht, W.; Schaaf, C.B.; Strahler, A.H. An algorithm for the retrieval of albedo from space using semiempirical BRDF models. IEEE Trans. Geosci. Remote Sens 2000, 38, 977–998. [Google Scholar]
- Roujean, J.L.; Leroy, M.; Deschamps, P.Y. A bidirectional reflectance model of the earth’s surface for the correction of remote sensing data. J. Geophys. Res.: Atmos 1992, 97, 20455–20468. [Google Scholar]
- Snyder, W.C.; Zhang, Z. BRDF models to predict spectral reflectance and emissivity in the thermal infrared. IEEE Trans. Geosci. Remote Sens 1998, 36, 214–225. [Google Scholar]
- Lacherade, S.; Fougnie, B.; Henry, P.; Gamet, P. Cross calibration over desert sites: Description, methodology, and operational implementation. IEEE Trans. Geosci. Remote Sens 2013, 51, 1098–1113. [Google Scholar]
- Lawrence, A.; Bernstein, S.; Robertson, D.C. MODTRAN: A Moderate Resolution Model for LOWTRAN; No. SSI-TR-124; Spectal Science Inc: Burlington, MA, USA, 1987. [Google Scholar]
- Vermote, E.F.; Tanré, D.; Deuze, J.L.; Herman, M.; Morcette, J.J. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens 1997, 35, 675–686. [Google Scholar]
Satellites | Number of Images | Spectral Bandwidths (nm) | |||||
---|---|---|---|---|---|---|---|
Blue | Green | Red | NIR | SWIR-1 | SWIR-2 | ||
Landset 7 ETM+ | 181 | 450–515 | 525–605 | 630–690 | 775–900 | 1,550–1,750 | 2,090–2,350 |
Landset 8 OLI | 6 | 450–515 | 525–600 | 630–680 | 845–885 | 1,560–1,660 | 2,100–2,300 |
Terra MODIS | 155 | 459–479 | 545–565 | 620–670 | 841–876 | 1,628–1,652 | 2,105–2,155 |
AQUA MODIS | 190 | 459–479 | 545–565 | 620–670 | 841–876 | 1,628–1,652 | 2,105–2,155 |
MERIS | 112 | 435–450 | 552–567 | 657–672 | 852–877 | ||
UK-2 DMC | 61 | 520–600 | 630–690 | 770–900 |
MODIS Bands | 4 July 2004 | 6 September 2004 | 22 September 2004 | 25 September 2005 | 24 June 2006 | 15 September 2007 | Average | STD |
---|---|---|---|---|---|---|---|---|
3(459–479 nm) | 1.025 | 0.992 | 1.001 | 0.998 | 0.973 | 0.979 | 0.995 | 1.82% |
4(545–565 nm) | 1.029 | 1.006 | 1.008 | 1.009 | 1.000 | 1.000 | 1.009 | 1.05% |
1(620–670 nm) | 1.024 | 1.010 | 1.007 | 1.013 | 1.003 | 1.001 | 1.010 | 0.83% |
2(841–876 nm) | 0.993 | 0.990 | 0.978 | 0.998 | 0.973 | 0.983 | 0.984 | 0.81% |
6(1,628–1,652 nm) | 0.996 | 1.001 | 0.991 | 0.999 | 0.977 | 0.984 | 0.992 | 0.95% |
7(2,105–2,155 nm) | 0.986 | 0.974 | 0.960 | 0.966 | 0.952 | 0.954 | 0.965 | 1.32% |
MODIS Bands | Root Mean Square Error (RMSE) | Standard Dev. of Residues (STD) |
---|---|---|
3 (459–479 nm) | 1.20% | 1.15% |
4 (545–565 nm) | 1.13% | 1.13% |
1 (620–670 nm) | 1.39% | 1.15% |
2 (841–876 nm) | 1.42% | 1.17% |
6 (1628–1652 nm) | 1.04% | 0.95% |
7 (2105–2155 nm) | 1.81% | 1.80% |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Mishra, N.; Helder, D.; Angal, A.; Choi, J.; Xiong, X. Absolute Calibration of Optical Satellite Sensors Using Libya 4 Pseudo Invariant Calibration Site. Remote Sens. 2014, 6, 1327-1346. https://doi.org/10.3390/rs6021327
Mishra N, Helder D, Angal A, Choi J, Xiong X. Absolute Calibration of Optical Satellite Sensors Using Libya 4 Pseudo Invariant Calibration Site. Remote Sensing. 2014; 6(2):1327-1346. https://doi.org/10.3390/rs6021327
Chicago/Turabian StyleMishra, Nischal, Dennis Helder, Amit Angal, Jason Choi, and Xiaoxiong Xiong. 2014. "Absolute Calibration of Optical Satellite Sensors Using Libya 4 Pseudo Invariant Calibration Site" Remote Sensing 6, no. 2: 1327-1346. https://doi.org/10.3390/rs6021327
APA StyleMishra, N., Helder, D., Angal, A., Choi, J., & Xiong, X. (2014). Absolute Calibration of Optical Satellite Sensors Using Libya 4 Pseudo Invariant Calibration Site. Remote Sensing, 6(2), 1327-1346. https://doi.org/10.3390/rs6021327