Fine Surveying and 3D Modeling Approach for Wooden Ancient Architecture via Multiple Laser Scanner Integration
"> Figure 1
<p>Ancient architecture of Liangyi Temple: (<b>a</b>) front side, (<b>b</b>) side face. The red dashed rectangle in (<b>a</b>) is the Liangyi Temple. The red dashed rectangle in (<b>b</b>) is the gate door of Liangyi Temple. The red circle is Longtou Incense.</p> "> Figure 2
<p>Blind corner in scanning of two stations.</p> "> Figure 3
<p>Proposed idea for the fine mapping and 3D documentation of Liangyi Temple.</p> "> Figure 4
<p>Workflow of field data collection.</p> "> Figure 5
<p>Long-distance laser scanner was used to acquire 3D data of the cliff terrain, and the scanning stations were located throughout the whole building (<b>a</b>); (<b>b</b>) scanning work scene on the platform; (<b>c</b>) 3D point cloud data with color information.</p> "> Figure 6
<p>3D data collection for the building. (<b>a</b>) Scanning for the gate; (<b>b</b>) scanning for the corridor; (<b>c</b>) scanning for the Longtou Incense; (<b>d</b>) scanning for the roof; (<b>e</b>) scanning for the statues; (<b>f</b>) point cloud of the whole building; (<b>g</b>) scanning for the attic.</p> "> Figure 7
<p>3D data collection for some components with the handheld scanner. (<b>a</b>) Small statue scanning; (<b>b</b>) rows of horned beast scanning; (<b>c</b>) large statue scanning; (<b>d</b>) corner horned beast scanning.</p> "> Figure 8
<p>3D Data registration approach for the point cloud of a different scanner.</p> "> Figure 9
<p>Noise filtering and data repair of the component point cloud: (<b>a</b>) original point cloud; (<b>b</b>) hole in detail; (<b>c</b>) result of noise filtering; (<b>d</b>) result after filtering and repairing; (<b>e</b>) result of data repair.</p> "> Figure 9 Cont.
<p>Noise filtering and data repair of the component point cloud: (<b>a</b>) original point cloud; (<b>b</b>) hole in detail; (<b>c</b>) result of noise filtering; (<b>d</b>) result after filtering and repairing; (<b>e</b>) result of data repair.</p> "> Figure 10
<p>Point cloud projection for the plane drawing of the building roof. (<b>a</b>) Point cloud projection; (<b>b</b>) plane drawing based on point cloud projection.</p> "> Figure 11
<p>Point cloud slicing and projection.</p> "> Figure 12
<p>Fine drawings of typical components: (<b>a</b>) ridge tie beam; (<b>b</b>) crescent beam; (<b>c</b>) hip rafter; (<b>d</b>) architrave.</p> "> Figure 13
<p>Reality-based 3D modeling of historical relics. (<b>a</b>) 3D model of horned beast; (<b>b</b>) 3D model of statue; (<b>c</b>) 3D model of sculpture; (<b>d</b>) texture-mapped 3D model of Longtou Incense; (<b>e</b>) texture-mapped 3D model of horned beast.</p> "> Figure 14
<p>Reconstructive 3D modeling of the architecture. (<b>a</b>) Plan drawing of the building; (<b>b</b>) section drawing of the building; (<b>c</b>) facade drawing of the building; (<b>d</b>) reconstructive 3D model of the building; (<b>e</b>) architectural component modeling; (<b>f</b>) reconstructive 3D model of the component.</p> "> Figure 15
<p>Fine drawings of Liangyi Temple. (<b>a</b>) Plane drawings (layout); (<b>b</b>) facade drawings; (<b>c</b>) section drawings; (<b>d</b>) window drawings and bracket set drawings.</p> "> Figure 15 Cont.
<p>Fine drawings of Liangyi Temple. (<b>a</b>) Plane drawings (layout); (<b>b</b>) facade drawings; (<b>c</b>) section drawings; (<b>d</b>) window drawings and bracket set drawings.</p> "> Figure 16
<p>Reconstructive 3D model of Liangyi Temple. (<b>a</b>) Rendered with gray image; (<b>b</b>) rendered with texture mapping.</p> "> Figure 17
<p>3D scene of Liangyi Temple. (<b>a</b>) Front panoramic view; (<b>b</b>) top view; (<b>c</b>) inner view: corridor and hall.</p> "> Figure 18
<p>Deformation analysis of the column base. (<b>a</b>) Crooked column on the section drawing; (<b>b</b>) crooked direction of Liangyi Temple.</p> ">
Abstract
:1. Introduction
2. Background
2.1. Liangyi Temple in Wudang Mountains
2.2. Threats on Liangyi Temple
2.3. Problems and Solution: Fine Surveying and 3D Documentation for Liangyi Temple
3. Methodology
3.1. 3D Data Collection Based on Multiple Laser Scanner Integration
3.2. 3D Data Registration and Preprocessing
3.3. Data Processing: Point Cloud Projection and Slicing
3.4. 3D Modeling
4. Results and Discussions
4.1. Results and Analysis
4.2. Discussions
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhang, Q. A Scientific approach to the origins of Chinese civilization. In An Introduction to Chinese History and Culture; Springer: Berlin, Germany, 2015; pp. 1–21. [Google Scholar]
- Wibowo, A.S. Conservation of wooden architecture: Willingness, support and tradition. Procedia Soc. Behav. Sci. 2015, 184, 388–393. [Google Scholar] [CrossRef]
- Rujivacharakul, V.; Hahn, H.H.; Oshima, K.T.; Christensen, P. Architecturalized. Asia: Mapping a Continent through History; Hong Kong University Press: Hong Kong, China, 2013. [Google Scholar]
- Choi, J.; Kim, Y.; Kang, J.; Choi, Y. Comparative analysis of the spatial structure of apartment unit plans in Asia-apartments in Korea, Vietnam, and Kazakhstan. J. Asian Archit. Build. Eng. 2014, 13, 563–569. [Google Scholar] [CrossRef]
- Chun, Q.; Van Balen, K.; Pan, J.; Sun, L. Structural performance and repair methodology of the Wenxing lounge bridge in China. Int. J. Archit. Herit. 2015, 9, 730–743. [Google Scholar] [CrossRef]
- Mazzeo, R.; Cam, D.; Chiavari, G.; Fabbri, D.; Ling, H.; Prati, S. Analytical study of traditional decorative materials and techniques used in Ming Dynasty wooden architecture. The case of the Drum Tower in Xi’an, PR of China. J. Cult. Herit. 2004, 5, 273–283. [Google Scholar] [CrossRef]
- Bridge, M. Locating the origins of wood resources: A review of dendroprovenancing. J. Archaeol. Sci. 2012, 39, 2828–2834. [Google Scholar] [CrossRef]
- Li, H.Q.; Yu, Y.; Yu, X. On fire protection problems and its countermeasures about Chinese ancient architecture. Appl. Mech. Mater. 2012, 204, 3365–3368. [Google Scholar] [CrossRef]
- Tang, Z. Does the institution of property rights matter for heritage preservation? Evidence from China. In Cultural Heritage Politics in China; Springer: New York, NY, USA, 2013; pp. 23–30. [Google Scholar]
- Fregonese, L.; Barbieri, G.; Biolzi, L.; Bocciarelli, M.; Frigeri, A.; Taffurelli, L. Surveying and monitoring for vulnerability assessment of an ancient building. Sensors 2013, 13, 9747–9773. [Google Scholar] [CrossRef] [PubMed]
- Al-Kheder, S.; Al-Shawabkeh, Y.; Haala, N. Developing a documentation system for desert palaces in Jordan using 3D laser scanning and digital photogrammetry. J. Archaeol. Sci. 2009, 36, 537–546. [Google Scholar] [CrossRef]
- Oreni, D.; Cuca, B.; Brumana, R. Three-dimensional virtual models for better comprehension of architectural heritage construction techniques and its maintenance over time. In Progress in Cultural Heritage Preservation; Springer: Berlin, Germany; Heidelberg, Germany, 2012; pp. 533–542. [Google Scholar]
- Brumana, R.; Oreni, D.; Cuca, B.; Binda, L.; Condoleo, P.; Triggiani, M. Strategy for integrated surveying techniques finalized to interpretive models in a byzantine church, Mesopotam, Albania. Int. J. Archit. Herit. 2014, 8, 886–924. [Google Scholar] [CrossRef]
- McCarthy, J. Multi-image photogrammetry as a practical tool for cultural heritage survey and community engagement. J. Archaeol. Sci. 2014, 43, 175–185. [Google Scholar] [CrossRef]
- Martínez, S.; Ortiz, J.; Gil, M.L.; Rego, M.T. Recording complex structures using close range photogrammetry: The cathedral of Santiago De Compostela. Photogramm. Rec. 2013, 28, 375–395. [Google Scholar] [CrossRef]
- Remondino, F. Heritage recording and 3D modeling with photogrammetry and 3D scanning. Remote Sens. 2011, 3, 1104–1138. [Google Scholar] [CrossRef] [Green Version]
- Guarnieri, A.; Milan, N.; Vettore, A. Monitoring of complex structure for structural control using terrestrial laser scanning (TLS) and photogrammetry. Int. J. Archit. Herit. 2013, 7, 54–67. [Google Scholar] [CrossRef]
- Ercoli, L.; Megna, B.; Nocilla, A.; Zimbardo, M. Measure of a limestone weathering degree using laser scanner. Int. J. Archit. Herit. 2013, 7, 591–607. [Google Scholar] [CrossRef]
- Lambers, K.; Eisenbeiss, H.; Sauerbier, M.; Denise Kupferschmidt, D.; Gaisecker, T.; Sotoodeh, S.; Hanusch, T. Combining photogrammetry and laser scanning for the recording and modelling of the Late Intermediate Period site of Pinchango Alto, Palpa, Peru. J. Archaeol. Sci. 2007, 34, 1702–1712. [Google Scholar] [CrossRef]
- Rüther, H.; Chazan, M.; Schroeder, R.; Neeser, R.; Held, C.; Walker, S.J.; Matmon, N.; Horwitz, L.K. Laser scanning for conservation and research of African cultural heritage sites: The case study of Wonderwerk Cave, South Africa. J. Archaeol. Sci. 2009, 36, 1847–1856. [Google Scholar] [CrossRef]
- Lezzerini, M.; Antonelli, F.; Columbu, S. The documentation and conservation of the cultural heritage: 3D laser scanning and GIS techniques for thematic mapping of the stonework of the facade of St. Nicholas church (Pisa, Italy). Int. J. Archit. Herit. 2014. [Google Scholar] [CrossRef]
- Chellini, G.; Nardini, L.; Pucci, B. Evaluation of seismic vulnerability of Santa Maria del Mar in Barcelona by an integrated approach based on terrestrial laser scanner and finite element modeling. Int. J. Archit. Herit. 2014, 8, 795–819. [Google Scholar] [CrossRef]
- Pesci, A.; Casula, G.; Boschi, E. Laser scanning the Garisenda and Asinelli towers in Bologna (Italy): Detailed deformation patterns of two ancient leaning buildings. J. Cult. Herit. 2011, 12, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Kuzminsky, S.C.; Gardiner, M.S. Three-dimensional laser scanning: potential uses for museum conservation and scientific research. J. Archaeol. Sci. 2012, 39, 2744–2751. [Google Scholar] [CrossRef]
- Pesci, A.; Bonali, E.; Galli, C. Laser scanning and digital imaging for the investigation of an ancient building: Palazzo d’Accursio study case (Bologna, Italy). J. Cult. Herit. 2012, 13, 215–220. [Google Scholar] [CrossRef]
- Domingo, I.; Villaverde, V.; López-Montalvo, E. Latest developments in rock art recording: Towards an integral documentation of Levantine rock art sites combining 2D and 3D recording techniques. J. Archaeol. Sci. 2013, 40, 1879–1889. [Google Scholar] [CrossRef]
- Hinzen, K.G.; Schreiber, S.; Rosellen, S. A high resolution laser scanning model of the Roman theater in Pinara, Turkey—Comparison to previous measurements and search for the causes of damage. J. Cult. Herit. 2013, 14, 424–430. [Google Scholar] [CrossRef]
- Guidi, G.; Russo, M.; Angheleddu, D. 3D survey and virtual reconstruction of archeological sites. Digit. Appl. Archaeol. Cult. Herit. 2014, 1, 55–69. [Google Scholar] [CrossRef]
- Remondino, F.; ElHakim, S. Image-based 3D modelling: A review. Photogramm. Rec. 2006, 21, 269–291. [Google Scholar] [CrossRef]
- Soudarissanane, S.; Lindenbergh, R.; Menenti, M. Scanning geometry: Influencing factor on the quality of terrestrial laser scanning points. ISPRS J. Photogramm. Remote Sens. 2011, 66, 389–399. [Google Scholar] [CrossRef]
- Lei, Z.K.; Zhou, L.; Zheng, J.H. Preliminary study of building pathological information system for wall painting-in the case of Liang-Yi Temple at Wudang Mountain. Appl. Mech. Mater. 2012, 174, 1645–1650. [Google Scholar] [CrossRef]
- Jun, Y.; Shaohua, W.; Jiayuan, L. Research on fine management and visualization of ancient architectures based on integration of 2D and 3D GIS technology. IOP Publ. 2014, 17, 012168. [Google Scholar] [CrossRef]
- Li, X.F.; Tao, H. Study on the digitalization and virtual restoration of the hall of Yuzhen Palace in Wudang Mountain. Archit. J. 2004, 12, 66–68. [Google Scholar]
- Zhang, K.; Hu, C.S. World Heritage in China; South China University of Technology Press: Guangdong, China, 2006. [Google Scholar]
- Gruen, A.; Akca, D. Least squares 3D surface and curve matching. ISPRS J. Photogramm. Remote Sens. 2005, 59, 151–174. [Google Scholar] [CrossRef]
- Yin, X.; Wonka, P.; Razdan, A. Generating 3D building models from architectural drawings: A survey. IEEE Comput. Graph. Appl. 2009, 29, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.; Gupta, S.K. Model and algorithms for point cloud construction using digital projection patterns. J. Comput. Inf. Sci. Eng. 2007, 7, 372–381. [Google Scholar] [CrossRef]
- Yoo, D.J. Rapid surface reconstruction from a point cloud using the least-squares projection. Int. J. Precis. Eng. Manuf. 2010, 11, 273–283. [Google Scholar] [CrossRef]
- Wu, Y.F.; Wong, Y.S.; Loh, H.T. Modelling cloud data using an adaptive slicing approach. Comput. Aided Des. 2004, 36, 231–240. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Wong, Y.S.; Loh, H.T. An adaptive slicing approach to modelling cloud data for rapid prototyping. J. Mater. Process. Technol. 2003, 140, 105–109. [Google Scholar] [CrossRef]
- Manferdini, A.; Remondino, F. A review of reality-based 3D model generation, segmentation and web-based visualization methods. Int. J. Herit. Digit. Era 2012, 1, 103–124. [Google Scholar] [CrossRef]
- Remondino, F.; Rizzi, A. Reality-based 3D documentation of natural and cultural heritage sites—Techniques, problems, and examples. Appl. Geomat. 2010, 2, 85–100. [Google Scholar] [CrossRef]
- Apollonio, F.I.; Gaiani, M.; Benedetti, B. 3D reality-based artefact models for the management of archaeological sites using 3D Gis: A framework starting from the case study of the Pompeii Archaeological area. J. Archaeol. Sci. 2012, 39, 1271–1287. [Google Scholar] [CrossRef]
- Guidi, G.; Remondino, F.; Russo, M. A multi-resolution methodology for the 3D modeling of large and complex archeological areas. Int. J. Archit. Comput. 2009, 7, 39–55. [Google Scholar] [CrossRef]
- Toniolo, L.; Boriani, M.; Guidi, G. Built Heritage: Monitoring Conservation Management; Springer: Berlin, Germany, 2015. [Google Scholar]
- Pieraccini, M.; Fratini, M.; Dei, D. Structural testing of Historical Heritage Site Towers by microwave remote sensing. J. Cult. Herit. 2009, 10, 174–182. [Google Scholar] [CrossRef]
- Weritz, F.; Kruschwitz, S.; Maierhofer, C. Assessment of moisture and salt contents in brick masonry with microwave transmission, spectral-induced polarization, and laser-induced breakdown spectroscopy. Int. J. Archit. Herit. 2009, 3, 126–144. [Google Scholar] [CrossRef]
- Mannes, D.; Schmid, F.; Frey, J. Combined neutron and X-ray imaging for non-invasive investigations of cultural heritage objects. Phys. Procedia 2015, 69, 653–660. [Google Scholar] [CrossRef]
Type | Components | Description | Map Scale | Number |
---|---|---|---|---|
Plane drawing | building | two floors | 1:50, 1:100 | 3 |
Facade drawing | building | front and side views | 1:50 | 2 |
Section drawing | building | cross and vertical sections | 1:50 | 9 |
Detail design | bracket set | four corners | 1:10, 1:20 | 8 |
Bottom view | beam | hall and corridor | 1:50 | 2 |
Detail design | components | entablature, column base, hip rafter, architrave, tile end, inverted V-shaped brace, camel hump-shaped support, partition door | 1:5 1:10 1:20 | 124 |
Components | Type | View | Measurement a (mm) | Measurement b (mm) | Error (mm) |
---|---|---|---|---|---|
Narrow tie beam under ridged purlin | Length | Left | 122 | 119 | −3 |
wide tie beam under ridged purlin | Width | Left | 168 | 169 | 1 |
narrow tie beam under south Quan | Length | Left | 211 | 212 | 1 |
wide tie beam under south Quan | Width | Left | 76 | 78 | 2 |
narrow tie beam under north Quan | Length | Left | 205 | 204 | −1 |
wide tie beam under north Quan | Width | Left | 178 | 183 | 5 |
inverted V-shaped brace | Width | Left | 143 | 142 | −1 |
inverted V-shaped brace | Thickness | Plane | 77 | 81 | 4 |
bracing of crescent beam | Length | Plane | 301 | 302 | 1 |
bracing of crescent beam | Width | Plane | 256 | 258 | 2 |
bracing of hip rafter | Length | Plane | 213 | 213 | 0 |
bracing of hip rafter | Width | Plane | 275 | 274 | −1 |
door of front hall | Width | Back | 3585 | 3588 | 3 |
crossbar of front hall door | Width | Back | 113 | 111 | −2 |
main door | Width | Front | 2835 | 2838 | 3 |
right side of the second door | Width | Front | 164 | 162 | −2 |
bottom side of the second door | Height | Front | 193 | 195 | 2 |
height of the wall | Height | Back | 795 | 798 | 3 |
window | Width | Back | 2862 | 2863 | 1 |
half of window | Width | Back | 894 | 891 | −3 |
baluster | Width | Back | 1265 | 1263 | −2 |
inside baluster | Width | Back | 1078 | 1076 | −2 |
Mean square error (MSE) | 2.3 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Q.; Wang, S.; Fu, C.; Ai, M.; Yu, D.; Wang, W. Fine Surveying and 3D Modeling Approach for Wooden Ancient Architecture via Multiple Laser Scanner Integration. Remote Sens. 2016, 8, 270. https://doi.org/10.3390/rs8040270
Hu Q, Wang S, Fu C, Ai M, Yu D, Wang W. Fine Surveying and 3D Modeling Approach for Wooden Ancient Architecture via Multiple Laser Scanner Integration. Remote Sensing. 2016; 8(4):270. https://doi.org/10.3390/rs8040270
Chicago/Turabian StyleHu, Qingwu, Shaohua Wang, Caiwu Fu, Mingyao Ai, Dengbo Yu, and Wende Wang. 2016. "Fine Surveying and 3D Modeling Approach for Wooden Ancient Architecture via Multiple Laser Scanner Integration" Remote Sensing 8, no. 4: 270. https://doi.org/10.3390/rs8040270