Classification of Herbaceous Vegetation Using Airborne Hyperspectral Imagery
"> Figure 1
<p>Overview map of the study site (Pentezug-puszta). Projection of the image is WGS 84 UTM 34 North. Red cross marks indicate the positions of field measurement plots in the RGB mosaic of the hyperspectral image. Typical alkali vegetation of study site: (<b>A</b>) An open alkali grassland with a dry steppic grassland in the background and (<b>B</b>) patch of a <span class="html-italic">Schoenoplectus</span> marsh surrounded by <span class="html-italic">Bolboschoenus</span> marsh.</p> "> Figure 2
<p>Scatter plot of the randomly selected data (50 pixels from each vegetation class) in two bands: Red (679 nm) and NIR (800 nm). Identical vegetation groups are represented by the same color.</p> "> Figure 3
<p>Boxplot of NDVI scores of random samples (50 pixels from each vegetation class).</p> "> Figure 4
<p>Overall accuracies of random forest (RF) and the Support Vector Machine (SVM) classifiers using original bands and different number of random training pixels (<span class="html-italic">N</span> = 10; 15; 20; 25 or 30) from each vegetation class (mean ± SD).</p> "> Figure 5
<p>Producer’s accuracy (%) of the classes of SVM and RF classifiers using original bands and 10 (<b>A</b>) and 30 (<b>B</b>) random training pixels.</p> "> Figure 6
<p>Scatterplot of the selected data in two MNF-transformed bands (<b>A</b>) B1 and B2; (<b>B</b>) B8 and B9. Identical vegetation groups are represented by the same color (cyan—dry steppic grasslands; gray—open alkali grasslands; red—meadow and sedge vegetation; green—marshes; orange—sparsely vegetated areas; brown—muddy surface).</p> "> Figure 7
<p>Overall accuracy (%) of classified image using SVM, RF and MLC with various MNF-transformed bands using 30 randomly selected training pixels.</p> "> Figure 8
<p>Overall accuracies of SVM, RF and MLC classifier using nine MNF-transformed bands and different number of random training pixels (<span class="html-italic">N</span> = 10; 15; 20; 25 or 30) from each vegetation class.</p> "> Figure 9
<p>Producer’s accuracy (%) of the classes using SVM, MLC and RF classifiers using 9 MNF-transformed bands and 10 (<b>A</b>) and 30 (<b>B</b>) random training pixels.</p> "> Figure 10
<p>Vegetation map (<b>A</b>) of the study site produced using SVM classification with 30 random training pixels per class. Detailed maps produced by SVM (<b>B</b>), RF (<b>C</b>) and MLC (<b>D</b>) classification are provided in the subset image (right side).</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Description of the Study Site
2.2. Airborne Data Collection
2.3. Field Data Collection
2.4. Vegetation Classes
Abbreviation | Dominant Species | Subdominant Species | Canopy Height (cm) | Total Coverage of Vegetation (%) | Measured Area (m2) |
---|---|---|---|---|---|
CYN | Cynodon dactylon | Achillea collina | 21.2 | 96.2 | 211 |
FAC | Festuca pseudovina | Achillea collina | 3.0 | 80.0 | 141 |
FAR | Festuca pseudovina | Artemisia santonica | 28.3 | 80.8 | 96 |
CAM | Camphorosma annua | - | 4.4 | 28.0 | 118 |
PHO | Pholiurus pannonicus | - | 18.6 | 47.0 | 142 |
ART | Artemisia santonica | Pholiurus pannonicus | 13.7 | 43.7 | 64 |
ELY | Elymus repens | - | 96.0 | 64.0 | 402 |
ALO | Alopecurus pratensis | Agrostis stolonifera | 48.3 | 93.3 | 531 |
BEC | Beckmannia eruciformis | Agrostis stolonifera, Cirsium brachycephalum | 87.5 | 91.2 | 552 |
ACI | Alopecurus pratensis | Cirsium arvense Elymus repens | 140.0 | 85.0 | 82 |
CAR | Carex spp. | - | 100.0 | 90.0 | 253 |
GLY | Glyceria maxima | - | 40.0 | 90.0 | 229 |
TYP | Typha angustifolia | Salvinia natans | 200.0 | 70.0 | 63 |
SAL | Salvinia natans | Typha angustifolia, Utricularia vulgaris | 133.0 | 70.0 | 65 |
BOL | Bolboschoenus maritimus | - | 76.2 | 78.8 | 179 |
SCH | Schoenoplectus lacustris ssp. tabernaemontani | - | 166.0 | 87.0 | 121 |
PHR | Phragmites communis | - | 250.0 | 100.0 | 297 |
FMM * | Alopecurus pratensis | - | 10.0 | 80.0 | 351 |
ARA * | Gypsophyla muralis, Polygonum aviculare | - | 8.0 | 80.0 | 123 |
MUD ** | not relevant | - | 10.0 | 8.0 | 158 |
2.5. Image Processing
2.6. Separating the Classes Using Narrow Band NDVI
2.7. Image Classification
2.7.1. Applied Classification Methods
2.7.2. Image Classification Using Original Spectral Bands
Field Samples (Pixel) | Random Samples (Pixel) |
---|---|
60–80 | 30 |
81–100 | 40 |
101–200 | 50 |
201–600 | 100 |
2.7.3. Image Classification Using MNF-Transformed Bands
3. Results
3.1. Separating the Classes Using Narrow Band NDVI
3.2. Image Classification Using Original Spectral Bands
Class | CYN | FAC | FAR | CAM | PHO | ART | ELY | ALO | BEC | ACI | CAR | GLY | TYP | SAL | BOL | SCH | PHR | FMM | ARA | MUD | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CYN | 19 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 34 |
FAC | 0 | 29 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 34 |
FAR | 0 | 21 | 35 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 56 |
CAM | 0 | 0 | 0 | 36 | 8 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 46 |
PHO | 0 | 0 | 0 | 9 | 13 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 32 |
ART | 0 | 0 | 0 | 5 | 29 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 53 |
ELY | 0 | 0 | 0 | 0 | 0 | 0 | 79 | 0 | 30 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 116 |
ALO | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 89 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 95 |
BEC | 3 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 63 | 9 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 85 |
ACI | 28 | 0 | 0 | 0 | 0 | 0 | 1 | 11 | 0 | 23 | 5 | 5 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 74 |
CAR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 78 | 3 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 83 |
GLY | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 12 | 40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 54 |
TYP | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 4 | 0 | 7 | 3 | 4 | 0 | 0 | 0 | 19 |
SAL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 30 |
BOL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 26 | 0 | 31 | 16 | 3 | 0 | 0 | 0 | 76 |
SCH | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 21 | 3 | 0 | 0 | 0 | 33 |
PHR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 37 | 0 | 0 | 0 | 41 |
FMM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 100 |
ARA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 49 | 0 | 49 |
MUD | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 50 | 50 |
Total | 50 | 50 | 40 | 50 | 50 | 30 | 100 | 100 | 100 | 40 | 100 | 50 | 30 | 30 | 50 | 40 | 50 | 100 | 50 | 50 | 1160 |
PA (%) | 38.0 | 58.0 | 87.5 | 72.0 | 26.0 | 63.3 | 79.0 | 89.0 | 63.0 | 57.5 | 78.0 | 80.0 | 13.3 | 100.0 | 62.0 | 52.5 | 74.0 | 100.0 | 98.0 | 100.0 | |
UA (%) | 55.9 | 85.3 | 62.5 | 78.3 | 40.6 | 35.8 | 68.1 | 93.7 | 74.1 | 31.1 | 94.0 | 74.1 | 9.3 | 100.0 | 40.8 | 63.6 | 90.2 | 100.0 | 100.0 | 100.0 |
3.3. Image Classification Using MNF-Transformed Bands
Class | CYN | FAC | FAR | CAM | PHO | ART | ELY | ALO | BEC | ACI | CAR | GLY | TYP | SAL | BOL | SCH | PHR | FMM | ARA | MUD | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CYN | 42 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 43 |
FAC | 0 | 25 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 27 |
FAR | 0 | 25 | 38 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 63 |
CAM | 0 | 0 | 0 | 36 | 8 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 45 |
PHO | 0 | 0 | 0 | 9 | 13 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 33 |
ART | 0 | 0 | 0 | 5 | 29 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 53 |
ELY | 0 | 0 | 0 | 0 | 0 | 0 | 95 | 0 | 1 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 103 |
ALO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 99 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 99 |
BEC | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 99 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 109 |
ACI | 7 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 23 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 36 |
CAR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 97 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 97 |
GLY | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 50 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 60 |
TYP | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 23 | 2 | 5 | 0 | 0 | 0 | 33 |
SAL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 30 |
BOL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 27 | 0 | 21 | 9 | 4 | 0 | 0 | 0 | 61 |
SCH | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 29 | 0 | 0 | 0 | 0 | 35 |
PHR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 34 | 0 | 0 | 0 | 34 |
FMM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 100 |
ARA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 49 | 0 | 49 |
MUD | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 50 | 50 |
Total | 50 | 50 | 40 | 50 | 50 | 30 | 100 | 100 | 100 | 40 | 100 | 50 | 30 | 30 | 50 | 40 | 50 | 100 | 50 | 50 | 1160 |
PA (%) | 84.0 | 50.0 | 95.0 | 72.0 | 26.0 | 63.3 | 95.0 | 99.0 | 99.0 | 57.5 | 97.0 | 100.0 | 10.0 | 100.0 | 42.0 | 72.5 | 68.0 | 100.0 | 98.0 | 100.0 | |
UA (%) | 97.0 | 92.6 | 60.3 | 80.0 | 39.4 | 35.8 | 92.2 | 100.0 | 90.8 | 63.9 | 100.0 | 83.3 | 9.1 | 100.0 | 34.4 | 82.9 | 100.0 | 100.0 | 100.0 | 100.0 |
SVM | RF | MLC | ||||
---|---|---|---|---|---|---|
Original Bands | MNF Bands | Original Bands | MNF Bands | Original Bands | MNF Bands | |
Overall accuracy of vegetation classes (%) | 72.85 | 82.06 | 72.89 | 79.14 | - | 80.78 |
Overall accuracy of vegetation groups (%) | 93.30 | 98.70 | 90.70 | 95.77 | - | 95.77 |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mace, G.M.; Norris, K.; Fitter, A.H. Biodiversity and ecosystem services: A multilayered relationship. Trends Ecol. Evol. 2012, 27, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Lengyel, S.; Déri, E.; Varga, Z.; Horváth, R.; Tóthmérész, B.; Henry, P.Y.; Kobler, A.; Kutnar, L.; Babij, V.; Seliskar, A.; et al. Habitat monitoring in Europe: A description of current practices. Biodivers. Conserv. 2008, 17, 3327–3339. [Google Scholar] [CrossRef]
- Burai, P.; Lövei, G.; Lénárt, Cs.; Nagy, I.; Enyedi, P. Mapping aquatic vegetation of the Rakamaz-Tiszanagyfalui Nagy-Morotva using hyperspectral imagery. Acta Geogr. Debr. Landsc. Environ. Ser. 2010, 4, 1–10. [Google Scholar]
- Kobayashi, T.; Tsend-Ayush, J.; Tateishi, R.A. New tree cover percentage map in Eurasia at 500 m resolution using MODIS data. Remote Sens. 2014, 6, 209–232. [Google Scholar] [CrossRef]
- Cole, B.; McMorrow, J.; Evans, M. Empirical modelling of vegetation abundance from airborne hyperspectral data for upland Peatland restoration monitoring. Remote Sens. 2014, 6, 716–739. [Google Scholar] [CrossRef]
- Alexander, C.; Bøcher, P.K.; Arge, L.; Svenning, J.C. Regional-scale mapping of tree cover, height and main phenological tree types using airborne laser scanning data. Remote Sens. Environ. 2014, 147, 156–172. [Google Scholar] [CrossRef]
- Zlinszky, A.; Schroiff, A.; Kania, A.; Deák, B.; Mücke, W.; Vári, Á.; Székely, B.; Pfeifer, N. Categorizing grassland vegetation with full-waveform airborne laser scanning: A feasibility study for detecting Natura 2000 habitat types. Remote Sens. 2014, 6, 8056–8087. [Google Scholar] [CrossRef]
- Beamish, D. Peat mapping associations of airborne radiometric survey data. Remote Sens. 2014, 6, 521–539. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Hu, L.; Yu, L.; Clinton, N.; Huang, H.; Yang, J.; Gong, P.A. Circa 2010 thirty meter resolution forest map for China. Remote Sens. 2014, 6, 5325–5343. [Google Scholar] [CrossRef]
- Dalponte, M.; Bruzzone, L.; Gianelle, D. Fusion of hyperspectral and LiDAR remote sensing data for classification of complex forest areas. IEEE Trans. Geosci. Remote. Sens. 2008, 46, 1416–1427. [Google Scholar] [CrossRef]
- Thenkabail, P.S. Hyperspectral Remote Sensing of Vegetation; Taylor and Francis: New York, NY, USA, 2011; p. 781. [Google Scholar]
- Adam, E.; Mutanga, O.; Rugege, D. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review. Wetlands Ecol. Manag. 2010, 18, 281–296. [Google Scholar] [CrossRef]
- Plaza, A.; Benediktsson, J.A.; Boardman, J.W.; Brazile, J.; Bruzzone, L.; Camps-Valls, G.; Chanussot, J.; Fauvel, M.; Gamba, P.; Gualtieri, A.; et al. Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 2009, 113, 110–122. [Google Scholar] [CrossRef]
- Vanden Borre, J.; Paelinckx, D.; Mücher, C.A.; Kooistra, L.; Haest, B.; de Blust, G.; Schmidt, A.M. Integrating remote sensing in Natura 2000 habitat monitoring: Prospects on the way forward. J. Nat. Cons. 2011, 19, 116–125. [Google Scholar] [CrossRef]
- Pu, R.; Bell, S. A protocol for improving mapping and assessing of seagrass abundance along the West Central Coast of Florida using Landsat TM and EO-1 ALI/Hyperion images. ISPRS J. Photogramm. Remote Sens. 2013, 83, 116–129. [Google Scholar] [CrossRef]
- Stratoulias, D.; Balzter, H.; Zlinszky, A.; Toth, V.R. Assessment of ecophysiology of lake shore reed vegetation based on chlorophyll fluorescence, field spectroscopy and hyperspectral airborne imagery. Remote Sens. Environ. 2015, 157, 72–84. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Asner, G.P. Applications of remote sensing to alien invasive plant studies. Sensors 2009, 9, 4869–4889. [Google Scholar] [CrossRef] [PubMed]
- Mirik, M.; Ansley, R.J.; Steddom, K.; Jones, D.C.; Rush, C.M.; Michels, G.J., Jr.; Elliott, N.C. Remote distinction of a noxious weed (musk thistle: Carduus nutans) using airborne hyperspectral imagery and the Support Vector Machine Classifier. Remote Sens. 2013, 5, 612–630. [Google Scholar] [CrossRef]
- Green, A.A.; Berman, M.; Switzer, P.; Craig, M.D. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 1988, 26, 65–74. [Google Scholar] [CrossRef]
- Landgrebe, D.A. Signal Theory Methods in Multispectral Remote Sensing; John Wiley & Sons: New York, NY, USA, 2003; p. 503. [Google Scholar]
- Molnár, Z.; Bölöni, J.; Biró, M.; Horváth, F. Distribution of the Hungarian (semi-) natural habitats I. Marshes and grasslands. Acta Bot. Hung. 2008, 50, 59–105. [Google Scholar] [CrossRef]
- Eliáš, P.; Sopotlieva, D.; Dítě, D.; Hájková, P.; Apostolova, I.; Senko, D.; Melečková, Z.; Hájek, M. Vegetation diversity of salt-rich grasslands in Southeast Europe. Appl. Veg. Sci. 2013, 16, 521–537. [Google Scholar] [CrossRef]
- Török, P.; Kapocsi, I.; Deák, B. Conservation and management of alkali grass-land biodiversity in Central-Europe. In Grasslands: Types, Biodiversity and Impacts; Zhang, W.J., Ed.; Nova Science Publishers Inc.: New York, NY, USA, 2012; pp. 109–118. [Google Scholar]
- Borhidi, A.; Kevey, B.; Lendvai, G. Plant communities of Hungary; Akadémiai Kiadó: Budapest, Hungary, 2012; p. 544. [Google Scholar]
- Kelemen, A.; Török, P.; Valkó, O.; Miglécz, T.; Tóthmérész, B. Mechanisms shaping plant biomass and species richness: Plant strategies and litter effect in alkali and loess grasslands. J. Veg. Sci. 2013, 24, 1195–1203. [Google Scholar] [CrossRef]
- Deák, B.; Valkó, O.; Alexander, C.; Mücke, W.; Kania, A.; Tamás, J.; Heilmeier, H. Fine-scale vertical position as an indicator of vegetation in alkali grasslands—Case study based on remotely sensed data. Flora- Morphol. Distribut. Funct. Ecol. Plants 2014, 209, 693–697. [Google Scholar] [CrossRef]
- Valkó, O.; Tóthmérész, B.; Kelemen, A.; Simon, E.; Miglécz, T.; Lukács, B.; Török, P. Environmental factors driving vegetation and seed bank diversity in alkali grasslands. Agric. Ecosyst. Environ. 2014, 182, 80–87. [Google Scholar] [CrossRef]
- Deák, B.; Valkó, O.; Török, P.; Tóthmérész, B. Solonetz meadow vegetation (Beckmannion eruciformis) in East-Hungary—An alliance driven by moisture and salinity. Tuexenia 2014, 34, 187–203. [Google Scholar]
- Deák, B.; Valkó, O.; Tóthmérész, B.; Török, P. Alkali marshes of Central-Europe—Ecology, management and nature conservation. In Salt Marshes: Ecosystem, Vegetation and Restoration Strategies; Shao, B., Ed.; Nova Science Publishers Inc.: New York, NY, USA, 2014; pp. 1–11. [Google Scholar]
- Pettorelli, N. The Normalised Difference Vegetation Index; Oxford University Press: Oxford, UK, 2013; p. 194. [Google Scholar]
- Hurcom, S.J.; Harrison, A.R. The NDVI and spectral decomposition for semi-arid vegetation abundance estimation. Int. J. Remote Sens. 1998, 19, 3109–3126. [Google Scholar] [CrossRef]
- Rabe, A.; Jakimow, B.; Held, M.; van der Linden, S.; Hostert, P. EnMAP-Box. Version 2.0. 2014. Available online: www.enmap.org (accessed on 28 January 2015).
- Heldens, W.; Heiden, U.; Esch, T.; Stein, E.; Muller, A. Can the future EnMAP mission contribute to urban applications? A literature survey. Remote Sens. 2011, 3, 1817–1846. [Google Scholar] [CrossRef]
- Mansour, K.; Mutanga, O.; Everson, T.; Adam, E. Discriminating indicator grass species for rangeland degradation assessment using hyperspectral data resampled to AISA Eagle resolution. ISPRS J. Photogramm. Remote Sens. 2012, 70, 56–65. [Google Scholar] [CrossRef]
- Burai, P.; Laposi, R.; Enyedi, P.; Schmotzer, A.; Kozma, B.V. Mapping invasive vegetation using AISA Eagle airborne hyperspectral imagery in the Mid-Ipoly-Valley. In Proceedings of the 3rd IEEE GRSS Workshop on Hyperspectral Image and Signal Processing-WHISPERS’2011, Lisboa, Portugal, 6–9 June 2011.
- Maselli, F.; Conese, C.; Petkov, L.; Resti, R. Inclusion of prior probabilities derived from a nonparametric process into the maximum likelihood classifier. Photogramm. Eng. Remote Sens. 1992, 58, 201–207. [Google Scholar]
- Richards, J.A. Remote Sensing Digital Image Analysis; Springer-Verlag: Berlin, Germany, 1999; p. 240. [Google Scholar]
- Yang, C.; Everitt, J.H.; Fletcher, R.S.; Jensen, R.R.; Mausel, P.W. Evaluating AISA+ hyperspectral imagery for mapping black mangrove along the South Texas Gulf, Coast. Photogramm. Eng. Remote Sens. 2009, 75, 425–435. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Lawrence, R.; Wood, S.; Sheley, R. Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest). Remote Sens. Environ. 2006, 100, 356–362. [Google Scholar] [CrossRef]
- Vapnick, V.N. Statistical Learning Theory; John Wiley and Sons Inc.: Hoboken, NJ, USA, 1988; p. 768. [Google Scholar]
- Camps-Valls, G.; Bruzzone, L. Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1351–1362. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Gomez-Chova, L.; Calpe-Maravilla, J.; Martin-Guerrero, J.D.; Soria-Olivas, E.; Alonso-Chorda, L.; Moreno, J. Robust support vector method for hyperspectral data classification and knowledge discovery. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1530–1542. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Chan, J.C.-W.; Spanhove, T.; Ma, J.; Vanden Borre, J.; Paelinckx, D.; Canters, F. Natura 2000 habitat identification and conservation status assessment with superresolution enhanced hyperspectral (CHRIS/Proba) imagery. In Proceedings of GEOBIA 2010 geographic object-based image analysis, Ghent, Belgium, 29 June–2 July 2010.
- Chopping, M.J.; Rango, A.; Ritchie, J.C. Improved semi-arid community type differentiation with the NOAA AVHRR via exploitation of the directional signal. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1132–1149. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burai, P.; Deák, B.; Valkó, O.; Tomor, T. Classification of Herbaceous Vegetation Using Airborne Hyperspectral Imagery. Remote Sens. 2015, 7, 2046-2066. https://doi.org/10.3390/rs70202046
Burai P, Deák B, Valkó O, Tomor T. Classification of Herbaceous Vegetation Using Airborne Hyperspectral Imagery. Remote Sensing. 2015; 7(2):2046-2066. https://doi.org/10.3390/rs70202046
Chicago/Turabian StyleBurai, Péter, Balázs Deák, Orsolya Valkó, and Tamás Tomor. 2015. "Classification of Herbaceous Vegetation Using Airborne Hyperspectral Imagery" Remote Sensing 7, no. 2: 2046-2066. https://doi.org/10.3390/rs70202046
APA StyleBurai, P., Deák, B., Valkó, O., & Tomor, T. (2015). Classification of Herbaceous Vegetation Using Airborne Hyperspectral Imagery. Remote Sensing, 7(2), 2046-2066. https://doi.org/10.3390/rs70202046