Developing in situ Non-Destructive Estimates of Crop Biomass to Address Issues of Scale in Remote Sensing
"> Figure 1
<p>The spatial extent of non-spectroradiometric, spectroradiometric, and aboveground wet biomass (AWB) samples taken in the Central Valley of California in 2011 and 2012. More than 500+ samples were taken for alfalfa, cotton, maize, and rice. The 60 × 60 m transects where AWB and non-destructive predictors were taken (▪) are overlaid with the National Agricultural Statistics Service Cropland Data Layer for 2012 [<a href="#B40-remotesensing-07-00808" class="html-bibr">40</a>].</p> "> Figure 2
<p>Non-spectroradiometric and spectroradiometric measurements used to predict aboveground wet biomass: (<b>A</b>) height (cm) using a measuring stick or telescoping rod; (<b>B</b>) fraction of vegetation cover derived from red-green-blue photos (in this case the excess green minus excess red index); (<b>C</b>) gap fraction and leaf area index derived from a ACCUPAR LP-80 ceptometer; and (<b>D</b>) hypersepctral narrowbands retrieved from an Analytical Spectral Devices Field Spec Pro 3 and white reflectance mounted to a tripod.</p> "> Figure 3
<p>Pearson correlation between aboveground wet biomass and candidate non-spectral and untransformed spectral predictors for (<b>A</b>) rice, (<b>B</b>) alfalfa, (<b>C</b>) cotton, and (<b>D</b>) maize. The dashed line shows the threshold used to include predictors in the model-building phase. LAI is the leaf area index, β is the gap fraction, EXG is the excess greenness index, EXGR is the excess green minus excess red index, NDI is the normalized difference index, meanG is the mean chromatic greenness index, and medianG is the median chromatic greenness index. The hyperspectral narrowbands are in nm.</p> "> Figure 3 Cont.
<p>Pearson correlation between aboveground wet biomass and candidate non-spectral and untransformed spectral predictors for (<b>A</b>) rice, (<b>B</b>) alfalfa, (<b>C</b>) cotton, and (<b>D</b>) maize. The dashed line shows the threshold used to include predictors in the model-building phase. LAI is the leaf area index, β is the gap fraction, EXG is the excess greenness index, EXGR is the excess green minus excess red index, NDI is the normalized difference index, meanG is the mean chromatic greenness index, and medianG is the median chromatic greenness index. The hyperspectral narrowbands are in nm.</p> "> Figure 4
<p>Pearson correlation between aboveground wet biomass and candidate non-spectral and 1st order derivative transformed spectral predictors for (<b>A</b>) rice, (<b>B</b>) alfalfa, (<b>C</b>) cotton, and (<b>D</b>) maize. The dashed line shows the threshold used to include predictors in the model-building phase. LAI is the leaf area index, β is the gap fraction, EXG is the excess greenness index, EXGR is the excess green minus excess red index, NDI is the normalized difference index, meanG is the mean chromatic greenness index, and medianG is the median chromatic greenness index. The hyperspectral narrowbands are in nm.</p> "> Figure 4 Cont.
<p>Pearson correlation between aboveground wet biomass and candidate non-spectral and 1st order derivative transformed spectral predictors for (<b>A</b>) rice, (<b>B</b>) alfalfa, (<b>C</b>) cotton, and (<b>D</b>) maize. The dashed line shows the threshold used to include predictors in the model-building phase. LAI is the leaf area index, β is the gap fraction, EXG is the excess greenness index, EXGR is the excess green minus excess red index, NDI is the normalized difference index, meanG is the mean chromatic greenness index, and medianG is the median chromatic greenness index. The hyperspectral narrowbands are in nm.</p> "> Figure 5
<p>Scatterplots of observed (validation subset) <span class="html-italic">versus</span> predicted aboveground wet biomass using the multiple-band vegetation indices shaded in gray from <a href="#remotesensing-07-00808-t002" class="html-table">Table 2</a> for rice (<b>A</b>); alfalfa (<b>B</b>); cotton (<b>C</b>); and maize (<b>D</b>). The diagonal line represents a 1:1 relationship. With the exception of alfalfa, which is built on 1st order derivative transformed spectra, equations are built on the untransformed spectra.</p> "> Figure 6
<p>Scatterplots of observed (validation subset) <span class="html-italic">versus</span> predicted aboveground wet biomass using the two-band vegetation indices shaded in gray from <a href="#remotesensing-07-00808-t003" class="html-table">Table 3</a> for rice (<b>A</b>); alfalfa (<b>B</b>); cotton (<b>C</b>); and maize (<b>D</b>). The diagonal line represents a 1:1 relationship. With the exception of alfalfa, which is built on 1st order derivative transformed spectra, equations are built on untransformed spectra.</p> "> Figure 6 Cont.
<p>Scatterplots of observed (validation subset) <span class="html-italic">versus</span> predicted aboveground wet biomass using the two-band vegetation indices shaded in gray from <a href="#remotesensing-07-00808-t003" class="html-table">Table 3</a> for rice (<b>A</b>); alfalfa (<b>B</b>); cotton (<b>C</b>); and maize (<b>D</b>). The diagonal line represents a 1:1 relationship. With the exception of alfalfa, which is built on 1st order derivative transformed spectra, equations are built on untransformed spectra.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Non-Spectral Measurements and Processing
Parameter | Crop Stage | Statistic | Alfalfa (N = 136) | Cotton (N = 147) | Maize (N = 151) | Rice (N = 106) |
---|---|---|---|---|---|---|
AWB | Sprouting | μ | 1984 | 776 | 7558 | 774 |
(g∙m−2) | σ | 2517 | 757 | 3882 | 589 | |
Flowering | μ | 16132 | 8134 | 13959 | 2703 | |
σ | 12945 | 4025 | 2810 | 1089 | ||
Senescence | μ | - | 9447 | 11857 | 2727 | |
σ | - | 5770 | 3460 | 1133 | ||
H | Sprouting | μ | 20.92 | 31.30 | 173.74 | 34.46 |
σ | 13.65 | 10.38 | 87.07 | 14.50 | ||
Flowering | μ | 51.41 | 98.21 | 292.18 | 77.36 | |
σ | 14.00 | 16.67 | 29.47 | 12.72 | ||
Senescence | μ | - | 103.13 | 316.39 | 79.82 | |
σ | - | 20.03 | 22.56 | 15.71 | ||
LAI | Sprouting | μ | 0.77 | 0.98 | 3.77 | 0.93 |
σ | 1.09 | 0.88 | 1.86 | 1.43 | ||
Flowering | μ | 3.89 | 4.18 | 5.49 | 3.86 | |
σ | 1.63 | 1.78 | 1.63 | 1.68 | ||
Senescence | μ | - | 3.62 | 3.99 | 4.86 | |
σ | - | 1.76 | 1.01 | 1.13 | ||
β | Sprouting | μ | 0.74 | 0.72 | 0.19 | 0.78 |
σ | 0.26 | 0.18 | 0.18 | 0.25 | ||
Flowering | μ | 0.15 | 0.15 | 0.05 | 0.15 | |
σ | 0.14 | 0.16 | 0.06 | 0.13 | ||
Senescence | μ | - | 0.21 | 0.08 | 0.05 | |
σ | - | 0.19 | 0.07 | 0.06 | ||
EXG | Sprouting | μ | 0.61 | 0.67 | 0.58 | 0.54 |
σ | 0.12 | 0.14 | 0.25 | 0.29 | ||
Flowering | μ | 0.81 | 0.71 | 0.54 | 0.82 | |
σ | 0.26 | 0.10 | 0.32 | 0.09 | ||
Senescence | μ | - | 0.59 | 0.53 | 0.60 | |
σ | - | 0.22 | 0.32 | 0.06 | ||
EXGR | Sprouting | μ | 0.24 | 0.21 | 0.51 | 0.34 |
σ | 0.20 | 0.09 | 0.17 | 0.17 | ||
Flowering | μ | 0.72 | 0.45 | 0.40 | 0.58 | |
σ | 0.14 | 0.12 | 0.16 | 0.12 | ||
Senescence | μ | - | 0.33 | 0.25 | 0.13 | |
σ | - | 0.15 | 0.17 | 0.10 | ||
NDI | Sprouting | μ | 0.48 | 0.56 | 0.51 | 0.45 |
σ | 0.14 | 0.14 | 0.19 | 0.21 | ||
Flowering | μ | 0.79 | 0.58 | 0.52 | 0.68 | |
σ | 0.09 | 0.10 | 0.13 | 0.12 | ||
Senescence | μ | - | 0.53 | 0.40 | 0.34 | |
σ | - | 0.23 | 0.21 | 0.08 | ||
meanG | Sprouting | μ | 0.34 | 0.34 | 0.37 | 0.35 |
σ | 0.03 | 0.03 | 0.03 | 0.03 | ||
Flowering | μ | 0.41 | 0.34 | 0.35 | 0.39 | |
σ | 0.03 | 0.03 | 0.03 | 0.05 | ||
Senescence | μ | - | 0.33 | 0.33 | 0.30 | |
σ | - | 0.03 | 0.03 | 0.02 | ||
medianG | Sprouting | μ | 0.38 | 0.38 | 0.41 | 0.37 |
σ | 0.03 | 0.04 | 0.04 | 0.05 | ||
Flowering | μ | 0.45 | 0.39 | 0.38 | 0.44 | |
σ | 0.02 | 0.04 | 0.05 | 0.04 | ||
Senescence | μ | - | 0.36 | 0.36 | 0.34 | |
σ | - | 0.03 | 0.04 | 0.04 |
2.2.1. Fraction of Vegetation Cover (FVC)
2.2.2. Gap Fraction (β) and Leaf Area Index (LAI)
2.3. Spectral Measurements and Processing
2.3.1. Hyperspectral Data Transformations
2.3.2. Data Reduction for Model-building
2.4. Model Building
2.4.1. Multiple-Band Vegetation Index (MBVI)
2.4.2. Two-Band Vegetation Index (TBVI)
2.4.3. Hyperspectral Narrowband versus Broadband Predictors
2.5. Model Validation
3. Results
3.1. Non-Spectral Measurement Summary
3.2. Spectral Measurement Summary
3.3. Model-Building
3.3.1. MBVI
Rice | X | m | b | R2 | ΔR2 | p | Alfalfa | X | m | b | R2 | ΔR2 | p |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Height | 0.05 | 7.78 | 0.85 | *** | 1 | EXGR | 7.00 | 8.34 | 0.75 | *** | ||
2 | Height | 0.03 | 7.64 | 0.88 | 0.03 | *** | 2 | EXGR | 4.73 | 10.32 | 0.78 | 0.04 | *** |
λ1003 | 2.37 | *** | λ428' | −4257.59 | *** | ||||||||
3 | Height | 0.04 | 7.58 | 0.89 | 0.01 | *** | 3 | EXGR | 5.42 | 10.44 | 0.81 | 0.03 | *** |
λ963 | −42.96 | ** | λ438' | −14925.85 | *** | ||||||||
λ993 | 45.05 | ** | λ478' | 12192.62 | *** | ||||||||
4 | Height | 0.03 | 7.98 | 0.90 | 0.01 | *** | 4 | meanG | 22.14 | 4.81 | 0.82 | 0.01 | *** |
λ1165 | −18.56 | ** | λ631' | −5177.17 | ** | ||||||||
λ1003 | 54.20 | *** | λ468' | 15,276.97 | *** | ||||||||
λ943 | −34.59 | *** | λ438' | −16,395.74 | *** | ||||||||
5 | Height | 0.04 | 7.68 | 0.91 | 0.00 | *** | 5 | meanG | 15.56 | 6.19 | 0.83 | 0.01 | *** |
λ855 | 200.50 | *** | λ631' | −13,701.27 | *** | ||||||||
λ824 | −956.69 | *** | λ621' | 26,155.46 | *** | ||||||||
λ814 | 829.14 | ** | λ580' | −8975.98 | *** | ||||||||
λ783 | −70.91 | ** | λ438' | −9906.12 | *** | ||||||||
Cotton | X | m | b | R2 | ΔR2 | p | Maize | X | m | b | R2 | ΔR2 | p |
1 | Β | −6.16 | 13.56 | 0.83 | *** | 1 | Height | 0.01 | 11.74 | 0.63 | *** | ||
2 | Height | 0.04 | 9.90 | 0.87 | 0.04 | *** | 2 | Height | 0.00 | 12.46 | 0.68 | 0.05 | *** |
λ672 | −17.13 | *** | β | −1.60 | *** | ||||||||
3 | Height | 0.03 | 8.81 | 0.88 | 0.01 | *** | 3 | Height | 0.00 | 11.32 | 0.69 | 0.01 | *** |
λ1134 | 5.88 | *** | LAI | 0.09 | *** | ||||||||
λ539 | −25.70 | *** | λ743 | 0.98 | ** | ||||||||
4 | Height | 0.02 | 8.93 | 0.90 | 0.01 | *** | 4 | Height | 0.01 | 11.41 | 0.71 | 0.02 | *** |
λ1124 | 43.31 | *** | LAI | 0.10 | *** | ||||||||
λ953 | −40.81 | *** | λ1114 | −12.30 | ** | ||||||||
λ672 | −21.77 | *** | λ963 | 13.39 | ** | ||||||||
5 | Height | 0.03 | 8.73 | 0.90 | 0.01 | *** | 5 | Height | 0.00 | 12.56 | 0.74 | 0.03 | *** |
λ1134 | 4.73 | *** | β | −1.70 | *** | ||||||||
λ702 | −85.48 | *** | λ865 | −422.65 | *** | ||||||||
λ692 | 361.94 | *** | λ845 | 560.70 | *** | ||||||||
λ682 | −298.51 | *** | λ794 | −137.58 | *** |
3.3.2. TBVI
Rice | X | M | b | R2 | ΔR2 | p | Alfalfa | X | m | b | R2 | ΔR2 | p |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | H | 0.05 | 7.78 | 0.85 | *** | 1 | λ1588', λ438' | −5.99 | 8.03 | 0.78 | *** | ||
2 | H | 0.03 | 7.84 | 0.88 | 0.04 | *** | 2 | λ1588', λ428' | −4.74 | 2.89 | 0.83 | 0.04 | *** |
λ1266, λ1165 | −42.08 | *** | meanG | 15.84 | *** | ||||||||
3 | H | 0.03 | 8.25 | 0.89 | 0.01 | *** | 3 | λ1588', λ428' | −5.38 | 0.85 | 0.02 | *** | |
λ993, λ753 | −2.68 | *** | meanG | 49.29 | *** | ||||||||
λ1256, λ1235 | −73.92 | ** | medianG | −39.41 | *** | ||||||||
4 | λ1588', λ428' | −3.96 | 9.30 | 0.86 | 0.01 | *** | |||||||
meanG | 49.84 | *** | |||||||||||
medianG | −48.77 | *** | |||||||||||
λ499', λ458' | −2.72 | ** | |||||||||||
5 | λ1528', λ438' | −16.82 | 9.24 | 0.89 | 0.02 | *** | |||||||
meanG | 46.66 | *** | |||||||||||
medianG | −44.81 | *** | |||||||||||
λ499', λ458' | −4.46 | *** | |||||||||||
λ1508', λ448' | 14.98 | *** | |||||||||||
Cotton | X | M | b | R2 | ΔR2 | p | Maize | X | m | b | R2 | ΔR2 | p |
1 | λ1124, λ550 | −15.09 | 1.07 | 0.83 | *** | 1 | H | 0.01 | 11.65 | 0.63 | *** | ||
2 | λ1124, λ539 | −9.33 | 2.96 | 0.90 | 0.07 | *** | 2 | H | 0.00 | 12.42 | 0.68 | 0.05 | *** |
H | 0.03 | *** | β | −1.72 | *** | ||||||||
3 | λ943, λ539 | −78.35 | −0.57 | 0.90 | 0.01 | *** | 3 | λ1034, λ428 | 68.14 | 13.99 | 0.70 | 0.01 | *** |
λ963, λ560 | 66.64 | *** | λ933, λ428 | −65.48 | *** | ||||||||
H | 0.03 | *** | H | 0.01 | *** | ||||||||
4 | λ973, λ550 | −130.15 | 0.81 | 0.91 | 0.01 | *** | 4 | λ1003, λ428 | 258.21 | 14.41 | 0.72 | 0.02 | *** |
λ1104, λ570 | −60.57 | *** | λ983, λ428 | −255.45 | *** | ||||||||
λ993, λ560 | 180.11 | *** | H | 0.01 | *** | ||||||||
H | 0.02 | *** | LAI | 0.08 | *** | ||||||||
5 | λ943, λ539 | −243.81 | 1.03 | 0.91 | 0.01 | *** | 5 | λ1003, λ428 | 233.33 | 14.84 | 0.73 | 0.01 | *** |
λ953, λ560 | 235.36 | *** | λ983, λ428 | −251.92 | *** | ||||||||
λ1104, λ570 | −106.05 | *** | λ1155, λ428 | 22.15 | *** | ||||||||
λ1064, λ529 | 105.00 | *** | H | 0.01 | *** | ||||||||
H | 0.02 | *** | LAI | 0.08 | *** |
3.4. Model Validation
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Houghton, R.A. Aboveground forest biomass and the global carbon balance. Glob. Chang. Biol. 2005, 11, 945–958. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; p. 1535. [Google Scholar]
- Valentini, R.; Arneth, A.; Bombelli, A.; Castaldi, S.; Cazzolla Gatti, R.; Chevallier, F.; Ciais, P.; Grieco, E.; Hartmann, J.; Henry, M.; et al. A full greenhouse gases budget of Africa: Synthesis, uncertainties, and vulnerabilities. Biogeosciences 2014, 11, 381–407. [Google Scholar] [CrossRef] [Green Version]
- Schoeneberger, M.; Bentrup, G.; Gooijer, H.; de Soolanayakanahally, R.; Sauer, T.; Brandle, J.; Zhou, X.; Current, D. Branching out: Agroforestry as a climate change mitigation and adaptation tool for agriculture. J. Soil Water Conserv. 2012, 67, 128A–136A. [Google Scholar] [CrossRef]
- Sellers, P.J. Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sens. 1985, 6, 1335–1372. [Google Scholar] [CrossRef]
- Challinor, A.J.; Ewert, F.; Arnold, S.; Simelton, E.; Fraser, E. Crops and climate change: Progress, trends, and challenges in simulating impacts and informing adaptation. J. Exp. Bot. 2009, 60, 2775–2789. [Google Scholar] [CrossRef] [PubMed]
- Hay, R.K.M. Harvest index: A review of its use in plant breeding and crop physiology. Ann. Appl. Biol. 1995, 126, 197–216. [Google Scholar] [CrossRef]
- Prince, S.D.; Haskett, J.; Steininger, M.; Strand, H.; Wright, R. Net primary production of U.S. midwest croplands from agricultural harvest yield data. Ecol. Appl. 2001, 11, 1194–1205. [Google Scholar] [CrossRef]
- Doraiswamy, P.C.; Moulin, S.; Cook, P.W.; Stern, A. Crop yield assessment from remote sensing. Photogramm. Eng. Remote Sens. 2003, 69, 665–674. [Google Scholar] [CrossRef]
- Lu, D. The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 2006, 27, 1297–1328. [Google Scholar] [CrossRef]
- Tucker, C.J. A critical review of remote sensing and other methods for non-destructive estimation of standing crop biomass. Grass Forage Sci. 1980, 35, 177–182. [Google Scholar] [CrossRef]
- Phinn, S.; Roelfsema, C.; Dekker, A.; Brando, V.; Anstee, J. Mapping seagrass species, cover and biomass in shallow waters: An assessment of satellite multi-spectral and airborne hyper-spectral imaging systems in Moreton Bay (Australia). Remote Sens. Environ. 2008, 112, 3413–3425. [Google Scholar] [CrossRef]
- Catchpole, W.R.; Wheeler, C.J. Estimating plant biomass: A review of techniques. Aust. J. Ecol. 1992, 17, 121–131. [Google Scholar] [CrossRef]
- Ganguli, A.C.; Vermeire, L.T.; Mitchell, R.B.; Wallace, M.C. Comparison of four nondestructive techniques for estimating standing crop in shortgrass plains. Agron. J. 2000, 92, 1211–1215. [Google Scholar] [CrossRef]
- Martin, R.C.; Astatkie, T.; Cooper, J.M.; Fredeen, A.H. A Comparison of methods used to determine biomass on naturalized swards. J. Agron. Crop Sci. 2005, 191, 152–160. [Google Scholar] [CrossRef]
- Flombaum, P.; Sala, O.E. A non-destructive and rapid method to estimate biomass and aboveground net primary production in arid environments. J. Arid Environ. 2007, 69, 352–358. [Google Scholar] [CrossRef]
- Hutchings, N.J. Spatial heterogeneity and other sources of variance in sward height as measured by the sonic and HFRO sward sticks. Grass Forage Sci. 1991, 46, 277–282. [Google Scholar] [CrossRef]
- Paruelo, J.M.; Lauenroth, W.K.; Roset, P.A. Estimating aboveground plant biomass using a photographic technique. J. Range Manag. 2000, 53, 190–193. [Google Scholar] [CrossRef]
- Serrano, J.M.; Peça, J.O.; da Silva, J.M.; Shahidian, S. Calibration of a capacitance probe for measurement and mapping of dry matter yield in Mediterranean pastures. Precis. Agric. 2011, 12, 860–875. [Google Scholar] [CrossRef]
- Gourley, C.; McGowan, A. Assessing differences in pasture mass with an automated rising plate meter and a direct harvesting technique. Aust. J. Exp. Agric. 1991, 31, 337–339. [Google Scholar] [CrossRef]
- Ehlert, D.; Hammen, V.; Adamek, R. On-line sensor pendulum-meter for determination of plant mass. Precis. Agric. 2003, 4, 139–148. [Google Scholar] [CrossRef]
- Ollinger, S.V. Sources of variability in canopy reflectance and the convergent properties of plants. New Phytol. 2011, 189, 375–394. [Google Scholar] [CrossRef] [PubMed]
- Pinter, P.J.; Hatfield, J.L.; Schepers, J.S.; Barnes, E.M.; Moran, M.S.; Daughtry, C.S.T.; Upchurch, D.R. Remote sensing for crop management. Photogramm. Eng. Remote Sens. 2003, 69, 647–664. [Google Scholar] [CrossRef]
- Horler, D.N.H.; Dockray, M.; Barber, J. The red edge of plant leaf reflectance. Int. J. Remote Sens. 1983, 4, 273–288. [Google Scholar] [CrossRef]
- Perry, E.M.; Roberts, D.A. Sensitivity of narrow-band and broad-band indices for assessing nitrogen availability and water stress in an annual crop. Agron. J. 2008, 100, 1211–1219. [Google Scholar] [CrossRef]
- Ustin, S.L.; Roberts, D.A.; Gamon, J.A.; Asner, G.P.; Green, R.O. Using imaging spectroscopy to study ecosystem processes and properties. BioScience 2004, 54, 523–533. [Google Scholar] [CrossRef]
- Goetz, A.F.H. Three decades of hyperspectral remote sensing of the earth: A personal view. Remote Sens. Environ. 2009, 113, S5–S16. [Google Scholar] [CrossRef]
- Carter, G.A. Primary and secondary effects of water content of the spectral reflectance of leaves. Am. J. Bot. 1991, 78, 916–924. [Google Scholar] [CrossRef]
- Asner, G.P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens. Environ. 1998, 64, 234–253. [Google Scholar] [CrossRef]
- HyspIRI Mission Study. Available online: http://hyspiri.jpl.nasa.gov/ (accessed on 3 December 2014).
- Thenkabail, P.S.; Ward, A.D.; Lyon, J.G. Landsat-5 thematic mapper models of soybean and corn crop characteristics. Int. J. Remote Sens. 1994, 15, 49–61. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Ward, A.D.; Lyon, J.G.; Merry, C.J. Thematic mapper vegetation indices for determining soybean and corn growth parameters. Photogramm. Eng. Remote Sens. 1994, 60, 437–442. [Google Scholar]
- Thenkabail, P.S.; Smith, R.B.; de Pauw, E. Hyperspectral vegetation indices and their Relationships with agricultural crop characteristics. Remote Sens. Environ. 2000, 71, 158–182. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Enclona, E.A.; Ashton, M.S.; Legg, C.; de Dieu, M.J. Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests. Remote Sens. Environ. 2004, 90, 23–43. [Google Scholar] [CrossRef]
- CDFA. California Agricultural Statistics Review 2012–2013; California Department of Food and Agriculture: Sacramento, CA, USA, 2013; p. 131. [Google Scholar]
- USDA. 2007 Census of Agriculture; United States Department of Agriculture: Washington, DC, USA, 2009; p. 739. [Google Scholar]
- Faunt, C.C. Groundwater Availability of the Central Valley Aquifer; U.S. Geological Survey Professional Paper No. 1766; United State Geological Survey: Sacramento, CA, USA, 2009; p. 225. [Google Scholar]
- California Department of Water Resources. Available online: http://www.water.ca.gov/ (accessed on 3 December 2014).
- California Water Science Center. Available online: http://ca.water.usgs.gov/ (accessed on 3 December 2014).
- USDA CropScape. Available online: http://nassgeodata.gmu.edu/CropScape/ (accessed on 3 December 2014).
- McCoy, R.M. Field Methods in Remote Sensing; The Guilford Press: New York, NY, USA, 2005. [Google Scholar]
- Liu, J.; Pattey, E. Retrieval of leaf area index from top-of-canopy digital photography over agricultural crops. Agric. For. Meteorol. 2010, 150, 1485–1490. [Google Scholar] [CrossRef]
- Pérez, A.J.; López, F.; Benlloch, J.V.; Christensen, S. Colour and shape analysis techniques for weed detection in cereal fields. Comput. Electron. Agric. 2000, 25, 197–212. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; von Bargen, K.; Mortensen, D.A. Color indices for weed identification under various soil, residue, and lighting conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Meyer, G.E.; Neto, J.C. Verification of color vegetation indices for automated crop imaging applications. Comput. Electron. Agric. 2008, 63, 282–293. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. Automatica 1975, 11, 23–27. [Google Scholar]
- Meyer, G.E.; Hindman, T.W.; Laksmi, K. Machine vision detection parameters for plant species identification. Proc. SPIE 1999, 3543. [Google Scholar] [CrossRef]
- Sonnentag, O.; Hufkens, K.; Teshera-Sterne, C.; Young, A.M.; Friedl, M.; Braswell, B.H.; Richardson, A.D. Digital repeat photography for phenological research in forest ecosystems. Agric. For. Meteorol. 2012, 152, 159–177. [Google Scholar] [CrossRef]
- Decagon Devices, Inc. Available online: http://www.decagon.com/ (accessed 3 December 2014).
- Wilhelm, W.W.; Ruwe, K.; Schlemmer, M.R. Comparison of three leaf area index meters in a corn canopy. Crop Sci. 2000, 40, 1179–1183. [Google Scholar] [CrossRef]
- Decagon. In AccuPAR PAR/LAI Ceptometer Model LP-80; Version 10; Decagon Devices, Inc.: Pullman, WA, USA, 2010.
- ASD Inc. Available online: http://www.asdi.com/ (accessed 3 December 2014).
- Marshall, M.; Thenkabail, P. Biomass modeling of four leading world crops using hyperspectral narrowbands in support of HyspIRI mission. Photogramm. Eng. Remote Sens. 2014, 80, 757–772. [Google Scholar] [CrossRef]
- MacArthur, A.; MacLellan, C.J.; Malthus, T. The fields of view and directional response functions of two field spectroradiometers. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3892–3907. [Google Scholar] [CrossRef]
- The Comprehensive R Archive Network. Available online: http://cran.r-project.org/ (accessed 3 December 2014).
- Serrano, L.; Peñuelas, J.; Ustin, S.L. Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: Decomposing biochemical from structural signals. Remote Sens. Environ. 2002, 81, 355–364. [Google Scholar] [CrossRef]
- Thorp, K.R.; Tian, L.; Yao, H.; Tang, L. Narrow-Band and derivative-based vegetation indices for hyperspectral data. Trans. ASAE 2004, 47, 291–299. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Multivariate Data Analysis, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Skye Instruments. Available online: http://www.skyeinstruments.com/ (accessed on 3 December 2014).
- Mariotto, I.; Thenkabail, P.S.; Huete, H.; Slonecker, T.; Platonov, A. Hyperspectral versus multispectral crop- biophysical modeling and type discrimination for the HyspIRI mission. Remote Sens. Environ. 2013, 139, 291–305. [Google Scholar] [CrossRef]
- Gnyp, M.L.; Miao, Y.; Yuan, F.; Ustin, S.L.; Yu, K.; Yao, Y.; Bareth, G. Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages. Field Crops Res. 2014, 155, 42–55. [Google Scholar] [CrossRef]
- Atzberger, C.; Guérif, M.; Baret, F.; Werner, W. Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat. Comput. Electron. Agric. 2010, 73, 165–173. [Google Scholar] [CrossRef]
- Moran, M.S.; Pinter, P.J., Jr.; Clothier, B.E.; Allen, S.G. Effect of water stress on the canopy architecture and spectral indices of irrigated Alfalfa. Remote Sens. Environ. 1989, 29, 251–261. [Google Scholar] [CrossRef]
- Bai, J.; LI, S.; Wang, K.; SUI, X.; Chen, B.; Wang, F. Estimating aboveground fresh biomass of different cotton canopy types with homogeneity models based on hyper spectrum parameters. Agric. Sci. China 2007, 6, 437–445. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; Francois, C.; Ustin, S.L. PROSPECT + SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113, S56–S66. [Google Scholar] [CrossRef]
- Lim, K.; Treitz, P.; Wulder, M.; St-Onge, B.; Flood, M. LiDAR remote sensing of forest structure. Prog. Phys. Geogr. 2003, 27, 88–106. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Mariotto, I.; Gumma, M.K.; Middleton, E.M.; Landis, D.R.; Huemmrich, K.F. Selection of Hyperspectral Narrowbands (HNBs) and composition of Hyperspectral two band Vegetation Indices (HVIs) for biophysical characterization and discrimination of crop types using field reflectance and hyperion/EO-1 data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 427–439. [Google Scholar] [CrossRef]
- Tsai, F.; Philpot, W. Derivative analysis of hyperspectral data. Remote Sens. 1998, 66, 41–51. [Google Scholar] [CrossRef]
- Huang, Z.; Turner, B.J.; Dury, S.J.; Wallis, I.R.; Foley, W.J. Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis. Remote Sens. Environ. 2004, 93, 18–29. [Google Scholar] [CrossRef]
- Combal, B.; Baret, F.; Weiss, M.; Trubuil, A.; Macé, D.; Pragnère, A.; Myeni, R.; Wang, L. Retrieval of canopy biophysical variables from bidirectional reflectance: Using prior information to solve the ill-posed inverse problem. Remote Sens. Environ. 2003, 84, 1–15. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marshall, M.; Thenkabail, P. Developing in situ Non-Destructive Estimates of Crop Biomass to Address Issues of Scale in Remote Sensing. Remote Sens. 2015, 7, 808-835. https://doi.org/10.3390/rs70100808
Marshall M, Thenkabail P. Developing in situ Non-Destructive Estimates of Crop Biomass to Address Issues of Scale in Remote Sensing. Remote Sensing. 2015; 7(1):808-835. https://doi.org/10.3390/rs70100808
Chicago/Turabian StyleMarshall, Michael, and Prasad Thenkabail. 2015. "Developing in situ Non-Destructive Estimates of Crop Biomass to Address Issues of Scale in Remote Sensing" Remote Sensing 7, no. 1: 808-835. https://doi.org/10.3390/rs70100808
APA StyleMarshall, M., & Thenkabail, P. (2015). Developing in situ Non-Destructive Estimates of Crop Biomass to Address Issues of Scale in Remote Sensing. Remote Sensing, 7(1), 808-835. https://doi.org/10.3390/rs70100808