Use of Radarsat-2 and Landsat TM Images for Spatial Parameterization of Manning’s Roughness Coefficient in Hydraulic Modeling
"> Figure 1
<p>Location of the study area (rectangle) within the lower Mara River basin.</p> "> Figure 2
<p>Discharge and areal rainfall at Mara mine gauging station. The values show four flood events during November/December and April/May.</p> "> Figure 3
<p>Photos showing different land cover types in the area.</p> "> Figure 4
<p>Overall framework of research approach.</p> "> Figure 5
<p>Canopy photos at a reed site (<b>a</b>) Vertical photo taken below the canopy (<b>b</b>) image after segmentation.</p> "> Figure 6
<p>Sub figures <b>a</b>–<b>l</b> above shows RGB color composite images for 12 Radarsat-2 SAR images acquired over the Lower Mara Basin. Image aquisation dates and average daily river discharge values are shown in the bottom of each image. RGB color composite imageries are attributting to VV, VH and VV polarization for Red, Green and Blue channels respectively.</p> "> Figure 7
<p>Standard deviation of the backscatter (in dB) for (<b>a</b>) Vertically transmitted and Vertically received signals (VV polarization) and (<b>b</b>) Vertically transmitted and Horizontally received signals (VH polarization) on the study area characterizing temporal variability of the backscatter. Areas with higher vegetation have low standard deviation than areas with shorter vegetation e.g., grasslands.</p> "> Figure 8
<p>Backscatter statistics for different vegetation types for (<b>a</b>) Standard deviation (std) for VV and VH polarization (<b>b</b>) Mean for VV polarization. Sigmao represents σ°. Sigmao VV std is standard deviation of VV polarisation; Sigmao VV mean is average of VV polarisation and Sigmao VH std is standard deviation of VH polarization for the selected seven images.</p> "> Figure 9
<p>Vegetation map of Mara wetland floodplain showing seven classes of vegetation types.</p> "> Figure 10
<p>Relative surface roughness (<math display="inline"> <semantics> <mrow> <msub> <mi>K</mi> <mi>s</mi> </msub> </mrow> </semantics> </math>) of the study area on a scale of 0 to 1.</p> "> Figure 11
<p>Correlation between Plant Area Index (PAI) and Fractional Vegetation Cover (FVC) against relative surface roughness. The correlation coefficient for plots (<b>a</b>), (<b>b</b>), are 0.03, 0.08, respectively.</p> "> Figure 12
<p>Spatial Manning’s roughness coefficient (m<sup>−1/3</sup>/s) derived from Landsat TM based vegetation map and relative surface roughness from SAR imagery.</p> "> Figure 13
<p>Calibration and sensitivity analysis of single friction roughness on model performance (SWL1). Friction roughness (<span class="html-italic">n</span>), Root Mean Square Error (RMSE) for observed and simulated water level hydrographs.</p> "> Figure 14
<p>Observed and simulated hydrographs for three simulations SWL1, SWL2 and SWL3.</p> ">
Abstract
:1. Introduction
2. Material
2.1. Study Area
2.2. Field Measurements and Remote Sensing Data
2.2.1. Rainfall and River Discharge Measurements
2.2.2. Vegetation Characterization
S/No | Land Cover Class | Land Cover Characteristics |
---|---|---|
1 | Water | Open water: Water without plant cover (in rivers, lagoons, oxbow lakes, ponds etc.) |
2 | Swamps | Swamps: Sediment deposited areas, burned papyrus vegetation, sediment laden waters |
3 | Partially submerged vegetation | Sparse green vegetation: vegetation which include papyrus, grassland with water background or partially submerged |
4 | Papyrus/thicket | Dense green vegetation: Dark green vegetation which includes green papyrus, trees, bushes |
5 | Regenerated papyrus/shrub | Very sparse green vegetation: Regenerated vegetation which include papyrus, grassland with water background or partially submerged |
6 | Eichorrhoea crassipes/grassland | Grassland: Eichoria crassipes vegetation, lush grassland, |
7 | Agriculture/bare land | Bare land: open Bare land, settlement, houses, open farms, dry grass, clouds |
Total |
2.2.3. Landsat 5 TM Imagery and Preprocessing
2.2.4. Radarsat 2 Imagery and Preprocessing
3. Methods
3.1. Overall Framework
3.2. PAI and FVC Retrieval
Vegetation Type | No of Samples | PAI (1) and FVC (2) | ||||
---|---|---|---|---|---|---|
Min | Max | Mean | Standard Deviation | |||
1 | Papyrus | 15 | 0.335 | 0.867 | 0.710 | 0.121 |
Reeds | 20 | 0.223 | 0.871 | 0.725 | 0.145 | |
2 | Shrub/Thicket | 10 | 0.401 | 0.860 | 0.674 | 0.140 |
3.3. Vegetation Classification from Landsat TM Imagery
3.4. Vegetation Class Characterization Based on Backscatter Statistics
3.4.1. SAR Images
3.4.2. Backscatter Characterization and Statistics
3.5. Determination of the Spatial Distribution of the Hydraulic Roughness
3.5.1. Concept
3.5.2. Implementation
- = relative surface roughness [-]
- = correction factor [-], for this case considered to be 1 for the Markovian pdf
- = standard deviation of cross-polarized ratio of series of SAR imagery [dB]
- = number of SAR imagery used in analysis
- = cross-polarization ratio of SAR imagery i
- = mean of cross polarization ratio of SAR imagery used in analysis
- = VH polarization of SAR imagery i [dB]
- = VV polarization of SAR imagery i [dB]
3.5.3. Hydraulic Roughness Map
a | b | c | ||
---|---|---|---|---|
No | Vegetation Class | n min,c (m−1/3/s) | n ave,c (m−1/3/s) | n max,c (m−1/3/s) |
1 | Water | 0.02 | 0.03 | 0.085 |
2 | Swamps | 0.09 | 0.2 | 0.34 |
3 | Partially submerged vegetation | 0.17 | 0.3 | 0.48 |
4 | Papyrus/ Thicket | 0.17 | 0.3 | 0.8 |
5 | Regenerated papyrus/Shrub | 0.2 | 0.4 | 0.4 |
6 | Eichorrhoea Crassipes/ Grassland | 0.2 | 0.3 | 0.3 |
7 | Agriculture/ bare soil | 0.1 | 0.2 | 0.3 |
- = Manning’s roughness value for a cell within a vegetation class (m−1//3/s)
- = minimum Manning’s roughness value for a cell within a vegetation class (m−1//3/s)
- = maximum Manning’s roughness value for a cell within a vegetation class (m−1//3/s)
- = relative surface roughness value for a cell within a vegetation class (-)
- = minimum relative surface roughness value for a cell within a vegetation class (-)
- = maximum relative surface roughness value for a cell within a vegetation class (-)
3.6. Hydraulic Modeling
4. Results
4.1. Riparian Vegetation Mapping
S/No | Class Name | Reference | Classified | Correct | Producers Accuracy (%) | User Accuracy (%) | Kappa |
---|---|---|---|---|---|---|---|
1 | Water | 11 | 9 | 6 | 54.6 | 66.67 | 0.654 |
2 | Swamps | 31 | 34 | 21 | 67.7 | 61.76 | 0.574 |
3 | Partially submerged vegetation | 61 | 58 | 38 | 62.0 | 65.52 | 0.567 |
4 | Papyrus/thicket | 75 | 78 | 54 | 72.0 | 69.23 | 0.589 |
5 | Regenerated papyrus/shrub | 56 | 52 | 37 | 66.0 | 71.15 | 0.645 |
6 | Eichorhoea crassipes/Grassland | 37 | 43 | 29 | 78.38 | 67.44 | 0.628 |
7 | Agriculture/Bareland | 29 | 26 | 22 | 75.86 | 84.62 | 0.829 |
TOTAL | 300 | 300 | 207 | Average | 0.624 |
4.1. Relative Surface Roughness
4.2. Roughness Map
No | Vegetation Class | (Ks) min,c (-) | (Ks) ave (-) | (Ks) max,c (-) | Calculated Average Manning’s Coefficient (m−1/3/s) |
---|---|---|---|---|---|
1 | Water | 0.43 | 0.78 | 0.92 | 0.07 |
2 | Swamps | 0.09 | 0.68 | 0.89 | 0.27 |
3 | Partially submerged vegetation | 0.20 | 0.69 | 0.89 | 0.39 |
4 | Papyrus/Thicket | 0.18 | 0.71 | 0.92 | 0.62 |
5 | Regenerated papyrus/Shrub | 0.41 | 0.70 | 0.89 | 0.32 |
6 | Eichorrhoea Crassipes/Grassland | 0.20 | 0.69 | 0.91 | 0.27 |
7 | Agriculture/bare soil | 0.27 | 0.70 | 0.90 | 0.24 |
4.2. Hydraulic Modeling Results
Run No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N (m−1//3/s) | 0.2 | 0.25 | 0.3 | 0.35 | 0.4 | 0.45 | 0.5 | 0.55 | 0.6 | 0.65 | 0.7 | 0.75 | 0.8 | 0.85 |
E | 0.22 | 0.28 | 0.43 | 0.50 | 0.56 | 0.65 | 0.74 | 0.84 | 0.89 | 0.92 | 0.84 | 0.74 | 0.60 | 0.50 |
RMSE (m) | 0.35 | 0.25 | 0.19 | 0.16 | 0.13 | 0.092 | 0.08 | 0.062 | 0.03 | 0.02 | 0.031 | 0.04 | 0.075 | 0.12 |
Performance Criteria | Scenario 1 (SWL1) | Scenario2 (SWL2) | Scenario 3 (SWL3) |
---|---|---|---|
Nash—Sutcliffe efficiency criterion (E) | 0.75 (0.85) | 0.95(0.98) | 0.97 (0.96) |
Index of agreement (d) | 0.93 (0.97) | 0.98(0.99) | 0.99 (0.99) |
Bias (%) | 0.036 (0.022) | 0.016(0.006) | 0.009 (0.005) |
STEYX (m) | 0.185 (0.188) | 0.085(0.086) | 0.106 (0.149) |
RMSE (m) | 0.22 (0.05) | 0.047(0.006) | 0.023 (0.11) |
Coefficient of Determination (R2) | 0.95 (0.95) | 0.99(0.99) | 0.98 (0.97) |
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Junk, W.; Barley, P.B.; Sparks, R.E. The flood pulse concept in river flood plain systems. Can. J. Fish. Aquat. Sci. 1989, 106, 110–127. [Google Scholar]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.; Sparks, R.; Stromberget, J. The natural flow regime: A new paradigm for riverine conservation and restoration. BioScience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Postel, S.L.; Richter, B. Rivers for Life: Managing Water for People and Nature; Island Press: Washington, DC, USA, 2003. [Google Scholar]
- Bunn, S.E.; Arthington, A.H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manag. 2002, 30, 492–507. [Google Scholar]
- Casas, A.; Lane, S.N.; Yu, D.; Benito, G. A method of parameterising roughness and topographic sub-grid scale effects in hydraulic modelling from LiDAR data. Hydrol. Earth Syst. Sci. 2010, 14, 1567–1579. [Google Scholar] [CrossRef] [Green Version]
- Bates, P.; Anderson, M.G.; Walling, D.E.; Simm, D. Modelling floodplain flows using a two-dimensional finite element model. Earth Surf. Proc. Land 1992, 17, 575–588. [Google Scholar] [CrossRef]
- Stoesser, T.; Wilson, C.A.M.E.; Bates, P.; Dittrich, A. Application of a 3D numerical model to a river with vegetated floodplains. J. Hydroinf. 2003, 5, 99–112. [Google Scholar]
- O’Brien, J.S. FLO-2D Reference Manual; FLO-2D Inc.: Nutrioso, AZ, USA, 2009. [Google Scholar]
- Bates, P.D.; de Roo, A.P.J. A simple raster-based model for flood inundation simulation. J. Hydrol. 2000, 236, 54–77. [Google Scholar] [CrossRef]
- Horritt, M.S.; Bates, P.D. Evaluation of 1D and 2D numerical models for predicting river flood inundation. J. Hydrol. 2002, 268, 87–99. [Google Scholar]
- Forzieri, G.; Degetto, M.; Righetti, M.; Castelli, F.; Preti, F. Satellite multispectral data for improved floodplain roughness modelling. J. Hydrol. 2011, 407, 41–57. [Google Scholar] [CrossRef]
- Tarekegn, T.H.; Haile, A.H.; Rientjes, T.; Reggiani, P.; Alkema, D. Assessment of an ASTER-generated DEM for 2D hydrodynamic flood modelling. Int. J. Appl. Earth Observ. Geoinf. 2010, 12, 457–465. [Google Scholar] [CrossRef]
- Rutherfurd, I.D.; Hoang, T.; Prosser, I.P; Abernethy, B.; Jayasuriya, N. The impact of gully networks on the time-to-peak and size of flood hydrographs. In Proceedings of 23rd Hydrology and Water Resources Symposium, Hobart, TAS, Australia, 21–24 May 1996; Institution of Engineers, Australia NCP 96-05: Canberra, NSW, Australia, 1996; pp. 397–402. [Google Scholar]
- Anderson, B.G.; Rutherfurd, I.D.; Western, A.W. An analysis of the influence of riparian vegetation on the propagation of flood waves. Environ. Model. Softw. 2006, 21, 1290–1296. [Google Scholar] [CrossRef]
- Chow, V.T. Open Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- Arcement, G.J., Jr.; Schneider, V.R. Guide for Selecting Manning’s Roughness Coefficients for Natural Channels and Flood Plains; Water-Supply Paper 2339; US Geological Survey: Washington, DC, USA, 1989.
- Baptist, M.J.; van den Bosch, L.V.; Dijkstra, J.T.; Kapinga, S. Modelling the effects of vegetation on flow and morphology in rivers. Large Rivers 2005, 15, 339–357. [Google Scholar]
- Straatsma, M.W.; Middelkoop, H. Extracting structural characteristics of herbaceous floodplain vegetation under leaf-off conditions using airborne laser scanner data. Int. J. Remote Sens. 2007, 28, 2447–2467. [Google Scholar] [CrossRef]
- Dudley, S.J.; Bonham, C.D.; Abt, S.R.; Fischenich, J.G. Comparison of methods for measuring woody riparian vegetation density. J. Arid Environ. 1998, 38, 77–86. [Google Scholar] [CrossRef]
- Forzieri, G.; Guarnieri, L.; Vivoni, E.R.; Castelli, F.; Preti, F. Spectral-ALS data fusion for different roughness parameterizations of forested floodplains. River Res. Appl. 2010, 27, 826–840. [Google Scholar]
- Forzieri, G.; Moser, G.; Vivoni, E.R.; Castelli, F. Riparian vegetation mapping for hydraulic roughness estimation using very high resolution remote sensing and LiDAR data fusion. J. Hydraul. Eng. 2010, 11, 855–867. [Google Scholar] [CrossRef]
- Mathieu, R.; Naidoo, L.; Cho, M.A.; Leblon, B.; Main, R.; Wessels, K; Asner, G.P; Buckley, J.; Aardt, J.V.; Erasmus, B.F.N.; et al. Toward structural assessment of semi-arid African savannahs and woodlands: The potential of multitemporal polarimetric RADARSAT-2 fine beam images. Remote Sens. Environ. 2013, 138, 215–231. [Google Scholar] [CrossRef]
- Straatsma, M.W.; Baptist, M.J. Floodplain roughness parameterization using airborne laser scanning and spectral remote sensing. Remote Sens. Environ. 2008, 112, 1062–1080. [Google Scholar] [CrossRef]
- Forzieri, G.; Castelli, F.; Preti, F. Advances in remote sensing of hydraulic roughness. Int. J. Remote Sens. 2011, 33, 630–654. [Google Scholar] [CrossRef]
- Nagler, P.L.; Glenn, E.P.; Huete, A.R. Assessment of spectral vegetation indices for riparian vegetation in the Colorado River Delta, Mexico. J. Arid Environ. 2001, 49, 91–110. [Google Scholar] [CrossRef]
- Townsend, P.A.; Walsh, J. Remote sensing of forested wetlands: Application of multitemporal and multispectral satellite imagery to determine plant community composition and structure in southeastern USA. Plant Ecol. 2001, 157, 129–149. [Google Scholar] [CrossRef]
- Congalton, R.G.; Birch, K.; Jones, R.; Schriever, J. Evaluating remotely sensed techniques for mapping riparian vegetation. Comput. Electron. Agric. 2002, 37, 113–126. [Google Scholar] [CrossRef]
- Wilson, M.D.; Atkinson, P.M. The use of remotely sense data to derive floodplain friction coefficients for flood inundation modelling. Hydrolog. Process. 2007, 21, 3576–3586. [Google Scholar] [CrossRef]
- Makkeasorn, A.; Chang, N.-B.; Li, J. Seasonal change detection of riparian zones with remote sensing images and genetic programming in a semi-arid watershed. J. Environ. Manag. 2009, 902, 1069–1080. [Google Scholar] [CrossRef]
- Akasheh, O.Z.; Neale, C.M.U.; Jayanthi, H. Detailed mapping of riparian vegetation in the middle Rio Grande River using high resolution multi-spectral airborne remote sensing. J. Arid Environ. 2008, 72, 1734–1744. [Google Scholar] [CrossRef]
- Mason, D.; Cobby, D.M.; Horritt, M.; Bates, P. Floodplain friction parameterization in two-dimensional river flood models using vegetation heights from airborne scanning laser altimetry. Hydrol. Processes 2003, 17, 1711–1732. [Google Scholar] [CrossRef]
- Van der Velde, R.; Su, Z.; Ma, Y. Impact of soil moisture dynamics on ASAR σ° signatures and its spatial variability observed over the Tibetan Plateau. Sensors 2008, 8, 5479–5491. [Google Scholar] [CrossRef]
- Van der Velde, R.; Su, Z.; van Oevelen, P.; Wen, J.; Ma, Y.; Salama, M.S. Soil moisture mapping over the central part of the Tibetan Plateau using a series of ASAR WS images. Remote Sens. Environ. 2012, 120, 175–187. [Google Scholar] [CrossRef]
- Kuenzer, C.; Guo, H.; Huth, J.; Leinenkugel, P.; Li, X.; Dech, S. Flood mapping and flood dynamics of the Mekong Delta: ENVISAT-ASAR-WSM based time series analyses. Remote Sens. 2013, 5, 687–715. [Google Scholar] [CrossRef] [Green Version]
- Schumann, G.; di Baldassarre, G.; Bates, P.D. The utility of space-borne radar to render flood inundation maps based on multi-algorithm ensembles. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2801–2807. [Google Scholar] [CrossRef]
- Schumann, G.J.-P.; Bates, P.D.; Horritt, M.S.; Matgen, P.; Pappenberger, F. Progress in integration of remote sensing derived flood extent and stage data and hydraulic models. Rev. Geophys. 2009. [Google Scholar] [CrossRef]
- Ferrazzoli, P.; Paloscia, S.; Pampaloni, P.; Schiavon, G.; Sigismondi, S.; Solamini, D. The potential of multifrequency polarimetric SAR in assessing agriculture and arboreous biomass. IEEE Trans. Geosci. Remote Sens. 1997, 35, 5–15. [Google Scholar] [CrossRef]
- Alberga, V.; Satalino, G.; Staykova, D.K. Comparison of polarimetric SAR observables in terms of classification performance. Int. J. Remote Sens. 2008, 29, 4129–4150. [Google Scholar] [CrossRef]
- Cloude, R.S.; Pottier, E. An entrophy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Lucas, R.M.; Cronin, N.; Lee, A.; Moghaddam, M.; Witte, C.; Tickle, P. Empirical relationships between AIRSAR backscatter and LiDAR-derived forest biomass, Queensland, Australia. Remote Sens. Environ. 2006, 100, 407–425. [Google Scholar] [CrossRef]
- Englhart, S.; Keuck, V.; Siegert, F. Aboveground biomass retrieval in tropical forests—The potential of combined X- and L-band SAR data use. Remote Sens. Environ. 2011, 115, 1260–1271. [Google Scholar] [CrossRef]
- Garestier, F.; Dubois-Fernandez, P.C.; Guyon, D.; le Toan, T. Forest biophysical parameter estimation using L- and P-band polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3379–3388. [Google Scholar] [CrossRef]
- Lewis, A.J.; Henderson, F.M. Radar fundamentals: The geoscience perspective. In Principles and Applications of Imaging Radar: Manual of Remote Sensing, Third ed.; Henderson, F.M., Lewis, A.J., Eds.; John Wiley & Sons: New York, NY, USA, 1998; Volume 2, pp. 131–181. [Google Scholar]
- Verhoest, N.E.; Lievens, H.; Wagner, W.; Álvarez-Mozos, J.; Moran, M.S.; Mattia, F. On the soil roughness parameterization problem in soil moisture retrieval of bare surfaces from synthetic aperture radar. Sensors 2008, 8, 4213–4248. [Google Scholar] [CrossRef]
- Ranson, K.J.; Sun, G. Mapping biomass of a northern forest using multifrequency SAR data. IEEE Trans. Geosci. Remote Sens. 1994, 32, 388–396. [Google Scholar]
- Mattia, F.; Toan, L.T.; Souyris, J.-C.; Carolis, G.D.; Floury, N.; Posa, F. The effect of surface roughness on multifrequency polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 954–966. [Google Scholar] [CrossRef]
- Mtamba, J.O.D.; Ndomba, P.M.; Mtalo, F.; Crosato, A. Hydraulic study of flood rating curve development in the Lower Mara Basin. In Proceedings of 4th International Multidisciplinary Conference on Hydrology and Ecology (HydroEco 2013), Rennes, France, 13–16 May 2013.
- McClain, M.; Subalusky, A.; Anderson, E.; Dessu, S.; Melesse, A.; Ndomba, P.; Mtamba, J.; Tamatamah, R.; Mligo, C. Comparing flow regime, channel hydraulics and biological communities to infer flow-ecology relationships in the Mara River of Kenya and Tanzania. Hydrol. Sci. J. 2013. [Google Scholar] [CrossRef]
- Breda, N.J.J. Ground-based measurements of leaf area index: A review of methods, instruments and current controversies. J. Exp. Bot. 2003, 54, 2403–2417. [Google Scholar] [CrossRef] [PubMed]
- Jonckheere, I.; Fleck, S.; Nackaerts, K.; Muys, B.; Coppin, P.; Weiss, M.; Baret, F. Review of methods for in situ leaf area index determination. Part I. Theories, sensors and hemispherical photography. Agric. For. Meteorol. 2004, 121, 19–35. [Google Scholar]
- Weiss, M.; Baret, F.; Smith, G.J.; Jonckheere, I.; Coppin, P. Review of methods for in situ leaf area index (LAI) determination Part II. Estimation of LAI, errors and sampling. Agric. For. Meteorol. 2004, 121, 37–53. [Google Scholar] [CrossRef]
- Garrigues, S.; Shabanov, N.V.; Swanson, K.; Morisette, J.T.; Baret, F.; Myneni, R.B. Intercomparison and sensitivity analysis of leaf area index retrievals from LAI-2000, AccuPAR, and digital hemispherical photography over croplands. Agric. For. Meteorol. 2008, 148, 1193–1209. [Google Scholar] [CrossRef]
- Congalton, R.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 2nd ed.; Lewis Publishers: Boca Raton, FL, USA, 1999. [Google Scholar]
- Maghsoudi, Y.; Collins, M.J.; Leckie, D.G. On the use of feature selection for classifying multitemporal Radarsat-1 images for forest mapping. IEEE Geosci. Remote Sens. Lett. 2011, 8, 904–908. [Google Scholar] [CrossRef]
- Bruzzone, L.; Marconcini, M.; Wegmüller, M.; Wiesmann, A. An advanced system for the automatic classification of multitemporal SAR images. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1321–1334. [Google Scholar] [CrossRef]
- Petryk, S.; Bosmajian, G.B. Analysis of flow through vegetation. J. Hydraul. Div. 1975, 101, 871–884. [Google Scholar]
- Ogilvy, J.A.; Foster, J.R. Rough surfaces: Gausian or exponential statistics. Phys. Rev. D Appl. Phys. 1989, 22, 1243–1251. [Google Scholar] [CrossRef]
- Geman, S.; Geman, D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 1984, 6, 721–741. [Google Scholar] [CrossRef] [PubMed]
- Jeng, F; Woods, J. Compound Gauss-Markov random fields for image estimation. IEEE Trans. Signal Process. 1991, 39, 683–697. [Google Scholar] [CrossRef]
- Zhu, S.C.; Wu, Y.; Mumford, D. Filters, random fields and maximum entropy (FRAME): Towards a unified theory for texture modelling. Int. J. Comput. Vis. 1998, 27, 107–126. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef]
- Winkler, G. Image Analysis, Random Fields and Markov Chain Monte Carlo Methods: A Mathematical Introduction, 2nd ed.; Springer-Verlag Berlin Heidelberg: New York, NY, USA, 2003. [Google Scholar]
- Kasetkasem, T.; Rakwatin, P.; Sirisommai, R.; Eiumnoh, A. A joint land cover mapping and image registration algorithm based on a markov random field model. Remote Sens. 2013, 5, 5089–5121. [Google Scholar] [CrossRef]
- Löw, A. Coupled Modelling Of Land Surface Microwave Interactions Using ENVISAT ASAR Data. Ph.D. Thesis, Ludwig Maximilian University of Munich, Munich, Germany, 2004. [Google Scholar]
- Bates, P.D. Remote sensing and flood inundation modelling. Hydrol. Proc. 2004, 18, 2593–2597. [Google Scholar] [CrossRef]
- Wang, P. Applying two dimension kalman filtering for digital terrain modeling. IAPRS, Proceedings of ISPRS Commission IV Symposium, GIS Between Visions and Applications, Stuttgart, Germany, 7–10 September 1998; 32, pp. 649–656. Available online: http://www.isprs.org/proceedings/XXXII/part4/wang71.pdf (Accessed on 20 March 2013).
- Gallant, J.C.; Hutchinson, M.F. Producing Digital Elevation Models with Uncertainty Estimates Using a Multi-scale Kalman Filter. Available online: http://www.spatial-accuracy.org/book/export/html/183 (accessed on 14 May 2013).
- Krause, P.; Boyle, D.P.; Base, F. Comparision of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef]
- Hassanzadeh, Y. Hydraulics of Sediment Transport, Hydrodynamics—Theory and Model. Available online: http://www.intechopen.com/books/hydrodynamics-theory-and-model/hydraulics-of-sediment-transport (accessed on 25 December 2014).
- Legates, D.R.; McCabe, G.J., Jr. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Corcoran, J.; Knight, J.; Brisco, B.; Kaya, S.; Cull, A.; Murnaghan, K. The integration of optical, topographic, and radar data for wetland mapping in northern Minnesota. Can. J. Remote Sens. 2011, 37, 564–582. [Google Scholar] [CrossRef]
- Hunter, N.M.; Bates, P.D.; Horritt, M,S.; Wilson, M.D. Simple spatially-distributed models for predicting flood inundation: A review. Geomorphology 2007, 90, 208–225. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mtamba, J.; Van der Velde, R.; Ndomba, P.; Zoltán, V.; Mtalo, F. Use of Radarsat-2 and Landsat TM Images for Spatial Parameterization of Manning’s Roughness Coefficient in Hydraulic Modeling. Remote Sens. 2015, 7, 836-864. https://doi.org/10.3390/rs70100836
Mtamba J, Van der Velde R, Ndomba P, Zoltán V, Mtalo F. Use of Radarsat-2 and Landsat TM Images for Spatial Parameterization of Manning’s Roughness Coefficient in Hydraulic Modeling. Remote Sensing. 2015; 7(1):836-864. https://doi.org/10.3390/rs70100836
Chicago/Turabian StyleMtamba, Joseph, Rogier Van der Velde, Preksedis Ndomba, Vekerdy Zoltán, and Felix Mtalo. 2015. "Use of Radarsat-2 and Landsat TM Images for Spatial Parameterization of Manning’s Roughness Coefficient in Hydraulic Modeling" Remote Sensing 7, no. 1: 836-864. https://doi.org/10.3390/rs70100836