Insights into Genes Encoding LEA_1 Domain-Containing Proteins in Cyperus esculentus, a Desiccation-Tolerant Tuber Plant
<p>Structural and phylogenetic analyses of <span class="html-italic">LEA_1</span> family genes in <span class="html-italic">C. esculentus</span>. (<b>A</b>) Amino acid composition of CeLEA1 proteins. (<b>B</b>) The unrooted phylogenetic tree resulting from full-length Ce/AtLEA1 proteins with MEGA6 (maximum likelihood method and bootstrap of 1000 replicates), where the distance scale denotes the number of amino acid substitutions per site. The name of each clade is indicated next to the corresponding group. (<b>C</b>) Exon–intron structures, where 0 and 1 indicate intron phases. (<b>D</b>) The distribution of conserved motifs among Ce/AtLEA1 proteins, where different motifs are represented by different color blocks as indicated and the same color block in different proteins indicates a certain motif. (At: <span class="html-italic">A. thaliana</span>; CDS: coding sequence; Ce: <span class="html-italic">C. esculentus</span>; LEA: late embryogenesis abundant).</p> "> Figure 2
<p>Species-specific distribution of six orthogroups in 29 representative plant species. The species tree is referred to NCBI Taxonomy (<a href="https://www.ncbi.nlm.nih.gov/taxonomy" target="_blank">https://www.ncbi.nlm.nih.gov/taxonomy</a> (accessed on 20 August 2023)) and recent whole-genome duplications or triplications resulting in polyploidy (CoGepedia; <a href="https://genomevolution.org/wiki/index.php/Plant_paleopolyploidy" target="_blank">https://genomevolution.org/wiki/index.php/Plant_paleopolyploidy</a> (accessed on 20 August 2023)) are marked. “?” indicates unknown. (LEA: late embryogenesis abundant.)</p> "> Figure 3
<p>Synteny analysis within and between <span class="html-italic">C. esculentus</span> and representative plant species. (<b>A</b>) Synteny analysis within and between <span class="html-italic">C. esculentus</span>, <span class="html-italic">A. gramineus</span>, <span class="html-italic">A. thaliana</span>, and <span class="html-italic">A. trichopoda</span>. (<b>B</b>) Synteny analysis within and between <span class="html-italic">C. esculentus</span>, <span class="html-italic">C. littledalei</span>, <span class="html-italic">C. scoparia</span>, and <span class="html-italic">R. breviuscula</span>. (<b>C</b>) Synteny analysis within and between <span class="html-italic">C. esculentus</span>, <span class="html-italic">J. effusus</span>, <span class="html-italic">J. ascendens</span>, <span class="html-italic">S. stoloniferum</span>, and <span class="html-italic">A. comosus</span>. (<b>D</b>) Synteny analysis within and between <span class="html-italic">C. esculentus</span>, <span class="html-italic">B. distachyon</span>, <span class="html-italic">O. sativa</span>, and <span class="html-italic">S. italica</span>. <span class="html-italic">LEA_1</span> gene-encoding chromosomes/scaffolds and only syntenic blocks containing <span class="html-italic">LEA_1</span> genes are marked, where red and purple lines for intra- and inter-species, respectively. The scale is in Mb. (Ac: <span class="html-italic">A. comosus</span>; Ag: <span class="html-italic">A. gramineus</span>; At: <span class="html-italic">A. thaliana</span>; Atr: <span class="html-italic">A. trichopoda</span>; Bd: <span class="html-italic">B. distachyon</span>; Ce: <span class="html-italic">C. esculentus</span>; Cl: <span class="html-italic">C. littledalei</span>; Cs: <span class="html-italic">C. scoparia</span>; Ja: <span class="html-italic">J. ascendens</span>; Je: <span class="html-italic">J. effuses</span>; Mb: megabase; Os: <span class="html-italic">O. sativa</span>; Rb: <span class="html-italic">R. breviuscula</span>; Si: <span class="html-italic">S. italic</span>; Ss: <span class="html-italic">S. stoloniferum</span>).</p> "> Figure 4
<p>Expression profiles of <span class="html-italic">CeLEA1 and CrLEA1</span> genes. (<b>A</b>) Tissue-specific expression profiles of five <span class="html-italic">CeLEA1</span> genes. (<b>B</b>) Expression profiles of <span class="html-italic">CeLEA1-2</span>, <span class="html-italic">-3</span>, and <span class="html-italic">-4</span> at different stages of tuber development. (<b>C</b>) Expression profiles of <span class="html-italic">CeLEA1 and CrLEA1</span> genes at three representative stages of tuber development. The heatmap was generated using the R package implemented with a row-based standardization. Color scale represents FPKM normalized log<sub>2</sub> transformed counts, where blue indicates low expression and red indicates high expression. Bars indicate SD (N = 3) and uppercase letters indicate a difference significance following Duncan’s one-way multiple-range post hoc ANOVA (<span class="html-italic">p</span> < 0.01). (Ce: <span class="html-italic">C. esculentus</span>; Cr: <span class="html-italic">C. rotundus</span>; DAI: days after tuber initiation; DAS: days after sowing; FPKM: Fragments per kilobase of exon per million fragments mapped.)</p> ">
Abstract
:1. Introduction
2. Results
2.1. Characterization of Five LEA_1 Family Genes in Tigernut
2.2. Comparative Genomics Analyses Reveal Lineage-Specific Evolution of the LEA_1 Family in the Monocot Clade
2.3. LEA_1 Genes in Tigernut Exhibit a Tuber-Predominant Expression Pattern, in Contrast to the Seed-Preferential Expression in Arabidopsis, Rice, and Maize
2.4. LEA_1 Genes in Tigernut Were Expressed More than Their Orthologs in Purple Nutsedge
3. Discussion
3.1. Expansion of the LEA_1 Family in Tigernut Was Contributed by WGDs
3.2. LEA_1 Genes in Tigernut Underwent Apparent Expression and Function Divergence
4. Conclusions
5. Materials and Methods
5.1. Datasets and Identification of LEA_1 Family Genes
5.2. Phylogenetic and Conserved Motif Analyses
5.3. Synteny Analysis and Definition of Orthogroups
5.4. Plant Materials
5.5. Gene Expression Analysis Based on RNA-Seq
5.6. Gene Expression Analysis Based on qRT-PCR
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oliver, M.J.; Farrant, J.M.; Hilhorst, H.W.M.; Mundree, S.; Williams, B.; Bewley, J.D. Desiccation tolerance: Avoiding cellular damage during drying and rehydration. Annu. Rev. Plant Biol. 2020, 71, 435–460. [Google Scholar] [CrossRef] [PubMed]
- Matilla, A.J. The orthodox dry seeds are alive: A clear example of desiccation tolerance. Plants 2021, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Verdier, J.; Lalanne, D.; Pelletier, S.; Torres-Jerez, I.; Righetti, K.; Bandyopadhyay, K.; Leprince, O.; Chatelain, E.; Vu, B.L.; Gouzy, J.; et al. A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds. Plant Physiol. 2013, 163, 757–774. [Google Scholar] [CrossRef] [PubMed]
- Smolikova, G.; Leonova, T.; Vashurina, N.; Frolov, A.; Medvedev, S. Desiccation tolerance as the basis of long-term seed viability. Int. J. Mol. Sci. 2020, 22, 101. [Google Scholar] [CrossRef]
- Wang, X.S.; Zhu, H.B.; Jin, G.L.; Liu, H.L.; Wu, W.R.; Zhu, J. Genome-scale identification and analysis of LEA genes in rice (Oryza sativa L.). Plant Sci. 2007, 172, 414–420. [Google Scholar] [CrossRef]
- Battaglia, M.; Olvera-Carrillo, Y.; Garciarrubio, A.; Campos, F.; Covarrubias, A.A. The enigmatic LEA proteins and other hydrophilins. Plant Physiol. 2008, 148, 6–24. [Google Scholar] [CrossRef]
- Hundertmark, M.; Hincha, D.K. LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genom. 2008, 9, 118. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef]
- Dure, L. A repeating 11-mer amino acid motif and plant desiccation. Plant J. 1993, 3, 363–369. [Google Scholar] [CrossRef]
- Zou, Z.; Guo, J.Y.; Zheng, Y.J.; Xiao, Y.H.; Guo, A.P. Genomic analysis of LEA genes in Carica papaya and insight into lineage-specific family evolution in Brassicales. Life 2022, 12, 1453. [Google Scholar] [CrossRef]
- Cuevas-Velazquez, C.L.; Saab-Rincón, G.; Reyes, J.L.; Covarrubias, A.A. The unstructured N-terminal region of Arabidopsis group 4 late embryogenesis abundant (LEA) proteins is required for folding and for chaperone-like activity under water deficit. J. Biol. Chem. 2016, 291, 10893–10903. [Google Scholar] [CrossRef] [PubMed]
- Bies-Ethève, N.; Gaubier-Comella, P.; Debures, A.; Lasserre, E.; Jobet, E.; Raynal, M.; Cooke, R.; Delseny, M. Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol. Biol. 2008, 67, 107–124. [Google Scholar] [CrossRef] [PubMed]
- Olvera-Carrillo, Y.; Campos, F.; Reyes, J.L.; Garciarrubio, A.; Covarrubias, A.A. Functional analysis of the group 4 late embryogenesis abundant proteins reveals their relevance in the adaptive response during water deficit in Arabidopsis. Plant Physiol. 2010, 154, 373–390. [Google Scholar] [CrossRef] [PubMed]
- Delahaie, J.; Hundertmark, M.; Bove, J.; Leprince, O.; Rogniaux, H.; Buitink, J. LEA polypeptide profiling of recalcitrant and orthodox legume seeds reveals ABI3-regulated LEA protein abundance linked to desiccation tolerance. J. Exp. Bot. 2013, 64, 4559–4573. [Google Scholar] [CrossRef] [PubMed]
- Chatelain, E.; Hundertmark, M.; Leprince, O.; Le Gall, S.; Satour, P.; Deligny-Penninck, S.; Rogniaux, H.; Buitink, J. Temporal profiling of the heat-stable proteome during late maturation of Medicago truncatula seeds identifies a restricted subset of late embryogenesis abundant proteins associated with longevity. Plant Cell Environ. 2012, 35, 1440–1455. [Google Scholar] [CrossRef]
- Vitrac, O.; Dufour, D.; Trystram, G.; Raoult-Wack, A.L. Deep-fat frying of cassava: Influence of raw material properties on chip quality. J. Sci. Food Agric. 2001, 81, 227–236. [Google Scholar] [CrossRef]
- Zou, Z.; Zhao, Y.G.; Zhang, L.; Xiao, Y.H.; Guo, A.P. Analysis of Cyperus esculentus SMP family genes reveals lineage-specific evolution and seed desiccation-like transcript accumulation during tuber maturation. Ind. Crop. Prod. 2022, 187, 115382. [Google Scholar] [CrossRef]
- Zou, Z.; Zheng, Y.J.; Chang, L.L.; Zou, L.P.; Zhang, L.; Min, Y.; Zhao, Y.G. TIP aquaporins in Cyperus esculentus: Genome-wide identification, expression profiles, subcellular localizations, and interaction patterns. BMC Plant Biol. 2024, 24, 298. [Google Scholar] [CrossRef]
- Zou, Z.; Zheng, Y.J.; Xiao, Y.H.; Liu, H.Y.; Huang, J.Q.; Zhao, Y.G. Molecular insights into PIP aquaporins in tigernut (Cyperus esculentus L.), a Cyperaceae tuber plant. Tropical Plants 2024, 3, e027. [Google Scholar] [CrossRef]
- De Castro, O.; Gargiulo, R.; Del Guacchio, E.; Caputo, P.; De Luca, P. A molecular survey concerning the origin of Cyperus esculentus (Cyperaceae, Poales): Two sides of the same coin (weed vs. crop). Ann. Bot. 2015, 115, 733–745. [Google Scholar] [CrossRef]
- Zou, Z.; Xiao, Y.H.; Zhang, L.; Zhao, Y.G. Analysis of Lhc family genes reveals development regulation and diurnal fluctuation expression patterns in Cyperus esculentus, a Cyperaceae plant. Planta 2023, 257, 59. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Zheng, Y.J.; Zhang, Z.T.; Xiao, Y.H.; Xie, Z.N.; Chang, L.L.; Zhang, L.; Zhao, Y.G. Molecular characterization oleosin genes in Cyperus esculentus, a Cyperaceae plant producing oil in underground tubers. Plant Cell Rep. 2023, 42, 1791–1808. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Fu, X.W.; Huang, J.Q.; Zhao, Y.G. Molecular characterization of CeOLE6, a diverged SH oleosin gene, preferentially expressed in Cyperus esculentus tubers. Planta 2024, in press. [Google Scholar]
- Zou, Z.; Zhao, Y.G.; Zhang, L.; Kong, H.; Guo, Y.L.; Guo, A.P. Single-molecule real-time (SMRT)-based full-length transcriptome analysis of tigernut (Cyperus esculentus L.). Chin. J. Oil Crop Sci. 2021, 43, 229–235. [Google Scholar] [CrossRef]
- Zhao, X.; Yi, L.; Ren, Y.; Li, J.; Ren, W.; Hou, Z.; Su, S.; Wang, J.; Zhang, Y.; Dong, Q.; et al. Chromosome-scale genome assembly of the yellow nutsedge (Cyperus esculentus). Genome Biol. Evol. 2023, 15, evad027. [Google Scholar] [CrossRef] [PubMed]
- Amborella Genome Project. The Amborella genome and the evolution of flowering plants. Science 2013, 342, 1241089. [Google Scholar] [CrossRef]
- Jiao, Y.; Li, J.; Tang, H.; Paterson, A.H. Integrated syntenic and phylogenomic analyses reveal an ancient genome duplication in monocots. Plant Cell 2014, 26, 2792–2802. [Google Scholar] [CrossRef]
- Wang, W.; Haberer, G.; Gundlach, H.; Gläßer, C.; Nussbaumer, T.; Luo, M.C.; Lomsadze, A.; Borodovsky, M.; Kerstetter, R.A.; Shanklin, J.; et al. The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat. Commun. 2014, 5, 3311. [Google Scholar] [CrossRef]
- Ming, R.; VanBuren, R.; Wai, C.M.; Tang, H.; Schatz, M.C.; Bowers, J.E.; Lyons, E.; Wang, M.L.; Chen, J.; Biggers, E.; et al. The pineapple genome and the evolution of CAM photosynthesis. Nat. Genet. 2015, 47, 1435–1442. [Google Scholar] [CrossRef]
- Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 2019, 20, 238. [Google Scholar] [CrossRef]
- Niemeyer, P.W.; Irisarri, I.; Scholz, P.; Schmitt, K.; Valerius, O.; Braus, G.H.; Herrfurth, C.; Feussner, I.; Sharma, S.; Carlsson, A.S.; et al. A seed-like proteome in oil-rich tubers. Plant J. 2022, 112, 518–534. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Hu, W.; Yan, Y.; Tie, W.; Ding, Z.; Guo, J.; He, G. The late embryogenesis abundant protein family in cassava (Manihot esculenta Crantz): Genome-wide characterization and expression during abiotic stress. Molecules 2018, 23, 1196. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Yang, J.H. Genome-wide comparison reveals divergence of cassava and rubber aquaporin family genes after the recent whole-genome duplication. BMC Genom. 2019, 20, 380. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Jin, J.; Guo, A.Y.; Zhang, H.; Luo, J.; Gao, G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics 2015, 31, 1296–1297. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef]
- Zou, Z.; Yang, J.H. Genomic analysis of Dof transcription factors in Hevea brasiliensis, a rubber-producing tree. Ind. Crops Prod. 2019, 134, 271–283. [Google Scholar] [CrossRef]
- Qiao, X.; Li, Q.; Yin, H.; Qi, K.; Li, L.; Wang, R.; Zhang, S.; Paterson, A.H. Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants. Genome Biol. 2019, 20, 38. [Google Scholar] [CrossRef]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef]
- Zou, Z.; Gong, J.; An, F.; Xie, G.S.; Wang, J.K.; Mo, Y.Y.; Yang, L.F. Genome-wide identification of rubber tree (Hevea brasiliensis Muell. Arg.) aquaporin genes and their response to ethephon stimulation in the laticifer, a rubber-producing tissue. BMC Genom. 2015, 16, 1001. [Google Scholar] [CrossRef]
Gene Name | Locus ID | Position | AA | MW (kDa) | pI | GRAVY | LEA_1 Location | Duplicate | Mode | Group |
---|---|---|---|---|---|---|---|---|---|---|
CeLEA1-1 | CESC_14864 | Scf11:2802864..2803416(−) | 112 | 12.13 | 9.40 | −1.137 | 1..70 | - | - | I |
CeLEA1-2 | CESC_19809 | Scf22:1436544..1436936(+) | 130 | 13.73 | 9.66 | −0.780 | 1..70 | CeLEA1-1 | WGD | I |
CeLEA1-3 | CESC_02592 | Scf21:1359881..1360694(+) | 147 | 15.18 | 6.59 | −0.784 | 9..78 | - | - | II |
CeLEA1-4 | CESC_10473 | Scf23:2545043..2545918(+) | 133 | 13.67 | 9.79 | −0.934 | 1..70 | CeLEA1-3 | WGD | II |
CeLEA1-5 | CESC_14205 | Scf2:1221799..1222572(−) | 96 | 10.75 | 5.30 | −1.331 | 1..64 | CeLEA1-4 | WGD | II |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Fu, X.; Zou, Z. Insights into Genes Encoding LEA_1 Domain-Containing Proteins in Cyperus esculentus, a Desiccation-Tolerant Tuber Plant. Plants 2024, 13, 2933. https://doi.org/10.3390/plants13202933
Zhao Y, Fu X, Zou Z. Insights into Genes Encoding LEA_1 Domain-Containing Proteins in Cyperus esculentus, a Desiccation-Tolerant Tuber Plant. Plants. 2024; 13(20):2933. https://doi.org/10.3390/plants13202933
Chicago/Turabian StyleZhao, Yongguo, Xiaowen Fu, and Zhi Zou. 2024. "Insights into Genes Encoding LEA_1 Domain-Containing Proteins in Cyperus esculentus, a Desiccation-Tolerant Tuber Plant" Plants 13, no. 20: 2933. https://doi.org/10.3390/plants13202933
APA StyleZhao, Y., Fu, X., & Zou, Z. (2024). Insights into Genes Encoding LEA_1 Domain-Containing Proteins in Cyperus esculentus, a Desiccation-Tolerant Tuber Plant. Plants, 13(20), 2933. https://doi.org/10.3390/plants13202933