Nonoscillatory Solutions to Higher-Order Nonlinear Neutral Dynamic Equations
Abstract
:1. Introduction
- (B1)
- and ;
- (B2)
- and .
- (C1)
- , , and there are constants , such that
- (C2)
- and , where ;
- (C3)
- , , , and if , then there exists a sequence satisfying and ;
- (C4)
- is nondecreasing in x and for ;
- (C5)
- if
2. Auxiliary Results
- (A1)
- ;
- (A2)
- for some constant ;
- (A3)
- and , where is a constant;
- (A4)
- and .
3. Main Results
4. Examples
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hilger, S. Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. Thesis, Universität Würzburg, Würzburg, Germany, 1988. [Google Scholar]
- Hilger, S. Analysis on measure chains—A unified approach to continuous and discrete calculus. Results Math. 2000, 18, 18–56. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M. Basic calculus on time scales and some of its applications. Results Math. 1999, 35, 3–22. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; O’Regan, D.; Peterson, A. Dynamic equations on time scales: A survey. J. Comput. Appl. Math. 2002, 141, 1–26. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhäuser: Boston, MA, USA, 2001. [Google Scholar]
- Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales; Birkhäuser: Boston, MA, USA, 2003. [Google Scholar]
- Agarwal, R.P.; Bohner, M.; Li, T.X.; Zhang, C.H. Hille and Nehari type criteria for third-order delay dynamic equations. J. Differ. Equat. Appl. 2013, 19, 1563–1579. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Li, T.X.; Zhang, C.H. A Philos-type theorem for third-order nonlinear retarded dynamic equations. Appl. Math. Comput. 2014, 249, 527–531. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Tang, S.H.; Li, T.X.; Zhang, C.H. Oscillation and asymptotic behavior of third-order nonlinear retarded dynamic equations. Appl. Math. Comput. 2012, 219, 3600–3609. [Google Scholar] [CrossRef]
- Bohner, M.; Li, T.X. Oscillation of second-order p-Laplace dynamic equations with a nonpositive neutral coefficient. Appl. Math. Lett. 2014, 37, 72–76. [Google Scholar] [CrossRef]
- Deng, X.H.; Wang, Q.R. Nonoscillatory solutions to forced higher-order nonlinear neutral dynamic equations on time scales. Rocky Mt. J. Math. 2015, 45, 475–507. [Google Scholar] [CrossRef]
- Deng, X.H.; Wang, Q.R. Nonoscillatory solutions to second-order neutral functional dynamic equations on time scales. Commun. Appl. Anal. 2014, 18, 261–280. [Google Scholar]
- Gao, J.; Wang, Q.R. Existence of nonoscillatory solutions to second-order nonlinear neutral dynamic equations on time scales. Rocky Mt. J. Math. 2013, 43, 1521–1535. [Google Scholar] [CrossRef]
- Karpuz, B. Sufficient conditions for the oscillation and asymptotic behaviour of higher-order dynamic equations of neutral type. Appl. Math. Comput. 2013, 221, 453–462. [Google Scholar]
- Karpuz, B.; Öcalan, Ö. Necessary and sufficient conditions on asymptotic behaviour of solutions of forced neutral delay dynamic equations. Nonlinear Anal. 2009, 71, 3063–3071. [Google Scholar] [CrossRef]
- Li, T.X.; Han, Z.L.; Sun, S.R.; Yang, D.W. Existence of nonoscillatory solutions to second-order neutral delay dynamic equations on time scales. Adv. Differ. Equat. 2009, 2009, 562329. [Google Scholar] [CrossRef]
- Li, T.X.; Saker, S.H. A note on oscillation criteria for second-order neutral dynamic equations on isolated time scales. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 4185–4188. [Google Scholar] [CrossRef]
- Mathsen, R.M.; Wang, Q.R.; Wu, H.W. Oscillation for neutral dynamic functional equations on time scales. J. Differ. Equat. Appl. 2004, 10, 651–659. [Google Scholar] [CrossRef]
- Qiu, Y.C. Nonoscillatory solutions to third-order neutral dynamic equations on time scales. Adv. Differ. Equat. 2014, 2014, 309. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.C.; Wang, Q.R. Existence of nonoscillatory solutions to higher-order nonlinear neutral dynamic equations on time scales. Bull. Malays. Math. Sci. Soc. 2018, 41, 1935–1952. [Google Scholar] [CrossRef]
- Qiu, Y.C.; Wang, H.X.; Jiang, C.M.; Li, T.X. Existence of nonoscillatory solutions to third-order neutral functional dynamic equations on time scales. J. Nonlinear Sci. Appl. 2018, 11, 274–287. [Google Scholar] [CrossRef]
- Qiu, Y.C.; Zada, A.; Tang, S.H.; Li, T.X. Existence of nonoscillatory solutions to nonlinear third-order neutral dynamic equations on time scales. J. Nonlinear Sci. Appl. 2017, 10, 4352–4363. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.H.; Agarwal, R.P.; Bohner, M.; Li, T.X. Oscillation of second-order nonlinear neutral dynamic equations with noncanonical operators. Bull. Malays. Math. Sci. Soc. 2015, 38, 761–778. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Wang, Q.R. Existence of nonoscillatory solutions to neutral dynamic equations on time scales. J. Math. Anal. Appl. 2007, 335, 751–762. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Y.-C.; Jadlovská, I.; Lassoued, D.; Li, T. Nonoscillatory Solutions to Higher-Order Nonlinear Neutral Dynamic Equations. Symmetry 2019, 11, 302. https://doi.org/10.3390/sym11030302
Qiu Y-C, Jadlovská I, Lassoued D, Li T. Nonoscillatory Solutions to Higher-Order Nonlinear Neutral Dynamic Equations. Symmetry. 2019; 11(3):302. https://doi.org/10.3390/sym11030302
Chicago/Turabian StyleQiu, Yang-Cong, Irena Jadlovská, Dhaou Lassoued, and Tongxing Li. 2019. "Nonoscillatory Solutions to Higher-Order Nonlinear Neutral Dynamic Equations" Symmetry 11, no. 3: 302. https://doi.org/10.3390/sym11030302
APA StyleQiu, Y. -C., Jadlovská, I., Lassoued, D., & Li, T. (2019). Nonoscillatory Solutions to Higher-Order Nonlinear Neutral Dynamic Equations. Symmetry, 11(3), 302. https://doi.org/10.3390/sym11030302