Reconstructing Three-Dimensional Human Poses: A Combined Approach of Iterative Calculation on Skeleton Model and Conformal Geometric Algebra
<p>The overall flow diagram of 3D human pose estimation.</p> "> Figure 2
<p>3D human model and its skeleton.</p> "> Figure 3
<p>Location on joint points on the target human body.</p> "> Figure 4
<p>The extraction of strip structures of the human arm and occlusion treatment.</p> "> Figure 5
<p>The perspective projection model.</p> "> Figure 6
<p>The first frame of motion sequential images.</p> "> Figure 7
<p>The location of the human joint points.</p> "> Figure 8
<p>3D human pose reconstruction based on the different groups of joint points.</p> "> Figure 8 Cont.
<p>3D human pose reconstruction based on the different groups of joint points.</p> "> Figure 9
<p>Estimation results of different 3D human poses.</p> "> Figure 9 Cont.
<p>Estimation results of different 3D human poses.</p> "> Figure 10
<p>Estimation results of 3D human poses on human motion sequence images.</p> "> Figure 11
<p>The error in human joint points located by the proposed method.</p> "> Figure 12
<p>The result of the joint point location of various human poses using different methods.</p> "> Figure 13
<p>The variation of the rotation angle using the proposed method of 3D human pose estimation.</p> "> Figure 14
<p>The 3D human pose estimation with occlusion.</p> "> Figure 14 Cont.
<p>The 3D human pose estimation with occlusion.</p> "> Figure 15
<p>3D human poses estimation using the MPII human pose dataset.</p> "> Figure 15 Cont.
<p>3D human poses estimation using the MPII human pose dataset.</p> ">
Abstract
:1. Introduction
2. The Methods
2.1. Calculation of the 3D Coordinates of Joint Points on the Target Human Body
2.1.1. Human Skeleton Model and Divided Limb Parts
2.1.2. Joint Points’ Location on the Target Human Body
2.1.3. Resolving the Problem of Occlusion
2.1.4. Estimation of the 3D Coordinates of Human Joint Points
2.2. Limb Cooperative Motion Based on Conformal Geometric Algebra
2.2.1. The Outline of Conformal Geometric Algebra
2.2.2. Rotation Directions and Angles of Human Limbs
2.2.3. Human Limb Motion Using Rigid Transformation
3. Experimental Results and Validation
4. Conclusions and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Wang, X.; Wang, F.; Chen, Y. Capturing complex 3D human motions with kernelized low-rank representation from monocular RGB camera. Sensors 2017, 17, 2019. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, S.; Lee, D.; Choi, S.; Ju, J.; Myung, H. Real-time human pose estimation and gesture recognition from depth images using superpixels and SVM classifier. Sensors 2015, 15, 12410–12427. [Google Scholar] [CrossRef] [PubMed]
- Alazrai, R.; Momani, M.; Daoud, M.I. Fall detection for elderly from partially observed depth-map video sequences based on view-invariant human activity representation. Appl. Sci. 2017, 7, 316. [Google Scholar] [CrossRef]
- Kong, L.; Yuan, X.; Maharjan, A.M. A hybrid framework for automatic joint detection of human poses in 110 depth frames. Pattern Recognit. 2018, 77, 216–225. [Google Scholar] [CrossRef]
- Stommel, M.; Beetz, M.; Xu, W. Model-free detection, encoding, retrieval, and visualization of human poses from kinect data. IEEE-ASME Trans. Mechatron. 2015, 20, 865–875. [Google Scholar] [CrossRef]
- Mehta, D.; Sridhar, S.; Sotnychenko, O.; Rhodin, H.; Shafiei, M.; Seidel, H.P.; Xu, W.; Casas, D.; Theobalt, C. VNect: Real-time 3D human pose estimation with a single RGB camera. ACM Trans. Gr. 2017, 36, 44. [Google Scholar] [CrossRef]
- Atrevi, D.F.; Vivet, D.; Duculty, F.; Emile, B. A very simple framework for 3D human poses estimation using a single 2D image: Comparison of geometric moments descriptors. Pattern Recognit. 2017, 71, 389–401. [Google Scholar] [CrossRef]
- Sigal, L.; Balan, A.O.; Black, M.J. HumanEva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. Int. J. Comput. Vis. 2010, 87, 4–27. [Google Scholar] [CrossRef]
- Babagholami-Mohamadabadi, B.; Jourabloo, A.; Zarghami, A.; Kasaei, S. A Bayesian framework for sparse representation-based 3D human pose estimation. IEEE Signal Process. Lett. 2014, 21, 297–300. [Google Scholar] [CrossRef]
- Li, Q.; He, F.; Wang, T.; Zhou, L.; Xi, S. Human pose estimation by exploiting spatial and temporal constraints in body-part configurations. IEEE Access 2017, 5, 443–454. [Google Scholar] [CrossRef]
- Dinh, D.L.; Lim, M.J.; Thang, N.D.; Lee, S.; Kim, T.S. Real-time 3D human pose recovery from a single depth image using principal direction analysis. Appl. Intell. 2014, 41, 473–486. [Google Scholar] [CrossRef]
- He, L.; Wang, G.; Liao, Q.; Xue, J. Latent variable pictorial structure for human pose estimation on depth images. Neurocomputing 2016, 203, 52–61. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Xu, G.; Li, M.; Chen, L.; Zhang, X.; Xie, J. Human pose estimation method based on single depth image. IET Comput. Vis. 2018, 12, 919–924. [Google Scholar] [CrossRef]
- Marin-Jimenez, M.J.; Romero-Ramirez, F.J.; Munoz-Salinas, R.; Medina-Carnicer, R. 3D human pose estimation from depth maps using a deep combination of poses. J. Vis. Commun. Image Represent. 2018, 55, 627–639. [Google Scholar] [CrossRef]
- Hong, C.; Chen, X.; Wang, X.; Tang, C. Hypergraph regularized autoencoder for image-based 3D human pose recovery. Signal Process. 2016, 124, 132–140. [Google Scholar] [CrossRef]
- Sedai, S.; Bennamoun, M.; Huynh, D.Q. Discriminative fusion of shape and appearance features for human pose estimation. Pattern Recognit. 2013, 46, 3223–3237. [Google Scholar] [CrossRef]
- Guo, C.; Ruan, S.; Liang, X.; Zhao, Q. A layered approach for robust spatial virtual human pose reconstruction using a still image. Sensors 2016, 16, 263. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, A.; Harati, A.; Vahedian, A. Marker-based human pose tracking using adaptive annealed particle swarm optimization with search space partitioning. Image Vis. Comput. 2017, 62, 28–38. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, J.; Li, S.; Lei, J.; Chen, S. Attend it again: Recurrent attention convolutional neural network for action recognition. Appl. Sci. 2018, 8, 383. [Google Scholar] [CrossRef]
- Chaaraoui, A.A.; Padilla-Lopez, J.R.; Ferrandez-Pastor, F.J.; Nieto-Hidalgo, M.; Florez-Revuelta, F. A vision-based system for intelligent monitoring: Human behaviour analysis and privacy by context. Sensors 2014, 14, 8895–8925. [Google Scholar] [CrossRef] [PubMed]
- Batchuluun, G.; Kim, J.H.; Hong, H.G.; Kangn, J.K.; Park, K.R. Fuzzy system based human behavior recognition by combining behavior prediction and recognition. Expert Syst. Appl. 2017, 81, 108–133. [Google Scholar] [CrossRef]
- Free 3D Models Database. Available online: http://artist-3d.com/free_3d.com/free_3d_models (accessed on 1 December 2018).
- Zou, B.; Chen, S.; Shi, C.; Providence, U.M. Automatic reconstruction of 3D human motion pose from uncalibrated monocular video sequences based on markerless human motion tracking. Pattern Recognit. 2009, 42, 1559–1571. [Google Scholar] [CrossRef]
- Chan, C.K.; Loh, W.P.; Rahim, A. Human motion classification using 2D stick-model matching regression coefficients. Appl. Math. Comput. 2016, 283, 70–89. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Hao, K.; Ding, Y. Human fringe skeleton extraction by an improved Hopfield neural network with direction features. Neurocomputing 2012, 87, 99–110. [Google Scholar] [CrossRef]
- Huang, X.; Ma, X.; Zhao, Z. 3D human model generation based on skeleton segment and contours of various angles. In Proceedings of the 6th International Asia Conference on Industrial Engineering and Management Innovation, Tianjin, China, 16–18 May 2014; pp. 1033–1041. [Google Scholar]
- Huang, X.; Zhu, Y. An entity based multi-direction cooperative deformation algorithm for generating personalized human shape. Multimed. Tools Appl. 2018, 77, 24865–24889. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, X.; Wei, S.; Li, D.; Liao, Q. CGA-based approach to direct kinematics of parallel mechanisms with the 3-RS structure. Mech. Mach. Theory 2018, 124, 162–178. [Google Scholar] [CrossRef]
- Zamora-Esquivel, J.; Bayro-Corrochano, E. Robot perception and handling actions using the conformal geometric algebra framework. Adv. Appl. Clifford Algebras 2010, 20, 959–990. [Google Scholar] [CrossRef]
- Dorst, L.; Fontijne, D.; Mann, S. Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry; Elsevier: San Franscisco, CA, USA, 2007. [Google Scholar]
- Yang, W.; Li, S.; Ouyang, W.; Li, H.; Wang, X. Learning feature pyramids for human pose estimation. In Proceedings of the International Conference on Computer Vision, Venice, Italy, 22–29 October 2017. [Google Scholar]
- Chen, Y.; Shen, C.; Wei, X.; Liu, L.; Yang, J. Adversarial PoseNet: A structure-aware convolutional network for human pose estimation. In Proceedings of the International Conference on Computer Vision, Venice, Italy, 22–29 October 2017. [Google Scholar]
- Chou, C.-J.; Chien, J.-T.; Chen, H.-T. Self adversarial training for human pose estimation. In Proceedings of the International Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 22–25 July 2017. [Google Scholar]
- Chu, X.; Yang, W.; Ouyang, W.; Ma, C.; Yuille, A.L.; Wang, X. Multi-context attention for human pose estimation. In Proceedings of the International Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 22–25 July 2017. [Google Scholar]
- Luvizon, D.C.; Tabia, H.; Picard, D. Human pose regression by combining indirect part detection and contextual information. In Proceedings of the International Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 22–25 July 2017. [Google Scholar]
- Andriluka, M.; Pishchulin, L.; Gehler, P.; Schiele, B. 2D human pose estimation: New benchmark and state of the art analysis. In Proceedings of the International Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 24–27 June 2014. [Google Scholar]
- Chang, J.Y. DR-Net: denoising and reconstruction network for 3D human pose estimation from monocular RGN videos. Electron. Lett. 2018, 54, 70–72. [Google Scholar] [CrossRef]
- Wang, C.; Ma, Q.; Zhu, D.; Chen, H.; Yang, Z. Real-time control of 3D virtual human motion using a depth-sensing camera for agricultural machinery training. Math. Comput. Model. 2013, 58, 782–789. [Google Scholar] [CrossRef]
- Gao, L.; Ding, Y.; Ying, H. An adaptive social network-inspired approach to resource discovery for the complex grid systems. Int. J. Gener. Syst. 2006, 35, 347–360. [Google Scholar] [CrossRef]
- Gao, L.; Hailu, A. Comprehensive learning particle swarm optimizer for constrained mixed-variable optimization problems. Int. J. Comput. Intell. Syst. 2010, 3, 832–842. [Google Scholar] [CrossRef]
- Gao, L.; Bryan, B.A.; Nolan, M.; Connor, J.D.; Song, X.; Zhao, G. Robust global sensitivity analysis under deep uncertainty via scenario analysis. Environ. Model. Softw. 2016, 76, 154–166. [Google Scholar] [CrossRef]
- Gao, L.; Bryan, B.A. Incorporating deep uncertainty into the elementary effects method for robust global sensitivity analysis. Ecol. Model. 2016, 321, 1–9. [Google Scholar] [CrossRef]
Number | |||||
Joint | Top point of head | Clavicle | Right shoulder | Left shoulder | Right elbow |
Number | |||||
Joint | Left elbow | Right wrist | Left wrist | Waist | Right hip |
Number | |||||
Joint | Left hip | Right knee | Left knee | Right ankle | Left ankle |
Skeleton parts | |||||||
Length (cm) | 20 | 21 | 21 | 36 | 27 | 20.5 | 27 |
Skeleton parts | |||||||
Length (cm) | 20.5 | 24 | 24 | 43 | 38.5 | 43 | 38.5 |
Geometry | Standard | Dual |
---|---|---|
Point | ||
Spherical surface | ||
Plane | ||
Circle | ||
Line | ||
Point pairs |
Joint Points | Average Coordinate Errors of the Joint Points | |
---|---|---|
Method in [23] | The Proposed Method | |
Right elbow | −2.2786 | 0.4721 |
Right wrist | −5.5375 | −3.3321 |
Left elbow | 1.5586 | 0.5623 |
Left wrist | 5.8213 | 4.2084 |
Right knee | 2.4268 | 1.4086 |
Right ankle | 2.7365 | 1.5407 |
Left knee | 2.7385 | 0.6074 |
Left ankle | 4.4951 | 1.6587 |
The Methods | Computation Time (ms) |
---|---|
Yang et al. [31] | 60.67 |
Chen et al. [32] | 62.36 |
Chou et al. [33] | 61.05 |
Chu et al. [34] | 60.47 |
Luvizon et al. [35] | 59.45 |
Proposed method | 47.31 |
Human Parts | Vertexes Numbers | Computation Time of CGA (ms) | Computation Time of Method in [38] (ms) |
---|---|---|---|
Right upper arm | 1134 | 2832 | 216 |
Right forearm | 719 | 2026 | 115 |
Left upper arm | 1142 | 3165 | 206 |
Left forearm | 721 | 2023 | 116 |
Right thigh | 1323 | 3885 | 177 |
Right calf | 777 | 2321 | 129 |
Left thigh | 1322 | 3941 | 235 |
Left calf | 776 | 2353 | 134 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Gao, L. Reconstructing Three-Dimensional Human Poses: A Combined Approach of Iterative Calculation on Skeleton Model and Conformal Geometric Algebra. Symmetry 2019, 11, 301. https://doi.org/10.3390/sym11030301
Huang X, Gao L. Reconstructing Three-Dimensional Human Poses: A Combined Approach of Iterative Calculation on Skeleton Model and Conformal Geometric Algebra. Symmetry. 2019; 11(3):301. https://doi.org/10.3390/sym11030301
Chicago/Turabian StyleHuang, Xin, and Lei Gao. 2019. "Reconstructing Three-Dimensional Human Poses: A Combined Approach of Iterative Calculation on Skeleton Model and Conformal Geometric Algebra" Symmetry 11, no. 3: 301. https://doi.org/10.3390/sym11030301
APA StyleHuang, X., & Gao, L. (2019). Reconstructing Three-Dimensional Human Poses: A Combined Approach of Iterative Calculation on Skeleton Model and Conformal Geometric Algebra. Symmetry, 11(3), 301. https://doi.org/10.3390/sym11030301