β–Hyers–Ulam–Rassias Stability of Semilinear Nonautonomous Impulsive System
Abstract
:1. Introduction
2. Results
2.1. Basic
- for all .
- , for all , .
- , for all , for some .
- ∃ , not depends on .
2.2. –Hyers–Ulam–Rassias Stability on a Compact Interval
2.3. –Hyers–Ulam–Rassias Stability on an Unbounded Interval
2.4. –Hyers–Ulam–Rassias Stability with Infinite Impulses
3. Example
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Friedman, A. Partial Differential Equations; Holt, Rinehart and Winston, Inc.: New York, NY, USA; Montreal, QC, Canada; London, UK, 1969. [Google Scholar]
- Ahmed, N.U. Existence of optimal controls for a general class of impulsive systems on Banach spaces. SIAM J. Control Optim. 2003, 42, 669–685. [Google Scholar] [CrossRef]
- Bainov, D.D.; Lakshmikantham, V.; Simeonov, P.S. Theory of Impulsive Differential Equations; Series in Modern Applied Mathematics; World Scientific: Singapore, 1989; Volume 6. [Google Scholar]
- Benchohra, M.; Henderson, J.; Ntouyas, S. Impulsive differential equations and inclusions. In Contemporary Mathematics and Its Applications; Hindawi: New York, NY, USA, 2006. [Google Scholar]
- Berger, T.; Ilchmanna, A. On Stability of Time-Varying Linear Differential-Algebraic Equations. Int. J. Control. 2013, 86, 1060–1076. [Google Scholar] [CrossRef]
- Bianca, C.; Pappalardo, F.; Motta, S.; Ragusa, M.A. Persistence analysis in a Kolmogorov-type model for cancer-immune system competition. JAIP Conf. Proc. 2013, 1558, 1797–1800. [Google Scholar]
- Gala, S.; Liu, Q.; Ragusa, M.A. Logarithmically improved regularity criterion for the nematic liquid crystal flows in space. Comput. Math. Appl. 2013, 65, 1738–1745. [Google Scholar] [CrossRef]
- Hernandez, E.; O’Regan, D. On the new class of abstruct impulsive differential equations. Proc. Am. Math. Soc. 2013, 141, 1641–1649. [Google Scholar] [CrossRef]
- Pierri, M.; O’Regan, D.; Rolink, V. Existance of solutions for semi-linear abstract differential equations with not instantaneous impulses. Appl. Math. Comput. 2013, 219, 6743–6749. [Google Scholar]
- Samoilenko, A.M.; Perestyuk, N.A. Impulsive Differential Equations; World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises; World Scientific: Singapore, 1995; Volume 14. [Google Scholar]
- Samoilenko, A.M.; Perestyuk, N.A. Stability of solutions of differential equations with impulse effect. Differ. Equ. 1995, 13, 1981–1992. [Google Scholar]
- Tang, S.; Zada, A.; Fasial, S.; El-Sheikh, M.M.A.; Li, T. Stability of higher order nonlinear impulsive differential equations. J. Nonlinear Sci. Appl. 2015, 9, 4713–4721. [Google Scholar] [CrossRef]
- Wang, J.; Fečkan, M.; Zhou, Y. On the stability of first order impulsive evolution equations. Opusc. Math. 2014, 34, 639–657. [Google Scholar] [CrossRef]
- Wang, J.; Ibrahim, A.G.; O’Regan, D. Topological structure of the solution set for fractional non-instantaneous impulsive evolution inclusions. J. Fixed Point Theory Appl. 2018, 20, 59. [Google Scholar] [CrossRef]
- Ulam, S.M. A Collection of Mathematical Problems; Interscience Publishers: New York, NY, USA, 1960. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed]
- Aoki, T. On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 2003, 2, 64–66. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Wang, J.; Fečkan, M.; Zhou, Y. Ulam’s type stability of impulsive diffiential equations. J. Math. Anal. Appl. 2012, 395, 258–264. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.; Lin, Z. On a new class of impulsive fractional differential equations. Appl. Math. Comput. 2014, 242, 649–657. [Google Scholar] [CrossRef]
- Zada, A.; Shah, O.; Shah, R. Hyers Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problems. Appl. Math. Comput. 2015, 271, 512–518. [Google Scholar] [CrossRef]
- Hyers, D.H.; Isac, G.; Rassias, T.M. Stability of Functional Equations in Several Variables; Birkhauser: Basel, Switzerland, 1998. [Google Scholar]
- Shah, S.O.; Zada, A.; Hamza, A.E. Stability analysis of the first order non-linear impulsive time varying delay dynamic system on time scales. Qual. Theory Dyn. Syst. 2019. [Google Scholar] [CrossRef]
- Wang, J. Stability of noninstantaneous impulsive evolution equations. Appl. Math. Lett. 2017, 73, 157–162. [Google Scholar] [CrossRef]
- Wang, J.; Li, X. Ulam–Hyers stability of fractional Langevin equations. Appl. Math. Comput. 2015, 258, 72–83. [Google Scholar] [CrossRef]
- Wang, J.; Li, X. A uniformed method to Ulam-Hyers stability for some linear fractional equations. Mediterr. J. Math. 2016, 13, 625–635. [Google Scholar] [CrossRef]
- Wang, J.; Fečkan, M.; Tian, Y. Stability analysis for a general class of non-instantaneous impulsive differential equations. Mediterr. J. Math. 2017, 14, 46. [Google Scholar] [CrossRef]
- Wang, J.; Zada, A.; Ali, W. Ulam’s-type stability of first-order impulsive differential equations with variable delay in quasi–Banach spaces. Int. J. Nonlinear Sci. Numer. 2018, 19, 553–560. [Google Scholar] [CrossRef]
- Zada, A.; Ali, W.; Park, C. Ulam’s type stability of higher order nonlinear delay differential equations via integral inequality of Grönwall–Bellman–Bihari’s type. Appl. Math. Comput. 2019, 350, 60–65. [Google Scholar]
- Zada, A.; Ali, W.; Farina, S. Hyers–Ulam stability of nonlinear differential equations with fractional integrable impulses. Math. Meth. Appl. Sci. 2017, 40, 5502–5514. [Google Scholar] [CrossRef]
- Zada, A.; Ali, S. Stability analysis of multi-point boundary value problem for sequential fractional differential equations with non-instantaneous impulses. Int. J. Nonlinear Sci. Numer. Simul. 2018, 19, 763–774. [Google Scholar] [CrossRef]
- Zada, A.; Ali, S.; Li, Y. Ulam-type stability for a class of implicit fractional differential equations with non-instantaneous integral impulses and boundary condition. Adv. Differ. Equ. 2017, 2017, 317. [Google Scholar] [CrossRef]
- Zada, A.; Shah, S.O. Hyers–Ulam stability of first-order non-linear delay differential equations with fractional integrable impulses. Hacet. J. Math. Stat. 2018, 47, 1196–1205. [Google Scholar] [CrossRef]
- Zada, A.; Shaleena, S.; Li, T. Stability analysis of higher order nonlinear differential equations in β–normed spaces. Math. Meth. Appl. Sci. 2019, 42, 1151–1166. [Google Scholar] [CrossRef]
- Shah, R.; Zada, A. A fixed point approach to the stability of a nonlinear volterra integrodiferential equation with delay. Hacet. J. Math. Stat. 2018, 47, 615–623. [Google Scholar]
- Yu, X.; Wang, J.; Zhang, Y. On the β–Ulam–Rassias stability of nonautnonomous impulsive evolution equations. J. Appl. Math. Comput. 2015, 48, 461–475. [Google Scholar] [CrossRef]
- Dragan, V.; Aberkane, S.; Popa, I.-L. Optimal filtering for a class of linear Itô stochastic systems: The dichotomic case. Automatica 2018, 90, 47–53. [Google Scholar] [CrossRef]
- Li, T.; Zada, A. Connections between Hyers-Ulam stability and uniform exponential stability of discrete evolution families of bounded linear operators over Banach spaces. Adv. Differ. Equ. 2016, 2016, 153. [Google Scholar] [CrossRef]
- Megan, M.; Popa, I.-L. Exponential splitting for nonautonomous linear discrete-time systems in Banach spaces. J. Comput. Appl. Math. 2017, 312, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Ibrahim, A.G.; O’Regan, D.; Zhou, Y. Controllability for noninstantaneous impulsive semilinear functional differential inclusions without compactness. Indag. Math. 2018, 29, 1362–1392. [Google Scholar] [CrossRef]
- Zada, A.; Arif, M.; Khalid, H. Asymptotic behavior of linear and almost periodic discrete evolution systems on Banach space AA(Z,X). Qual. Theory Dyn. Syst. 2016, 15, 597–605. [Google Scholar] [CrossRef]
- Zada, A.; Li, T.; Arif, M.; Lassoued, D. Criteria for the exponential stability of linear evolution difference equations. IMA J. Math. Control Inf. 2018, 35, 25–34. [Google Scholar] [CrossRef]
- Zada, A.; Zada, B. On uniform exponential stability of linear switching system. Math. Meth. Appl. Sci. 2018, 42, 717–722. [Google Scholar] [CrossRef]
- Wang, J.; Fečkan, M. A general class of impulsive evolution equations. Topol. Methods Nonlinear Anal. 2015, 64, 915–933. [Google Scholar] [CrossRef]
- Leiva, H.; Rojas, R.A. Controllability of semilinear nonautonomous system with impulses and nonlocal conditions. Rev. Decienc. Nat. 2016, 1, 23–38. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Arif, M.; Zada, A. β–Hyers–Ulam–Rassias Stability of Semilinear Nonautonomous Impulsive System. Symmetry 2019, 11, 231. https://doi.org/10.3390/sym11020231
Wang X, Arif M, Zada A. β–Hyers–Ulam–Rassias Stability of Semilinear Nonautonomous Impulsive System. Symmetry. 2019; 11(2):231. https://doi.org/10.3390/sym11020231
Chicago/Turabian StyleWang, Xiaoming, Muhammad Arif, and Akbar Zada. 2019. "β–Hyers–Ulam–Rassias Stability of Semilinear Nonautonomous Impulsive System" Symmetry 11, no. 2: 231. https://doi.org/10.3390/sym11020231
APA StyleWang, X., Arif, M., & Zada, A. (2019). β–Hyers–Ulam–Rassias Stability of Semilinear Nonautonomous Impulsive System. Symmetry, 11(2), 231. https://doi.org/10.3390/sym11020231