Mandarin Peels-Derived Carbon Dots: A Multifaceted Fluorescent Probe for Cu(II) Detection in Tap and Drinking Water Samples
<p>UV–vis spectra of the as-prepared MBC400, 600, and 800-CDs, including an inset image showing the CDs samples under UV light at 365 nm compared to DIW (far right).</p> "> Figure 2
<p>Fluorescence emission spectra of the as-synthesized MBC400-CDs emitted using different excitation wavelengths in the range between 250 and 350 nm.</p> "> Figure 3
<p>TEM micrographs of the prepared samples: (<b>a</b>–<b>c</b>) MBC400-CDs, (<b>d</b>–<b>f</b>) MBC600-CDs, and (<b>g</b>–<b>i</b>) MBC800-CDs at different scales between 5 and 50 nm. Micrographs denoted by the letters (<b>j</b>–<b>l</b>) are the PSD of the prepared samples from MBC400, 600, and 800, respectively.</p> "> Figure 4
<p>(<b>a</b>) FTIR spectrum of MBC400-CDs and (<b>b</b>) powder XRD pattern of the samples MBC400 (blue line) and MBC400-CDs (red line).</p> "> Figure 5
<p>(<b>a</b>) The MBC400-CDs fluorescence intensity (FI) measured in different concentrations of NaCl and (<b>b</b>) MBC400-CDs FI measured versus time.</p> "> Figure 6
<p>(<b>a</b>,<b>b</b>) is the selectivity test of the prepared MBC 400-CDs towards different metal ions, (<b>c</b>) a photo showing the MBC400-CDs sample before and after quenching using different heavy metal ions under irradiation using a longer wavelength UV lamp.</p> "> Figure 7
<p>(<b>a</b>) Pareto chart of standardized effects, (<b>b</b>) 2D contour plots, and (<b>c</b>) 3D surface plots for pH and CT.</p> "> Figure 8
<p>(<b>a</b>) The calibration curve for different concentrations of copper (II), determined using MBC400-CDs. (<b>b</b>) Fluorescence spectra of MBC400-CDs before and after adding different concentrations of copper (II).</p> "> Scheme 1
<p>Synthesis of MBC400-CDs from waste mandarin peels.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Instruments
2.3. Preparation of Mandarin Peel Biochar (MBC)
2.4. Synthesis of the CDs
2.5. Quantum Yield (QY) Measurements
2.6. Selectivity Testing
2.7. Plackett–Burman Design (PBD) Copper (II) Detection
2.8. Detection of Copper (II) in Real Samples
3. Results and Discussion
3.1. Optical and Structural Characterization of the Prepared CDs
3.1.1. UV–Vis Spectrophotometry
3.1.2. Selection of the Carbon Precursor
3.1.3. Transmission Electron Microscopy (TEM)
3.1.4. Fourier Transform Infrared (FTIR) Spectroscopic Analysis
3.1.5. X-ray Diffraction (XRD)
3.1.6. Stability Testing of MBC400-CDs
3.2. Selectivity Analysis
3.3. Screening of Variables Affecting Copper (II) Detection
3.4. Method Validation
3.4.1. Calibration Curve: Linear Range and Sensitivity
3.4.2. Accuracy and Precision
3.4.3. Analysis of Real Samples
3.5. Proposed Quenching Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shabbir, H.; Csapó, E.; Wojnicki, M. Carbon Quantum Dots: The Role of Surface Functional Groups and Proposed Mechanisms for Metal Ion Sensing. Inorganics 2023, 11, 262. [Google Scholar] [CrossRef]
- Sharma, A.; Choi, H.K.; Lee, H.J. Carbon Dots for the Treatment of Inflammatory Diseases: An Appraisal of In Vitro and In Vivo Studies. Oxidative Med. Cell. Longev. 2023, 2023, 3076119. [Google Scholar] [CrossRef]
- Sharma, V.; Tiwari, P.; Kaur, N.; Mobin, S.M. Optical nanosensors based on fluorescent carbon dots for the detection of water contaminants: A review. Environ. Chem. Lett. 2021, 19, 3229–3241. [Google Scholar] [CrossRef]
- Stepanidenko, E.A.; Vedernikova, A.A.; Badrieva, Z.F.; Brui, E.A.; Ondar, S.O.; Miruschenko, M.D.; Volina, O.V.; Koroleva, A.V.; Zhizhin, E.V.; Ushakova, E.V. Manganese-Doped Carbon Dots as a Promising Nanoprobe for Luminescent and Magnetic Resonance Imaging. Photonics 2023, 10, 757. [Google Scholar] [CrossRef]
- El-Azazy, M.; Osman, A.I.; Nasr, M.; Ibrahim, Y.; Al-Hashimi, N.; Al-Saad, K.; Al-Ghouti, M.A.; Shibl, M.F.; Ala’a, H.; Rooney, D.W. The interface of machine learning and carbon quantum dots: From coordinated innovative synthesis to practical application in water control and electrochemistry. Coord. Chem. Rev. 2024, 517, 215976. [Google Scholar] [CrossRef]
- Bhakare, M.A.; Bondarde, M.P.; Lokhande, K.D.; Dhumal, P.S.; Some, S. Quick transformation of polymeric waste into high valuable N-self doped carbon quantum dot for detection of heavy metals from wastewater. Chem. Eng. Sci. 2023, 281, 119150. [Google Scholar] [CrossRef]
- Dhandapani, E.; Maadeswaran, P.; Raj, R.M.; Raj, V.; Kandiah, K.; Duraisamy, N. A potential forecast of carbon quantum dots (CQDs) as an ultrasensitive and selective fluorescence probe for Hg (II) ions sensing. Mater. Sci. Eng. B 2023, 287, 116098. [Google Scholar] [CrossRef]
- Chaghaghazardi, M.; Kashanian, S.; Nazari, M.; Omidfar, K.; Joseph, Y.; Rahimi, P. Nitrogen and sulfur co-doped carbon quantum dots fluorescence quenching assay for detection of mercury (II). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 293, 122448. [Google Scholar] [CrossRef]
- Shao, N.; Jin, J.; Wang, H.; Zheng, J.; Yang, R.; Chan, W.; Abliz, Z. Design of bis-spiropyran ligands as dipolar molecule receptors and application to in vivo glutathione fluorescent probes. J. Am. Chem. Soc. 2010, 132, 725–736. [Google Scholar] [CrossRef]
- van Dijk, M.A.; Kapitein, L.C.; van Mameren, J.; Schmidt, C.F.; Peterman, E.J. Combining optical trapping and single-molecule fluorescence spectroscopy: Enhanced photobleaching of fluorophores. J. Phys. Chem. B 2004, 108, 6479–6484. [Google Scholar] [CrossRef]
- Meng, W.; Bai, X.; Wang, B.; Liu, Z.; Lu, S.; Yang, B. Biomass-Derived Carbon Dots and Their Applications. Energy Environ. Mater. 2019, 2, 172–192. [Google Scholar] [CrossRef]
- Fang, M.; Wang, B.; Qu, X.; Li, S.; Huang, J.; Li, J.; Lu, S.; Zhou, N. State-of-the-art of biomass-derived carbon dots: Preparation, properties, and applications. Chin. Chem. Lett. 2024, 35, 108423. [Google Scholar] [CrossRef]
- Barrientos, K.; Gaviria, M.I.; Arango, J.P.; Placido, J.; Bustamante, S.; Londoño, M.E.; Jaramillo, M. Synthesis, characterization and ecotoxicity evaluation of biochar-derived carbon dots from Spruce tree, Purple moor-grass and African oil palm. Processes 2021, 9, 1095. [Google Scholar] [CrossRef]
- Singh, P.; Arpita; Kumar, S.; Kumar, P.; Kataria, N.; Bhankar, V.; Kumar, K.; Kumar, R.; Hsieh, C.-T.; Khoo, K.S. Assessment of biomass-derived carbon dots as highly sensitive and selective templates for the sensing of hazardous ions. Nanoscale 2023, 15, 16241–16267. [Google Scholar] [CrossRef]
- El-Azazy, M.; El-Shafie, A.S.; Fawzy, S.; Rooney, D.W.; Osman, A.I. Competitive adsorptive removal of promazine and promethazine from wastewater using olive tree pruning biochar: Operational parameters, kinetics, and equilibrium investigations. Environ. Sci. Pollut. Res. 2023, 30, 82387–82405. [Google Scholar] [CrossRef]
- El-Shafie, A.S.; Mahmoud, R.; Ahsan, I.; Hamdi, H.; Shibl, M.F.; El-Azazy, M. Removal of antibiotics from aqueous solutions: Insights of competitive adsorption onto Ni-impregnated biochar of spent coffee grounds. Appl. Water Sci. 2024, 14, 209. [Google Scholar] [CrossRef]
- El-Shafie, A.S.; Abouseada, M.; El-Azazy, M. TiO2-functionalized biochar from pistachio nutshells: Adsorptive removal and photocatalytic decolorization of methyl orange. Appl. Water Sci. 2023, 13, 227. [Google Scholar] [CrossRef]
- Lo Bello, G.; Bartoli, M.; Giorcelli, M.; Rovere, M.; Tagliaferro, A. A review on the use of biochar derived carbon quantum dots production for sensing applications. Chemosensors 2022, 10, 117. [Google Scholar] [CrossRef]
- Plácido, J.; Bustamante-López, S.; Meissner, K.; Kelly, D.; Kelly, S. Microalgae biochar-derived carbon dots and their application in heavy metal sensing in aqueous systems. Sci. Total Environ. 2019, 656, 531–539. [Google Scholar] [CrossRef]
- Tan, J.; Zhou, L. Two birds with one stone: One-pot hydrothermal treatment of dragon fruit peel to simultaneously prepare efficient biochar adsorbent and fluorescent carbon quantum dots. Ind. Crops Prod. 2024, 210, 118086. [Google Scholar] [CrossRef]
- Osman, A.I.; Fawzy, S.; Farghali, M.; El-Azazy, M.; Elgarahy, A.M.; Fahim, R.A.; Maksoud, M.A.; Ajlan, A.A.; Yousry, M.; Saleem, Y. Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: A review. Environ. Chem. Lett. 2022, 20, 2385–2485. [Google Scholar]
- Johny, A.; Pinto da Silva, L.; Pereira, C.M.; Esteves da Silva, J.C.G. Sustainability Assessment of Highly Fluorescent Carbon Dots Derived from Eucalyptus Leaves. Environments 2024, 11, 6. [Google Scholar] [CrossRef]
- Wang, L.; Weng, S.; Su, S.; Wang, W. Progress on the luminescence mechanism and application of carbon quantum dots based on biomass synthesis. RSC Adv. 2023, 13, 19173–19194. [Google Scholar] [CrossRef]
- Olla, C.; Cappai, A.; Porcu, S.; Stagi, L.; Fantauzzi, M.; Casula, M.F.; Mocci, F.; Corpino, R.; Chiriu, D.; Ricci, P.C.; et al. Exploring the Impact of Nitrogen Doping on the Optical Properties of Carbon Dots Synthesized from Citric Acid. Nanomaterials 2023, 13, 1344. [Google Scholar] [CrossRef]
- Ludmerczki, R.; Mura, S.; Carbonaro, C.M.; Mandity, I.M.; Carraro, M.; Senes, N.; Garroni, S.; Granozzi, G.; Calvillo, L.; Marras, S.; et al. Carbon Dots from Citric Acid and its Intermediates Formed by Thermal Decomposition. Chem.—A Eur. J. 2019, 25, 11963–11974. [Google Scholar] [CrossRef]
- Fiori, F.; Moukham, H.; Olia, F.; Piras, D.; Ledda, S.; Salis, A.; Stagi, L.; Malfatti, L.; Innocenzi, P. Highly Photostable Carbon Dots from Citric Acid for Bioimaging. Materials 2022, 15, 2395. [Google Scholar] [CrossRef]
- Vishnukumar, P.; Sankaranarayanan, S.; Hariram, M.; Vivekanandhan, S.; Navia, R. Carbon Dots from Renewable Resources: A Review on Precursor Choices and Potential Applications. In Green Nanomaterials: Processing, Properties, and Applications; Ahmed, S., Ali, W., Eds.; Springer Singapore: Singapore, 2020; pp. 159–208. [Google Scholar]
- Meiling, T. Development of a Reliable and Environmentally Friendly Synthesis for Fluorescence Carbon Nanodots.—Preparation and Characterisation of Excellent and Well-Defined Carbon Nanodots by a Fast, Simple and Cost-Efficient Synthesis Method; With Special Focus on Future Exploration and Large Scale Applications. Ph.D. Thesis, Universität Potsdam, Potsdam, Germany, 2017. [Google Scholar]
- Kharangarh, P.R.; Ravindra, N.M.; Singh, G.; Umapathy, S. Synthesis of luminescent graphene quantum dots from biomass waste materials for energy-related applications—An overview. Energy Storage 2023, 5, e390. [Google Scholar] [CrossRef]
- Abbas, A.; Liang, Q.; Abbas, S.; Liaqat, M.; Rubab, S.; Tabish, T.A. Eco-Friendly Sustainable Synthesis of Graphene Quantum Dots from Biowaste as a Highly Selective Sensor. Nanomaterials 2022, 12, 3696. [Google Scholar] [CrossRef]
- Manikandan, V.; Lee, N.Y. Green synthesis of carbon quantum dots and their environmental applications. Environ. Res. 2022, 212, 113283. [Google Scholar] [CrossRef]
- Zhang, J.; Xia, A.; Zhu, X.; Huang, Y.; Zhu, X.; Liao, Q. Co-production of carbon quantum dots and biofuels via hydrothermal conversion of biomass. Fuel Process. Technol. 2022, 232, 107276. [Google Scholar] [CrossRef]
- Kaur, G.; Verma, N. Colorimetric determination of Cu2+ ions in water and milk by apo-tyrosinase disc. Sens. Actuators B Chem. 2018, 263, 524–532. [Google Scholar] [CrossRef]
- Zhao, W.; Jia, W.; Sun, M.; Liu, X.; Zhang, Q.; Zong, C.; Qu, J.; Gai, H. Colorimetric detection of Cu2+ by surface coordination complexes of polyethyleneimine-capped Au nanoparticles. Sens. Actuators B Chem. 2016, 223, 411–416. [Google Scholar] [CrossRef]
- Vopálenská, I.; Váchová, L.; Palková, Z. New biosensor for detection of copper ions in water based on immobilized genetically modified yeast cells. Biosens. Bioelectron. 2015, 72, 160–167. [Google Scholar] [CrossRef]
- Brinkmann, P.; Köllner, N.; Merk, S.; Beitz, T.; Altenberger, U.; Löhmannsröben, H.-G. Comparison of Handheld and Echelle Spectrometer to Assess Copper in Ores by Means of Laser-Induced Breakdown Spectroscopy (LIBS). Minerals 2023, 13, 113. [Google Scholar] [CrossRef]
- Pavlidis, G.; Karasali, H.; Balayiannis, G.P. Rapid and Robust Analytical Method for the Determination of Copper Content in Commercial Pesticides and Antifouling Biocides. Environ. Process. 2023, 10, 19. [Google Scholar] [CrossRef]
- Saran, R. (Ed.) Inductively Coupled Argon Plasma Mass Spectrometry (ICP MS). In Analytical Techniques for Trace Elements in Geochemical Exploration; The Royal Society of Chemistry: London, UK, 2022. [Google Scholar]
- Parsons, P.J. Atomic Spectrometry in Clinical Chemistry. In Encyclopedia of Analytical Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006. [Google Scholar]
- EPA. National Primary Drinking Water Regulations. Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations (accessed on 1 March 2024).
- Woods, B.; McCurdy, E. ICP-MS: Key Steps to Control Contamination and Achieve Low Detection Limits. Spectroscopy 2022, 37, 54–56. [Google Scholar] [CrossRef]
- El-Shafie, A.S.; Barah, F.G.; Abouseada, M.; El-Azazy, M. Performance of Pristine versus Magnetized Orange Peels Biochar Adapted to Adsorptive Removal of Daunorubicin: Eco-Structuring, Kinetics and Equilibrium Studies. Nanomaterials 2023, 13, 1444. [Google Scholar] [CrossRef]
- El-Shafie, A.S.; Yousef, A.; El-Azazy, M. Application of Plackett–Burman Design for Spectrochemical Determination of the Last-Resort Antibiotic, Tigecycline, in Pure Form and in Pharmaceuticals: Investigation of Thermodynamics and Kinetics. Pharmaceuticals 2022, 15, 888. [Google Scholar] [CrossRef]
- Abdulsatar Esmail, L.; Sanaan Jabbar, H. Violuric acid carbon dots as a highly fluorescence probe for ultrasensitive determination of Zn (II) in tomato paste. Food Chem. 2023, 413, 135638. [Google Scholar] [CrossRef]
- Aly, H.; El-Shafie, A.S.; El-Azazy, M. Utilization of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) for spectrochemical determination of l-ornithine: A multivariate optimization-assisted approach. RSC Adv. 2019, 9, 22106–22115. [Google Scholar] [CrossRef]
- Mejía Ávila, J.; Rangel Ayala, M.; Kumar, Y.; Pérez-Tijerina, E.; Robles, M.A.R.; Agarwal, V. Avocado seeds derived carbon dots for highly sensitive Cu (II)/Cr (VI) detection and copper (II) removal via flocculation. Chem. Eng. J. 2022, 446, 137171. [Google Scholar] [CrossRef]
- Dager, A.; Uchida, T.; Maekawa, T.; Tachibana, M. Synthesis and characterization of Mono-disperse Carbon Quantum Dots from Fennel Seeds: Photoluminescence analysis using Machine Learning. Sci. Rep. 2019, 9, 14004. [Google Scholar] [CrossRef]
- Liu, G.; Jia, H.; Li, N.; Li, X.; Yu, Z.; Wang, J.; Song, Y. High-fluorescent carbon dots (CDs) originated from China grass carp scales (CGCS) for effective detection of Hg(II) ions. Microchem. J. 2019, 145, 718–728. [Google Scholar] [CrossRef]
- Tan, X.W.; Romainor, A.N.B.; Chin, S.F.; Ng, S.M. Carbon dots production via pyrolysis of sago waste as potential probe for metal ions sensing. J. Anal. Appl. Pyrolysis 2014, 105, 157–165. [Google Scholar] [CrossRef]
- Ma, X.; Dong, Y.; Sun, H.; Chen, N. Highly fluorescent carbon dots from peanut shells as potential probes for copper ion: The optimization and analysis of the synthetic process. Mater. Today Chem. 2017, 5, 1–10. [Google Scholar] [CrossRef]
- Zhou, J.; Sheng, Z.; Han, H.; Zou, M.; Li, C. Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source. Mater. Lett. 2012, 66, 222–224. [Google Scholar] [CrossRef]
- Varsha Raveendran, P.T.; Renuka, N.K. Hydrothermal synthesis of biomass-derived carbon nanodots: Characterization and applications. Mater. Chem. Phys. 2022, 288, 126236. [Google Scholar] [CrossRef]
- Krishnaiah, P.; Atchudan, R.; Perumal, S.; Salama, E.-S.; Lee, Y.R.; Jeon, B.-H. Utilization of waste biomass of Poa pratensis for green synthesis of n-doped carbon dots and its application in detection of Mn2+ and Fe3+. Chemosphere 2022, 286, 131764. [Google Scholar] [CrossRef]
- Sajan, D.; Binoy, J.; Pradeep, B.; Venkata Krishna, K.; Kartha, V.B.; Joe, I.H.; Jayakumar, V.S. NIR-FT Raman and infrared spectra and ab initio computations of glycinium oxalate. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2004, 60, 173–180. [Google Scholar] [CrossRef]
- Huang, K.; He, Q.; Sun, R.; Fang, L.; Song, H.; Li, L.; Li, Z.; Tian, Y.; Cui, H.; Zhang, J. Preparation and application of carbon dots derived from cherry blossom flowers. Chem. Phys. Lett. 2019, 731, 136586. [Google Scholar] [CrossRef]
- Wei, G.; Zhao, Z.; Du, J.; Li, P.; Sun, Z.; Huo, L.; Gao, Y. Reed-derived fluorescent carbon dots as highly selective probes for detecting Fe3+ and excellent cell-imaging agents. RSC Adv. 2019, 9, 21715–21723. [Google Scholar] [CrossRef]
- Gao, S.; Wang, X.; Xu, N.; Lian, H.; Xu, L.; Zhang, W.; Xu, C. From coconut petiole residues to fluorescent carbon dots via a green hydrothermal method for Fe3+ detection. Cellulose 2021, 28, 1647–1661. [Google Scholar] [CrossRef]
- Kurdekar, A.; Chunduri, A.; Bulagonda, P.; Haleyurgirisetty, M.; Kamisetti, V.; Hewlett, I. Comparative performance evaluation of carbon dot-based paper immunoassay on Whatman filter paper and nitrocellulose paper in the detection of HIV infection. Microfluid. Nanofluid. 2016, 20, 99. [Google Scholar] [CrossRef]
- Nyquist, R.A. Infrared Spectra of Inorganic Compounds (3800–45 cm⁻¹); Nyquist, R.A., Kagel, R.O., Eds.; Academic Press: New York, NY, USA, 1971. [Google Scholar]
- Margoshes, M.; Fassel, V.A. The infrared spectra of aromatic compounds: I. The out-of-plane C-H bending vibrations in the region 625–900 cm−1. Spectrochim. Acta 1955, 7, 14–24. [Google Scholar] [CrossRef]
- Pena, A.C.C.; Raymundo, L.M.; Trierweiler, L.F.; Gutterres, M. Green carbon dots synthesized from Chlorella Sorokiniana microalgae biochar for chrome detection. J. Ind. Eng. Chem. 2023, 117, 130–139. [Google Scholar] [CrossRef]
- Elamin, N.Y.; Modwi, A.; Abd El-Fattah, W.; Rajeh, A. Synthesis and structural of Fe3O4 magnetic nanoparticles and its effect on the structural optical, and magnetic properties of novel Poly(methyl methacrylate)/Polyaniline composite for electromagnetic and optical applications. Opt. Mater. 2023, 135, 113323. [Google Scholar] [CrossRef]
- Nadafan, M.; Sabbaghan, M.; Ahmadi, Z. Role of donor/acceptor of doping on nonlinear optical properties of CdS nanocomposite decorated by carbon quantum dots and reduced graphene oxide. Diam. Relat. Mater. 2024, 146, 111136. [Google Scholar] [CrossRef]
- Diwan, I.; Tripathi, G.K.; Khare, P.S. Synthesis of green fluorescent, energy efficient nitrogen doped carbon quantum dots. Optik 2024, 303, 171725. [Google Scholar] [CrossRef]
- Ngu, P.Z.Z.; Chia, S.P.P.; Fong, J.F.Y.; Ng, S.M. Synthesis of carbon nanoparticles from waste rice husk used for the optical sensing of metal ions. New Carbon Mater. 2016, 31, 135–143. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Chatterjee, S.; Khorwal, V.; Mukherjee, T.K. Luminescence turn-on/off sensing of biological iron by carbon dots in transferrin. Phys. Chem. Chem. Phys. 2016, 18, 5148–5158. [Google Scholar] [CrossRef]
- Fong, J.F.Y.; Chin, S.F.; Ng, S.M. A unique “turn-on” fluorescence signalling strategy for highly specific detection of ascorbic acid using carbon dots as sensing probe. Biosens. Bioelectron. 2016, 85, 844–852. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.; Zhang, Y. One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper (II) ion detection. Sens. Actuators B Chem. 2014, 196, 647–652. [Google Scholar] [CrossRef]
- Zaman, A.S.K.; Tan, T.L.; Jamaludin, N.; Sadrolhosseini, A.R.; Rashid, U.; Rashid, S.A. Properties and molecular structure of carbon quantum dots derived from empty fruit bunch biochar using a facile microwave-assisted method for the detection of Cu2+ ions. Opt. Mater. 2021, 112, 110801. [Google Scholar] [CrossRef]
- Zhao, Y.; Jing, S.; Peng, X.; Chen, Z.; Hu, Y.; Zhuo, H.; Sun, R.; Zhong, L. Synthesizing green carbon dots with exceptionally high yield from biomass hydrothermal carbon. Cellulose 2020, 27, 415–428. [Google Scholar] [CrossRef]
- Sha, Y.; Lou, J.; Bai, S.; Wu, D.; Liu, B.; Ling, Y. Hydrothermal synthesis of nitrogen-containing carbon nanodots as the high-efficient sensor for copper (II) ions. Mater. Res. Bull. 2013, 48, 1728–1731. [Google Scholar] [CrossRef]
- Rooj, B.; Dutta, A.; Islam, S.; Mandal, U. Green synthesized carbon quantum dots from Polianthes tuberose L. Petals for Copper (II) and Iron (II) detection. J. Fluoresc. 2018, 28, 1261–1267. [Google Scholar] [CrossRef]
- Das, P.; Ganguly, S.; Bose, M.; Mondal, S.; Das, A.K.; Banerjee, S.; Das, N.C. A simplistic approach to green future with eco-friendly luminescent carbon dots and their application to fluorescent nano-sensor ‘turn-off’ probe for selective sensing of copper ions. Mater. Sci Eng. C Mater. Biol. Appl. 2017, 75, 1456–1464. [Google Scholar] [CrossRef]
- Patir, K.; Gogoi, S.K. Nitrogen-doped carbon dots as fluorescence ON–OFF–ON sensor for parallel detection of copper(ii) and mercury(ii) ions in solutions as well as in filter paper-based microfluidic device. Nanoscale Adv. 2019, 1, 592–601. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, X.; Zou, T.; Yang, Y.; Xing, X.; Zhao, R.; Wang, Z.; Wang, Y. Citric Acid Capped CdS Quantum Dots for Fluorescence Detection of Copper Ions (II) in Aqueous Solution. Nanomaterials 2018, 9, 32. [Google Scholar] [CrossRef]
- Wang, F.; Gu, Z.; Lei, W.; Wang, W.; Xia, X.; Hao, Q. Graphene quantum dots as a fluorescent sensing platform for highly efficient detection of copper(II) ions. Sens. Actuators B Chem. 2014, 190, 516–522. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, W.; Gai, Q.; Tian, Z.; Ren, S. A Carbon-Dot-Based Fluorescent Probe for the Sensitive and Selective Detection of Copper(II) Ions. ChemistrySelect 2019, 4, 2392–2397. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Wang, Y.; Li, H.; Yin, J.; Li, M.; Wang, L.; Sun, H.; Chen, L. Large-scale direct pyrolysis synthesis of excitation-independent carbon dots and analysis of ferric (III) ion sensing mechanism. Appl. Surf. Sci. 2021, 538, 148151. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, G.; Lu, M.; Li, J.; Zhou, Q.; Zou, X.; Yang, W.; Yang, M.; Wang, H. Bifunctional magnetic carbon dots for the rapid fluorescent detection and the efficient adsorptive removal of copper ion. Microchem. J. 2024, 206, 111424. [Google Scholar] [CrossRef]
- Su, J.; Wu, L.; Zhu, Y.; Xiong, Z.; Zhao, L. Nitrogen–silicon Co-doped carbon dots synthesized based on lemon peel for copper (II) detection via a dynamic quenching mechanism. Opt. Mater. 2024, 155, 115800. [Google Scholar] [CrossRef]
- Sharma, A.; Das, J. Small molecules derived carbon dots: Synthesis and applications in sensing, catalysis, imaging, and biomedicine. J. Nanobiotechnol. 2019, 17, 92. [Google Scholar] [CrossRef]
Precursor | Drawbacks |
---|---|
Citric acid | One drawback is the complicated and poorly understood chemical mechanism that produces CDs from citric acid [24]. It can be challenging to regulate the optical characteristics of CDs made from citric acid, resulting in changes in their fluorescence and quantum yields [25]. Citric acid-synthesized CDs might also lack long-term photostability, which is crucial for bioimaging applications [26]. |
Glucose | Strong absorption in the observable range of wavelengths is a characteristic of glucose-based CDs that may restrict their use in some fields [27]. Also, producing CDs from glucose may involve complicated and time-consuming processes and toxic chemicals, leading to higher production costs [28]. |
Graphene | The high cost of synthesis and the possibility of contamination by strong acids are the major drawbacks of employing graphene as a carbon precursor [29,30]. |
Code | Numerical Variables | −1 | 0 | +1 |
---|---|---|---|---|
A | Contact time, CT (min) | 0.5 | 5.25 | 10 |
B | pH, (pH unit) | 4 | 7 | 10 |
Code | Categorical Variables | −1 | +1 | |
C | Reaction medium, RM | DIW | ACN | |
Code | Dependent Variables | |||
Y | Fluorescence quenching, F0/F | Maximum |
Run Order | Pt Type | pH | Time | RM | F0/F | BPFITS |
---|---|---|---|---|---|---|
1 | 1 | 4 | 10 | ACN | 1.2600 | 1.2338 |
2 | 1 | 4 | 0.5 | ACN | 1.2300 | 1.2078 |
3 | 1 | 10 | 0.5 | DIW | 1.7180 | 1.7173 |
4 | 0 | 7 | 5.25 | ACN | 1.3131 | 1.3075 |
5 | 1 | 10 | 0.50 | ACN | 1.5378 | 1.5888 |
6 | 1 | 4 | 0.50 | ACN | 1.2260 | 1.2078 |
7 | 1 | 10 | 10 | DIW | 1.7470 | 1.7703 |
8 | 1 | 10 | 0.5 | ACN | 1.6116 | 1.5888 |
9 | 1 | 10 | 10 | ACN | 1.5906 | 1.6341 |
10 | 1 | 10 | 0.5 | DIW | 1.7180 | 1.7173 |
11 | 1 | 4 | 10 | DIW | 1.3620 | 1.3099 |
12 | 1 | 4 | 0.5 | DIW | 1.2670 | 1.2806 |
13 | 0 | 7 | 5.25 | DIW | 1.4070 | 1.3933 |
14 | 1 | 4 | 0.5 | ACN | 1.2450 | 1.2078 |
15 | 1 | 4 | 10 | ACN | 1.2530 | 1.2338 |
16 | 0 | 7 | 5.25 | ACN | 1.3668 | 1.3075 |
17 | 0 | 7 | 5.25 | DIW | 1.3889 | 1.3933 |
18 | 1 | 10 | 10 | ACN | 1.6460 | 1.6341 |
19 | 0 | 7 | 5.25 | DIW | 1.4137 | 1.3933 |
20 | 0 | 7 | 5.25 | DIW | 1.3979 | 1.3933 |
21 | 1 | 10 | 0.5 | ACN | 1.5384 | 1.5888 |
22 | 0 | 7 | 5.25 | DIW | 1.4171 | 1.3933 |
23 | 1 | 4 | 10 | DIW | 1.2601 | 1.3099 |
24 | 1 | 10 | 0.5 | DIW | 1.7987 | 1.7173 |
25 | 1 | 4 | 0.5 | DIW | 1.2617 | 1.2806 |
26 | 1 | 4 | 10 | DIW | 1.2486 | 1.3099 |
27 | 1 | 4 | 10 | ACN | 1.2390 | 1.2338 |
28 | 1 | 4 | 0.5 | DIW | 1.2391 | 1.2806 |
29 | 0 | 7 | 5.25 | ACN | 1.2948 | 1.3075 |
30 | 1 | 10 | 10 | DIW | 1.8120 | 1.7703 |
31 | 1 | 10 | 10 | DIW | 1.8232 | 1.7703 |
32 | 0 | 7 | 5.25 | ACN | 1.2437 | 1.3075 |
33 | 0 | 7 | 5.25 | ACN | 1.3370 | 1.3075 |
34 | 0 | 7 | 5.25 | DIW | 1.4058 | 1.3933 |
35 | 0 | 7 | 5.25 | ACN | 1.2384 | 1.3075 |
36 | 1 | 10 | 10 | ACN | 1.6240 | 1.6341 |
Sample | Integrated Emission Intensity (I) Area | Refractive Index (η) | Absorbance (A) (at λex = 314 nm) | QY (at λex = 314 nm) |
---|---|---|---|---|
Quinine sulfate | 8,051,819.586 | 1.33 | 0.052 | |
MBC400-CDs | 0.127 | 7.31% | ||
MBC600-CDs | 0.149 | 5.66% | ||
MBC800-CDs | 0.03 | 1.21% |
Feedstock | Pyrolysis Temperature | Synthesis | %QY | Ref. |
---|---|---|---|---|
Avocado seeds | 250, 400, and 600 °C | Hydrothermal synthesis | 250 °C: 9.2% 400, 600 °C: ~2–3% | [46] |
Purple moor grass biochar (Molinia caerulea) Spruce tree biochar (Picea) African oil palm biochar (Elaeis guineensis) | 300–375 °C Not stated 200–400 °C | Hydrothermal synthesis in the presence of KMnO4 | 8.39% 5.44% 2.31% | [13] |
Peanut shells | 340–420 °C | Sonication | 10.58% | [50] |
Watermelon peels | Carbonization at low temperature | Sonication | 7.1% | [51] |
Mandarin peels | 400, 600 and 800 °C | Hydrothermal synthesis | 400 °C: 7.31% 600 °C: 5.66% 800 °C: 1.21% | This work |
Concentration of the Interferent Metal Ion (µM) | Tolerance Limit | |||
---|---|---|---|---|
Iron (III) | Nickel (II) | Chromium (III) | Cadmium (II) | |
5 | 1.05 | 1.26 | 0.21 | 0.17 |
10 | 1.43 | 2.69 | 0.38 | 0.33 |
20 | 2.19 | 3.88 | 0.72 | 0.59 |
40 | 2.79 | 6.38 | 1.32 | 1.19 |
60 | 3.48 | 8.22 | 1.59 | 1.51 |
80 | 4.03 | 9.03 | 1.72 | 1.68 |
100 | 4.27 | 10.07 | 2.17 | 1.94 |
150 | 5.79 | 13.13 | 2.63 | 2.51 |
200 | 7.41 | 16.08 | 3.14 | 3.04 |
Probe | Synthesis Method | Green Synthesis | Controlled Sensing | Linear Range | LOD | QY | Reference |
---|---|---|---|---|---|---|---|
BPEI-CQDs | Hydrothermal conversion of bamboo leaves at 200 °C followed by capping with branched polyethylenimine | Yes | No | 1–140 μM | 0.01 μM | 7.1% | [68] |
CQDs | Microwave-assisted carbonization of empty fruit bunch at 60–100 °C | Yes | No | 0–400 μM | 0.42 μM | Not stated | [69] |
CDs100–180 | Hydrothermal carbonization of biomass (hemicelluloses, lignin, chitosan, and a-cellulose) at 100–180 °C | Yes | No | 0–30 μM | 0.085 μM | 2.8–16.6% | [70] |
CNDs (nitrogen containing) | Hydrothermal treatment of pipe tobacco | Yes | No | 0–40 μM | 0.01 μM | 3.2% | [71] |
CQDs | Carbonization of petals of Polianthes tuberose L. at 300 °C for 8 h | Yes | No | 0–70 μM | 0.2 μM | 3% | [72] |
NCDs | Thermal coupling of lemon extracts and L-arginine at 200 °C for 3 h | Yes | No | 0.05–300 μM | 0.047 μM | 7.7% | [73] |
NCDs | Pyrolysis of urea and ethylenediaminetetraacetic acid at 200–300 °C for 1 h | No | No | 0.001–22 μM | 0.002 μM | 11.26% | [74] |
CA-CdS QDs | Hydrothermal synthesis from cadmium chloride and thioacetamide, using citric acid for surface modification | No | No | 0.01–50 μM | 0.009 μM | 18.82% | [75] |
GQDs | Hydrothermal method at 180 °C for 10 h from graphene oxide (reoxidized in mixture of concentrated sulfuric and nitric acids) | No | No | 0–15 μM | 0.226 μM | Not stated | [76] |
CDs | Pyrolysis of mixture of citric acid, sodium borohydride, and polyethyleneimine at 180 °C for 1 h in an oil bath | No | No | 0–80 μM | 5.3 μM | 25% | [77] |
MBC400-CDs | Hydrothermal synthesis using renewable source, mandarin peels, at 180 °C for 4 h | Yes | Yes | 4.9–56.6 μM | 0.01 μM | 7.31% | This work |
56.6–197.5 μM |
Taken (µM) | Found (µM) | % Recovery |
---|---|---|
5.21 | 5.27 | 101 |
10.4 | 10.8 | 104 |
15.4 | 14.9 | 96.8 |
20.4 | 21.4 | 105 |
25.4 | 25.0 | 98.4 |
30.3 | 29.1 | 96.0 |
35.1 | 34.0 | 96.9 |
39.8 | 40.8 | 103 |
44.5 | 45.4 | 102 |
49.2 | 48.9 | 99.4 |
Mean ± SD | 100.3 ± 3.2 3.2 | |
% RSD |
Sample | Copper (II) | |||
---|---|---|---|---|
Spiked (µM) | Found (µM) | Recovery% | RSD% | |
Tap water | 0 | 2.43 | - | 0.78 |
5.21 | 5.29 | 102 | 0.97 | |
10.4 | 11.1 | 107 | 1.28 | |
15.4 | 16.2 | 105 | 0.96 | |
20.4 | 21.3 | 104 | 0.68 | |
25.4 | 25.6 | 101 | 0.36 | |
Mountain water | 0 | 11.9 | - | 2.01 |
5.21 | 5.34 | 102 | 1.29 | |
10.3 | 10.4 | 100 | 2.06 | |
15.4 | 15.7 | 102 | 2.01 | |
20.4 | 21.4 | 105 | 0.94 | |
25.4 | 25.6 | 101 | 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Azazy, M.; AlReyashi, A.; Al-Saad, K.; Al-Hashimi, N.; Al-Ghouti, M.A.; Shibl, M.F.; Alahzm, A.; El-Shafie, A.S. Mandarin Peels-Derived Carbon Dots: A Multifaceted Fluorescent Probe for Cu(II) Detection in Tap and Drinking Water Samples. Nanomaterials 2024, 14, 1666. https://doi.org/10.3390/nano14201666
El-Azazy M, AlReyashi A, Al-Saad K, Al-Hashimi N, Al-Ghouti MA, Shibl MF, Alahzm A, El-Shafie AS. Mandarin Peels-Derived Carbon Dots: A Multifaceted Fluorescent Probe for Cu(II) Detection in Tap and Drinking Water Samples. Nanomaterials. 2024; 14(20):1666. https://doi.org/10.3390/nano14201666
Chicago/Turabian StyleEl-Azazy, Marwa, Alaa AlReyashi, Khalid Al-Saad, Nessreen Al-Hashimi, Mohammad A. Al-Ghouti, Mohamed F. Shibl, Abdulrahman Alahzm, and Ahmed S. El-Shafie. 2024. "Mandarin Peels-Derived Carbon Dots: A Multifaceted Fluorescent Probe for Cu(II) Detection in Tap and Drinking Water Samples" Nanomaterials 14, no. 20: 1666. https://doi.org/10.3390/nano14201666
APA StyleEl-Azazy, M., AlReyashi, A., Al-Saad, K., Al-Hashimi, N., Al-Ghouti, M. A., Shibl, M. F., Alahzm, A., & El-Shafie, A. S. (2024). Mandarin Peels-Derived Carbon Dots: A Multifaceted Fluorescent Probe for Cu(II) Detection in Tap and Drinking Water Samples. Nanomaterials, 14(20), 1666. https://doi.org/10.3390/nano14201666