Abstract
Carbon dots synthesized from citric acid and ethylene diamine by a one-step hydrothermal technique were used to develop a carbon dot-based paper immunoassay (CDPIA) for rapid detection of HIV-1 p24 antigen. In the present study, the 96-well template was hand patterned using a wax pencil, as a prototype method, on two types of paper, (1) Whatman filter paper and (2) nitrocellulose paper. The sandwich immunoassay was performed on both paper microplates for detection of HIV-1 p24 antigen which is an early marker of HIV infection. The detection range was from 10 μg/mL to 1 ng/mL for the Whatman filter paper while the nitrocellulose paper exhibited a higher range from 10 μg/mL to 250 pg/mL. CDPIA on the nitrocellulose paper (CDNIA) exhibited a fourfold increase in sensitivity and reduced the assay time by threefold compared with CDPIA on Whatman paper (CDWIA). HIV-negative and HIV-positive plasma samples were tested using CDNIA for the presence of HIV-1 p24 antigen. This immunoassay exhibited no false-positive and false-negative results with the clinical samples tested. This simple and sensitive paper-based HIV-1 p24 antigen assay may be useful in preventing HIV transmission by blood transfusion in resource-limited settings by reducing the antibody negative, infectious window period in blood donors and for early diagnosis of HIV infected individuals where nucleic acid-based testing is not practical or feasible.
Similar content being viewed by others
References
AIDS GLOBAL STATISTICS (2015) www.aids.gov
Anderson RM et al (1986) A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS. IMA J Math Appl Med Biol 3(4):229–263
Bartlett PA, Entzeroth M (eds) (2006) Exploiting chemical diversity for drug discovery. Royal Society of Chemistry, Cambridge. doi:10.1039/9781847552556. http://ebook.rsc.org/
Bruno A, de Lisio C, Patrizia M (2005) Time resolved fluorescence polarization anisotropy of carbonaceous particles produced in combustion systems. Opt Express 13(14): 5393–5408. https://www.osapublishing.org/oe/abstract.cfm?uri=oe-13-14-5393
Cheng C-M et al (2010) Paper-based ELISA. Angew Chem Int Ed Engl 49(28):4771–74. http://www.ncbi.nlm.nih.gov/pubmed/20512830
Chunduri LA et al (2016) Carbon quantum dots from coconut husk: evaluation for antioxidant and cytotoxic activity. Mater Focus 5(1): 55–61. http://openurl.ingenta.com/content/xref?genre=article&issn=2169-429X&volume=5&issue=1&spage=55
Derfus AM, Chan WC, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–18. doi:10.1021/nl0347334
Desiderio DM (1990) Mass spectrometry of peptides. CRC Press, Boca Raton. https://www.crcpress.com/Mass-Spectrometry-of-Peptides/Desiderio/9780849362934
Ding C, Zhu A, Tian Y (2014) Functional surface engineering of c-dots for fluorescent biosensing and in vivo bioimaging. Acc Chem Res 47(1): 20–30. http://www.ncbi.nlm.nih.gov/pubmed/23911118
Ellerbee AK et al (2009) Quantifying colorimetric assays in paper-based microfluidic devices by measuring the transmission of light through paper. Anal Chem 81(20):8447–8452. doi:10.1021/ac901307q
Fenton EM, Mascarenas MR, López GP, Sibbett SS (2009) Multiplex lateral-flow test strips fabricated by two-dimensional shaping. ACS Appl Mater Interfaces 1(1):124–129. doi:10.1021/am800043z
Fiebig EW et al (2003) Dynamics of HIV Viremia and antibody seroconversion in plasma donors: implications for diagnosis and staging of primary HIV infection. AIDS 17(13):1871–1879. http://www.ncbi.nlm.nih.gov/pubmed/12960819
Fluorescence Polarization (2010) https://www.thermofisher.com/in/en/home/references/molecular-probes-the-handbook/technical-notes-and-product-highlights/fluorescence-polarization-fp.html
Ge L et al (2012) 3D Origami-based multifunction-integrated immunodevice: low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device. Lab Chip 12(17): 3150–58. http://www.ncbi.nlm.nih.gov/pubmed/22763468
Heiat M et al (2014) Surface engineering of solid supports; cellulose, nitrocellulose and nylon to increase the efficiency of antibody immobilization in diagnostic systems. Int J Sci Eng Res 5(1):1808–1814
Hsu P-C, Chang H-T (2012) Synthesis of high-quality carbon nanodots from hydrophilic compounds: role of functional groups. Chem Commun (Camb) 48(33): 3984–3986. http://www.ncbi.nlm.nih.gov/pubmed/22422194
Hu M (2013) Preparation method of carbon quantum dot test paper strip for detecting P24 antigen. http://www.google.com/patents/CN103344756A?cl=en
Infectious Diseases (2016) http://www.smartglobalhealth.org/issues/entry/infectious-diseases
Jeong S-G et al (2015) Toward instrument-free digital measurements: a three-dimensional microfluidic device fabricated in a single sheet of paper by double-sided printing and lamination. Lab Chip 15(4): 1188–94. http://xlink.rsc.org/?DOI=C4LC01382D
Kim D, Herr AE (2013) Protein immobilization techniques for microfluidic assays. Biomicrofluidics 7(4):041501. doi:10.1063/1.4816934
Lab on Paper (2008) Lab on a Chip 8(12): 1988. http://xlink.rsc.org/?DOI=b814043j
Lea WA, Simeonov A (2011) Fluorescence polarization assays in small molecule screening. Expert Opin Drug Discov 6(1):17–32. doi:10.1517/17460441.2011.537322
Lequin RM (2005) Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem 51(12): 2415–18. http://www.ncbi.nlm.nih.gov/pubmed/16179424
Li H, Kang Z, Liu Y, Lee S-T (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22(46): 24230. http://xlink.rsc.org/?DOI=c2jm34690g
Liang Q et al (2013) Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon 60:421–428. doi:10.1016/j.carbon.2013.04.055
Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44(1):362–381
Liu J et al (2014) Development of a microchip europium nanoparticle immunoassay for sensitive point-of-care HIV detection. Biosens Bioelectron 61: 177–83. http://www.ncbi.nlm.nih.gov/pubmed/24880655
Lu Y, Shi W, Qin J, Lin B (2010) Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing. Anal Chem 82(1):329–335. doi:10.1021/ac9020193
Ma S, Tang Y, Liu J, Jianmin W (2014) Visible paper chip immunoassay for rapid determination of bacteria in water distribution system. Talanta 120:135–140. doi:10.1016/j.talanta.2013.12.007
Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Ange Chem Int Ed 46:1318–1320
Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82(1):3–10
Moore RD, Chaisson RE (1999) Natural history of HIV infection in the era of combination antiretroviral therapy. AIDS 13(14): 1933–1942. http://www.ncbi.nlm.nih.gov/pubmed/10513653
Mu X et al (2014) Multiplex micro Fl uidic paper-based immunoassay for the diagnosis of hepatitis C virus infection. Anal Chem 86:5338–5344
Pelton R (2009) Bioactive paper provides a low-cost platform for diagnostics. Trends Anal Chem 28(8):925–942. doi:10.1016/j.trac.2009.05.005
Peng H, Travas-Sejdic J (2009) Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem Mater 21(23):5563–5565. doi:10.1021/cm901593y
Resch-Genger U et al (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9): 763–75. http://www.ncbi.nlm.nih.gov/pubmed/18756197
Rowland SP (1977) Cellulose: pores, internal surfaces, and the water interface, pp 20–45. doi:10.1021/bk-1977-0049.ch002
Roy P et al (2015) Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications. Mater Today 18(8): 447–58. http://linkinghub.elsevier.com/retrieve/pii/S1369702115001212
Samyn P (2013) Wetting and hydrophobic modification of cellulose surfaces for paper applications. J Mater Sci 48(19):6455–6498. doi:10.1007/s10853-013-7519-y
Schüpbach J et al (1996) Heat-mediated immune complex dissociation and enzyme-linked immunosorbent assay signal amplification render p24 antigen detection in plasma as sensitive as HIV-1 RNA detection by polymerase chain reaction. AIDS10(10): 1085–1090. http://www.ncbi.nlm.nih.gov/pubmed/8874624
Sherman GG, Matsebula TC, Jones SA (2005) Is early HIV testing of infants in poorly resourced prevention of mother to child transmission programmes unaffordable? Trop Med Int Health 10(11):1108–1113
Shi H et al (2014) Fluorescent carbon dots for biolmaging and biosensing applications. J Biomed Nanotechnol 10(10): 2677–99. http://www.ncbi.nlm.nih.gov/pubmed/25992414
Sutthent R et al (2003) p24 antigen detection assay modified with a booster step for diagnosis and monitoring of human immunodeficiency virus type 1 infection. J Clin Microbiol 41(3): 1016–1022. http://www.ncbi.nlm.nih.gov/pubmed/150255
Tang S, Hewlett I (2010) Nanoparticle-based immunoassays for sensitive and early detection of HIV-1 capsid (p24) antigen. J Infect Dis 201(Suppl 1): S59–S64. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2943740&tool=pmcentrez&rendertype=abstract
Tenda K et al (2016) High-resolution microfluidic paper-based analytical devices for sub-microliter sample analysis. Micromachines 7(5): 80. http://www.mdpi.com/2072-666X/7/5/80
Walling MA, Novak JA, Shepard JRE (2009) Quantum dots for live cell and in vivo imaging. Int J Mol Sci 10(2): 441–491. http://www.mdpi.com/1422-0067/10/2/441/
Which Western Blot Detection Method Should You Use? (2012) http://www.licor.com/bio/blog/western-blotting-2/western-blot-detection-method-fluorescence-chemiluminescence-and-colorimetric
Wu Y et al (2015) Development of a carbon dot (C-Dot)-linked immunosorbent assay for the detection of human α-fetoprotein. Anal Chem 87(16):8510–8516. doi:10.1021/acs.analchem.5b02019
Zang D et al (2012) Electrochemical immunoassay on a 3d microfluidic paper-based device. Chem Commun 48(39):4683
Zhao W, van den Berg A (2008) Lab on paper. Lab on a Chip 8(12): 1988. http://xlink.rsc.org/?DOI=b814043j
Zhao W et al (2008) Paper-based bioassays using gold nanoparticle colorimetric probes. Anal Chem 80(22):8431–8437. doi:10.1021/ac801008q
Zhu C, Zhai J, Dong S (2012) Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chem Commun 48(75): 9367. http://xlink.rsc.org/?DOI=c2cc33844k
Zhu S et al (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Ange Chem Int Ed 52(14):3953–3957
Zuo J et al (2015) Preparation and application of fluorescent carbon dots. J Nanomater 2015: 1–13. http://www.hindawi.com/journals/jnm/2015/787862/
Acknowledgments
All authors are grateful to Bhagawan Sri Sathya Sai Baba for his constant inspiration and guidance. Aditya Kurdekar thanks DST for their support through the DST-INSPIRE Fellowship program, Ministry of Science and Technology, Government of India. L. A. Avinash Chunduri acknowledges UGC, Government of India for BSR fellowship. We acknowledge with gratitude Prof. S. Sampath for providing the TEM facility for characterization.
Author information
Authors and Affiliations
Corresponding author
Additional information
Disclaimer: The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Food and Drug Administration, U.S. Department of Health and Human Services.
Rights and permissions
About this article
Cite this article
Kurdekar, A., Chunduri, L.A., Bulagonda, E.P. et al. Comparative performance evaluation of carbon dot-based paper immunoassay on Whatman filter paper and nitrocellulose paper in the detection of HIV infection. Microfluid Nanofluid 20, 99 (2016). https://doi.org/10.1007/s10404-016-1763-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10404-016-1763-9