Ni-Mg-Al Hydrotalcite-Derived Catalysts for Ammonia Decomposition—From Precursor to Effective Catalyst
<p>Diffractograms recorded for the Ni-Mg-Al hydrotalcite-like materials.</p> "> Figure 2
<p>DTG profiles obtained for the thermal decomposition of hydrotalcite-like materials in flow or air (solid line) and nitrogen (dashed line).</p> "> Figure 3
<p>Diffractograms of the samples calcined at 600 °C (<b>A</b>) and 800 °C (<b>B</b>) as well as after catalytic test (<b>C</b>).</p> "> Figure 3 Cont.
<p>Diffractograms of the samples calcined at 600 °C (<b>A</b>) and 800 °C (<b>B</b>) as well as after catalytic test (<b>C</b>).</p> "> Figure 4
<p>UV-Vis DR spectra recorded for the samples calcined at 600 and 800 °C.</p> "> Figure 5
<p>H<sub>2</sub>-TPR profiles of the samples calcined at 600 °C (<b>A</b>) and reduction profiles of the MZ02 sample recorded in the subsequent H2-TPR runs (<b>B</b>).</p> "> Figure 5 Cont.
<p>H<sub>2</sub>-TPR profiles of the samples calcined at 600 °C (<b>A</b>) and reduction profiles of the MZ02 sample recorded in the subsequent H2-TPR runs (<b>B</b>).</p> "> Figure 6
<p>Diffractograms of the freshly calcined MZ02 sample at 600 °C as well as after catalytic tests and seven H<sub>2</sub>-TPR cycles.</p> "> Figure 7
<p>Results of the catalytic tests of the ammonia decomposition reaction.</p> "> Figure 8
<p>Studies of the catalyst’s stability in the subsequent catalytic cycles of ammonia decomposition reaction in the presence of MZ01 (<b>A</b>), MZ02 (<b>B</b>), and MZ03 (<b>C</b>) catalysts.</p> "> Figure 9
<p>Long-term isothermal stability test for the MZ03 catalyst at 450 °C.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Catalysts Synthesis
3.2. Catalysts and Catalyst Precursors Characterization
3.3. Catalytic Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herbinet, O.; Bartocci, P.; Grinberg Dana, A. On the use of ammonia as a fuel—A perspective. Fuel Comm. 2022, 11, 100064. [Google Scholar] [CrossRef]
- Grinberg Dana, A.; Elishav, O.; Bardow, A.; Shter, G.E.; Grader, G.S. Nitrogen-based fuels: A power-to-fuel-to-power analysis. Angew. Chem. Int. Ed. 2016, 55, 8798–8805. [Google Scholar] [CrossRef] [PubMed]
- Christensen, C.H.; Johannessen, T.; Sørensen, R.Z.; Nørskov, J.K. Towards an ammonia-mediated hydrogen economy? Catal. Today 2006, 111, 140–144. [Google Scholar] [CrossRef]
- Liang, W.; Law, C.K. Enhancing ammonia combustion using reactivity stratification with hydrogen addition. Proc. Combus. Inst. 2023, 39, 4419–4426. [Google Scholar] [CrossRef]
- Chatterjee, S.; Parsapur, R.K.; Huang, K.-W. Limitations of Ammonia as a Hydrogen Energy Carrier for the Transportation Sector. ACS Energy Lett. 2021, 6, 4390–4394. [Google Scholar] [CrossRef]
- Gezerman, A.O. Exergy analysis and purging of an ammonia storage system. Int. J. Exergy 2015, 17, 335–351. [Google Scholar] [CrossRef]
- Boyce, J.; Sacchi, R.; Goetheer, E.; Steubing, B. A prospective life cycle assessment of global ammonia decarbonisation scenarios. Heliyon 2024, 10, e27547. [Google Scholar] [CrossRef]
- Lucentini, I.; Garcia, X.; Vendrell, X.; Llorca, J. Review of the Decomposition of Ammonia to Generate Hydrogen. Ind. Eng. Chem. Res. 2021, 60, 18560–18611. [Google Scholar] [CrossRef]
- Mateti, S.; Saranya, L.; Sathikumar, G.; Cai, Q.; Yao, Y.; Chen, Y.I. Nanomaterials enhancing the solid-state storage and decomposition of ammonia. Nanotechnology 2022, 33, 222001. [Google Scholar] [CrossRef]
- Xi, S.; Wu, W.; Yao, W.; Han, R.; He, S.; Wang, W.; Zhang, T.; Yu, L. Hydrogen Production from Ammonia Decomposition: A Mini-Review of Metal Oxide-Based Catalysts. Molecules 2024, 29, 3817. [Google Scholar] [CrossRef]
- Chen, C.; Wu, K.; Ren, H.; Zhou, C.; Luo, Y.; Lin, L.; Au, C.; Jiang, L. Ru-Based Catalysts for Ammonia Decomposition: A Mini-Review. Energy Fuels 2021, 35, 11693–11706. [Google Scholar] [CrossRef]
- Hu, Z.; Mahin, J.; Datta, S.; Bell, T.E.; Torrente-Murciano, L. Ru-Based Catalysts for H2 Production from Ammonia: Effect of 1D Support. Top Catal. 2019, 62, 1169–1177. [Google Scholar] [CrossRef]
- Lu, B.; Li, L.; Ren, M.; Liu, Y.; Zhang, Y.; Xu, X.; Wang, X.; Qiu, H. Ammonia decomposition over iron-based catalyst: Exploring the hidden active phase. Appl. Catal. B 2022, 314, 121475. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Rutkowska, M.; Gnyla, S.; Pacia, M.; Chmielarz, L. Synergistic Effect of Co and Ni Co-Existence on Catalytic Decomposition of Ammonia to Hydrogen-Effect of Catalytic Support and Mg-Al Oxide Matrix. ChemEngineering 2024, 8, 55. [Google Scholar] [CrossRef]
- Wu, Z.-W.; Li, X.; Qin, Y.-H.; Deng, L.; Wang, C.-W.; Jiang, X. Ammonia decomposition over SiO2-supported Ni-Co bi-metallic catalyst for COx-free hydrogen generation. Int. J. Hydrogen Energy 2020, 45, 15263–15269. [Google Scholar] [CrossRef]
- Huo, L.; Liu, B.; Li, H.; Cao, B.; Hu, X.; Fu, X.; Jia, C.; Zhang, J. Component synergy and armor protection induced superior catalytic activity and stability of ultrathin Co-Fe spinel nanosheets confined in mesoporous silica shells for ammonia decomposition reaction. Appl. Catal. B 2019, 253, 121–130. [Google Scholar] [CrossRef]
- Hansgen, D.A.; Vlachos, D.G.; Chen, J.G. Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction. Nat. Chem. 2010, 2, 484–489. [Google Scholar] [CrossRef]
- Tabassum, H.; Mukherjee, S.; Chen, J.; Holiharimanana, D.; Karakalos, S.; Yang, X.; Hwang, S.; Zhang, T.; Lu, B.; Chen, M.; et al. Hydrogen generation via ammonia decomposition on highly efficient and stable Ru-free catalysts: Approaching complete conversion at 450 °C. Energy Environ. Sci. 2022, 15, 4190–4200. [Google Scholar] [CrossRef]
- Fedorova, Z.A.; Borisov, V.A.; Pakharukova, V.P.; Gerasimov, E.Y.; Belyaev, V.D.; Gulyaeva, T.I.; Shlyapin, D.A.; Snytnikov, P.V. Layered Double Hydroxide-Derived Ni-Mg-Al Catalysts for Ammonia Decomposition Process: Synthesis and Characterization. Catalysts 2023, 13, 678. [Google Scholar] [CrossRef]
- Chen, S.; Jelic, J.; Rein, D.; Najafishirtari, S.; Schmidt, F.-P.; Girgsdies, F.; Kang, L.; Wandzilak, A.; Rabe, A.; Doronkin, D.E.; et al. Highly loaded bimetallic iron-cobalt catalysts for hydrogen release from ammonia. Nat. Commun. 2024, 15, 871. [Google Scholar] [CrossRef]
- Wei, X.; Su, J.; Ji, Y.; Huang, H.; Li, D.; Fang, H.; Chen, C.; Luo, Y.; Jiang, L. Hydrotalcite-derived well-dispersed and thermally stable cobalt nanoparticle catalyst for ammonia decomposition. Mol. Catal. 2025, 572, 114741. [Google Scholar] [CrossRef]
- Su, Q.; Wang, H.; Gu, L.; Ji, W.; Au, C.-T. Fe-based catalyst derived from MgFe-LDH: Very efficient yet simply obtainable for hydrogen production via ammonia decomposition. Inter. J. Hydrogen Energy 2021, 46, 31122–31132. [Google Scholar] [CrossRef]
- Basąg, S.; Kovanda, F.; Piwowarska, Z.; Kowalczyk, A.; Pamin, K.; Chmielarz, L. Hydrotalcite-derived Co-containing mixed metal oxide catalysts for methanol incineration. J. Therm. Anal. Calorim. 2017, 129, 1301–1311. [Google Scholar] [CrossRef]
- Basąg, S.; Kocoł, K.; Piwowarska, Z.; Rutkowska, M.; Baran, R.; Chmielarz, L. Activating effect of cerium in hydrotalcite derived Cu–Mg–Al catalysts for selective ammonia oxidation and the selective reduction of NO with ammonia. Reac. Kinet. Mech. Cat. 2017, 121, 225–240. [Google Scholar] [CrossRef]
- Basąg, S.; Piwowarska, Z.; Kowalczyk, A.; Węgrzyn, A.; Baran, R.; Gil, B.; Michalik, M.; Chmielarz, L. Cu-Mg-Al hydrotalcite-like materials as precursors of effective catalysts for selective oxidation of ammonia to dinitrogen—The influence of Mg/Al ratio and calcination temperature. Appl. Clay Sci. 2016, 129, 122–130. [Google Scholar] [CrossRef]
- Xu, W.; Mertens, M.; Kenis, T.; Derveaux, E.; Adriaensens, P.; Meynen, V. Can high temperature calcined Mg–Al layered double hydroxides (LDHs) fully rehydrate at room temperature in vapor or liquid condition? Mater. Chem. Phys. 2023, 295, 127113. [Google Scholar] [CrossRef]
- Pinthong, P.; Praserthdam, P.; Jongsomjit, B. Effect of Calcination Temperature on Mg-Al Layered Double Hydroxides (LDH) as Promising Catalysts in Oxidative Dehydrogenation of Ethanol to Acetaldehyde. J. Oleo Sci. 2019, 68, 95–102. [Google Scholar] [CrossRef]
- Chmielarz, L.; Jabłońska, M.; Strumiński, A.; Piwowarska, Z.; Węgrzyn, A.; Witkowski, S.; Michalik, M. Selective catalytic oxidation of ammonia to nitrogen over Mg-Al, Cu-Mg-Al and Fe-Mg-Al mixed metal oxides doped with noble metals. Appl. Catal. B 2013, 130–131, 152–162. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Gwak, G.-H.; Kim, H.-M.; Kim, T.; Lee, G.J.; Oh, J.-M. Synthesis of hydrotalcite type layered double hydroxide with various Mg/Al ratio and surface charge under controlled reaction condition. Appl. Clay Sci. 2016, 134, 44–49. [Google Scholar] [CrossRef]
- Azzouz, A.; Aruş, V.A.; Platon, N.; Ghomari, K.; Nistor, I.-D.; Shiao, T.C.; Roy, R. Polyol-modified layered double hydroxides with attenuated basicity for a truly reversible capture of CO2. Adsorption 2013, 19, 909–918. [Google Scholar] [CrossRef]
- Yan, K.; Liu, Y.; Lu, Y.; Chai, J.; Sun, L. Catalytic application of layered double hydroxide-derived catalysts for the conversion of biomass-derived molecules. Catal. Sci. Technol. 2017, 7, 1622–1645. [Google Scholar] [CrossRef]
- Xie, Z.-H.; Zhou, H.-Y.; He, C.-S.; Pan, Z.-C.; Yao, G.; Lai, B. Synthesis, application and catalytic performance of layered double hydroxide based catalysts in advanced oxidation processes for wastewater decontamination: A review. Chem. Eng. J. 2021, 414, 128713. [Google Scholar] [CrossRef]
- Li, Z.; Guo, L.; Ren, W.; Han, J.; Verma, S.K.; Xu, S.; Liu, L.; Zhang, T.; Xu, Y. Hydrogen production from ammonia decomposition over Ru/Co–Al-LDOs catalysts prepared by a one-step synthesis method of co-precipitation. Int. J. Hydrogen Energy 2024, 93, 1000–1010. [Google Scholar] [CrossRef]
- de Matos, C.S.; Ghimbeu, C.M.; Brendlé, J.; Limousy, L.; Constantino, V.R.L. Thermal decomposition of a layered double hydroxide as a bottom up approach for the synthesis of metallic nanoparticles embedded in carbon structures. New J. Chem. 2020, 44, 16721–16732. [Google Scholar] [CrossRef]
- Yousefi, S.; Ghasemi, B.; Nikolova, M.P. Morpho/Opto-structural Characterizations and XRD-Assisted Estimation of Crystallite Size and Strain in MgO Nanoparticles by Applying Williamson–Hall and Size–Strain Techniques. J. Clust. Sci. 2022, 33, 2197–2207. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, D.; Xu, J.; Lu, Y.; Liu, Y.; Qiu, K.; Zhang, Y.; Luo, Y. Solution growth of NiO nanosheets supported on Ni foam as high-performance electrodes for supercapacitors. Nanoscale. Res. Lett. 2014, 9, 424. [Google Scholar] [CrossRef]
- Raja, M.; Bicy, K.; Suriyakumar, S.; Angulakshmi, N.; Thomas, T.; Stephan, A.M. High performing magnesium aluminate-coated separator for lithium batteries. Ionics 2018, 24, 3451–3457. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, J.; He, L.; Hao, C.; Wang, F.; Zhang, J. Preparation and fluorescence properties of MgAl2O4: Tb3+ nanorod-like phosphors. Mater. Res. Express 2022, 9, 065009. [Google Scholar] [CrossRef]
- Wang, H.; Kou, X.; Zhang, J.; Li, J. Large scale synthesis and characterization of Ni nanoparticles by solution reduction method. Bull. Mater. Sci. 2008, 31, 97–100. [Google Scholar] [CrossRef]
- Li, C.; Guo, L.; Chen, G.; Fu, Y.; Zhang, X.; Zou, Y.; Duan, J.; Wang, W. CoNi alloy catalyst supported on Zr-modified Y2O3 for ammonia decomposition to COx-free hydrogen. Colloids Surf. A Physicochem. Eng. Asp. 2023, 671, 131671. [Google Scholar] [CrossRef]
- Niedermeier, C.A.; Råsander, M.; Rhode, S.; Kachkanov, V.; Zou, B.; Alford, N.; Moram, M.A. Band gap bowing in NixMg1−xO. Sci. Rep. 2016, 6, 31230. [Google Scholar] [CrossRef] [PubMed]
- Veselov, G.B.; Karnaukhov, T.M.; Stoyanovskii, V.O.; Vedyagin, A.A. Preparation of the Nanostructured Ni-Mg-O Oxide System by a Sol–Gel Technique at Varied pH. Nanomaterials 2022, 12, 952. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, X.; Chen, C.; Zou, X.; Shang, X.; Dingab, W.; Lu, X. Investigation of mesoporous NiAl2O4/MOx (M = La, Ce, Ca, Mg)–γ-Al2O3 nanocomposites for dry reforming of methane. RSC Adv. 2017, 7, 33143–33154. [Google Scholar] [CrossRef]
- Wang, Y.; Li, B.; Xiao, Y.-S.; Liu, Z.-W. NiO-MgO Prepared by the Complex-Decomposition Method as a Catalyst for Carbon Dioxide Reforming of Methane. Processes 2023, 11, 596. [Google Scholar] [CrossRef]
- Su, Q.; Gu, L.; Yao, Y.; Zhao, J.; Ji, W.; Ding, W.; Au, C.-T. Layered double hydroxides derived Nix(MgyAlzOn) catalysts: Enhanced ammonia decomposition by hydrogen spillover effect. Appl. Catal. B 2017, 201, 451–460. [Google Scholar] [CrossRef]
- Wang, G.; Luo, F.; Cao, K.; Zhang, Y.; Li, J.; Zhao, F.; Chen, R.; Hong, J. Effect of Ni Content of Ni/γ-Al2O3 Catalysts Prepared by the Atomic Layer Deposition Method on CO2 Reforming of Methane. Energy Technol. 2019, 7, 1800359. [Google Scholar] [CrossRef]
- Zhou, L.; Li, L.; Wei, N.; Li, J.; Basset, J.-M. Effect of NiAl2O4 Formation on Ni/Al2O3 Stability during Dry Reforming of Methane. ChemCatChem 2015, 7, 2508–2516. [Google Scholar] [CrossRef]
Sample | Intended Composition/mol% | |||
---|---|---|---|---|
Ni | Mg | Al | CO32− | |
MZ01 | 5 | 55 | 40 | 20 |
MZ02 | 10 | 50 | 40 | 20 |
MZ03 | 20 | 40 | 40 | 20 |
Sample | Determined Composition/mol% | BET Surface Area/m2/g | ||||
---|---|---|---|---|---|---|
Ni | Mg | Al | 600 °C | 800 °C | After Test | |
MZ01 | 5.2 | 54.0 | 40.8 | 313 | 204 | 202 |
MZ02 | 10.2 | 48.6 | 41.2 | 311 | 205 | 201 |
MZ03 | 20.2 | 38.5 | 41.3 | 334 | 200 | 171 |
Sample | Ni Surface Area /m2/g | Ni surface Area/Ni Content /m2/(g∙mol %) |
---|---|---|
MZ01 | 2.2 | 0.42 |
MZ02 | 4.2 | 0.41 |
MZ03 | 8.4 | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalczyk, A.; Zaryczny, M.; Piwowarska, Z.; Chmielarz, L. Ni-Mg-Al Hydrotalcite-Derived Catalysts for Ammonia Decomposition—From Precursor to Effective Catalyst. Molecules 2025, 30, 1052. https://doi.org/10.3390/molecules30051052
Kowalczyk A, Zaryczny M, Piwowarska Z, Chmielarz L. Ni-Mg-Al Hydrotalcite-Derived Catalysts for Ammonia Decomposition—From Precursor to Effective Catalyst. Molecules. 2025; 30(5):1052. https://doi.org/10.3390/molecules30051052
Chicago/Turabian StyleKowalczyk, Andrzej, Martyna Zaryczny, Zofia Piwowarska, and Lucjan Chmielarz. 2025. "Ni-Mg-Al Hydrotalcite-Derived Catalysts for Ammonia Decomposition—From Precursor to Effective Catalyst" Molecules 30, no. 5: 1052. https://doi.org/10.3390/molecules30051052
APA StyleKowalczyk, A., Zaryczny, M., Piwowarska, Z., & Chmielarz, L. (2025). Ni-Mg-Al Hydrotalcite-Derived Catalysts for Ammonia Decomposition—From Precursor to Effective Catalyst. Molecules, 30(5), 1052. https://doi.org/10.3390/molecules30051052