Electrochemical Method for the Assay of Organic Peroxides Directly in Acetonitrile
"> Figure 1
<p>Cyclic voltammograms of Co-g-C<sub>3</sub>N<sub>4</sub>/Nafion/GCE in the absence and presence of BPO/ACN; background electrolyte 0.1 M TBAP in acetonitrile and reference electrode Ag|Ag<sup>+</sup>; scan rate of 20 mV/s.</p> "> Figure 2
<p>Chronoamperometric record (<b>A</b>) and calibration plot (<b>B</b>) of an electrode modified with Co-g-C<sub>3</sub>N<sub>4</sub>/Naf when aliquots of 0.003M BPO were added; background electrolyte: 0.1 M solution of TBAP in acetonitrile and reference electrode Ag|Ag<sup>+</sup>; working potential of −0.2 V.</p> "> Figure 3
<p>Cyclic voltammograms of Co-g-C<sub>3</sub>N<sub>4</sub>/Nafion/GCE in the absence and presence of lauroyl peroxide (LPO) in ACN; background electrolyte 0.1 M TBAP in acetonitrile and reference electrode Ag|Ag<sup>+</sup>; scan rate of 20 mV/s.</p> "> Figure 4
<p>Cyclic voltammograms of Co-g-C<sub>3</sub>N<sub>4</sub>/Nafion/GCE in the absence and presence of oil (dissolved in CHCl<sub>3</sub>); background electrolyte 0.1 M TBAP in ACN and reference electrode Ag|Ag<sup>+</sup>; scan rate of 20 mV.s<sup>−1</sup>.</p> "> Figure 5
<p>Chronoamperometric record (inset) and calibration plot of a Co-g-C<sub>3</sub>N<sub>4</sub>/Nafion-modified electrode when aliquots of 0.003 M BPO were added (dissolved in CHCl<sub>3</sub>/oil); background electrolyte: 0.1 M TBAP in ACN and reference electrode Ag| Ag<sup>+</sup>; potential of −0.2 V.</p> "> Figure 6
<p>Correlation dependencies of measured versus theoretical amounts of peroxide (BPO) in a real oil sample enriched with peroxides in a narrow (0.5–5 μM) (<b>A</b>) and in a wider (25–200 μM) (<b>B</b>) range of peroxide concentrations (in μmol L<sup>−1</sup>). The regression equations and the regression coefficients R<sup>2</sup> are provided in the lower right part of the Figures.</p> "> Figure 7
<p>Correlation dependencies of measured versus expected amounts of O<sub>2</sub> in a real oil sample enriched with benzoyl peroxide in a low (1–13 meq kg<sup>−1</sup>) (<b>A</b>) and high (60–550 meq kg<sup>−1</sup>) (<b>B</b>) range of peroxide concentrations, expressed in meq/kg. The regression equations and the regression coefficients R<sup>2</sup> are provided in the lower right part of the Figures.</p> "> Figure 8
<p>Measured vs. expected peroxide value of a real sample spiked with known amounts of BPO analyzed using the titrimetric method (BSS EN ISO 3960:2017) [<a href="#B24-molecules-30-00374" class="html-bibr">24</a>] (<b>A</b>) and using the electrochemical method (<b>B</b>).</p> "> Figure 9
<p>Determination of the PV of the real sample by the method of standard addition: after adding the sample, three more aliquots of the external standard solution were added (standard peroxide solution, BPO, in chloroform, to which the real sample was added) to the electrochemical cell. Below are provided the regression model and the corresponding regression coefficients calculated by least squares method.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Optimisation of the Operating Conditions
2.2. Analytical Performance of the Catalytic Peroxide Electrode
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Apparatus and Measurments
4.3. Synthesis of Co-Doped g-C3N4
4.4. Modification of Working Electrode
4.5. Study of the Electrocatalytic Activity of Co-g-C3N4/Nafion—Modified GCE
4.6. Preparation of the Calibration Curve
4.7. Assessment of the Accuracy of the Method over the Range of Low Peroxide Concentrations
- The preparation of a stock solution with a concentration of 0.03 M BPO in CHCl3
- The weighing of 0.4 g (0.5 mL) of peroxide-free anti-cellulite oil and dissolving it into a 0.03 M BPO/CHCl3 solution. This solution is designated as BPO/CHCl3/fresh oil.
- The dilution of 0.03 M BPO/CHCl3/fresh oil 10 times with CHCl3 to a final concentration of 0.003 M BPO/CHCl3/fresh oil.
- The performance of calibration at a working potential of −0.2 V, with the following portions of 0.003 M BPO/CHCl3/fresh oil: 5 × 20 μL. Then, 6 × 50 μL is added.
- All measurements were performed as described in Section 4.5, strictly following the procedure. The regression equation of the calibration plot is as follows: Y = −2.62 × 10−9 + 0.00272x.
4.8. Assessment of the Accuracy of the Electrochemical Method in a Wide Concentration Range
4.9. Peroxide Value (PV) Measurement of the Anti-Cellulite Oil by Iodometric Titration
4.10. Determination of Peroxide Concentration in a Real Sample—Highly Rancid Anti-Cellulite Oil from the Trademark Rivana
4.11. Calculus
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, D.; Bao, A.; Yuan, Y.; Wang, Y.; Li, L.; Song, G.; Yuan, T.; Gong, J. Whey protein isolate-stabilized gardenia fruit oil nanoemulsions: Ultrasonic preparation, characterization and applications in nutraceuticals delivery. Ind. Crop. Prod. 2024, 212, 118345. [Google Scholar] [CrossRef]
- Sun, X.; Wang, J.; Dong, M.; Zhang, H.; Li, L.; Wang, L. Food spoilage, bioactive food fresh-keeping films and functional edible coatings: Research status, existing problems and development trend. Trends Food Sci. Technol. 2022, 119, 122–132. [Google Scholar] [CrossRef]
- Kasaikina, O.T.; Krugovov, D.A.; Mengele, E.A. Unusual antioxidant effects in multiphase and complex systems. Eur. J. Lipid Sci. Technol. 2017, 119, 1600286. [Google Scholar] [CrossRef]
- Hori, K.; Koh, F.H.; Tsumura, K. A metabolomics approach using LC TOF-MS to evaluate oxidation levels of edible oils. Food Anal. Methods 2019, 12, 1799–1804. [Google Scholar] [CrossRef]
- Zhang, N.; Li, Y.; Wen, S.; Sun, Y.; Chen, J.; Gao, Y.; Sagymbek, A.; Yu, X. Analytical methods for determining the peroxide value of edible oils: A mini-reviewmini review. Food Chem. 2021, 358, 129834. [Google Scholar] [CrossRef]
- Yi, Y.; Yao, J.; Xu, W.; Wang, L.-M.; Wang, H.-X. Investigation on the quality diversity and quality-FTIR characteristic relationship of sunflower seed oils. RSC Adv. 2019, 9, 27347–27360. [Google Scholar] [CrossRef] [PubMed]
- Liang, P.; Chen, C.; Zhao, S.; Ge, F.; Liu, D.; Liu, B.; Fan, Q.; Han, B.; Xiong, X. Application of Fourier Transform Infrared Spectroscopy for the Oxidation and Peroxide Value Evaluation in Virgin Walnut Oil. J. Spectrosc. 2013, 2013, 138728. [Google Scholar] [CrossRef]
- Guillén, M.a.D.; Cabo, N. Fourier transform infrared spectra data versus peroxide and anisidine values to determine oxidative stability of edible oils. Food Chem. 2002, 77, 503–510. [Google Scholar] [CrossRef]
- Maggio, R.M.; Kaufman, T.S.; Carlo, M.D.; Cerretani, L.; Bendini, A.; Cichelli, A.; Compagnone, D. Monitoring of fatty acid composition in virgin olive oil by Fourier transformed infrared spectroscopy coupled with partial least squares. Food Chem. 2009, 114, 1549–1554. [Google Scholar] [CrossRef]
- Sinelli, N.; Cosio, M.S.; Gigliotti, C.; Casiraghi, E. Preliminary study on application of mid infrared spectroscopy for the evaluation of the virgin olive oil “freshness”. Anal. Chim. Acta 2007, 598, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Deyrieux, C.; Villeneuve, P.; Baréa, B.; Decker, E.A.; Guiller, I.; Michel Salaun, F.; Durand, E. Measurement of Peroxide Values in Oils by Triphenylphosphine/Triphenylphosphine Oxide (TPP/TPPO) Assay Coupled with FTIR-ATR Spectroscopy: Comparison with Iodometric Titration. Eur. J. Lipid Sci. Technol. 2018, 120, 1800109. [Google Scholar] [CrossRef]
- Yu, X.; van de Voort, F.R.; Sedman, J. Determination of peroxide value of edible oils by FTIR spectroscopy with the use of the spectral reconstitution technique. Talanta 2007, 74, 241–246. [Google Scholar] [CrossRef]
- Liu, H.; Chen, Y.; Shi, C.; Yang, X.; Han, D. FT-IR and Raman spectroscopy data fusion with chemometrics for simultaneous determination of chemical quality indices of edible oils during thermal oxidation. LWT 2020, 119, 108906. [Google Scholar] [CrossRef]
- Alonso-Salces, R.M.; Holland, M.V.; Guillou, C. 1H-NMR fingerprinting to evaluate the stability of olive oil. Food Control 2011, 22, 2041–2046. [Google Scholar] [CrossRef]
- Knothe, G.; Kenar, J.A. Determination of the fatty acid profile by 1H-NMR spectroscopy. Eur. J. Lipid Sci. Technol. 2004, 106, 88–96. [Google Scholar] [CrossRef]
- Parker, T.; Limer, E.; Watson, A.D.; Defernez, M.; Williamson, D.; Kemsley, E.K. 60 MHz 1H NMR spectroscopy for the analysis of edible oils. TrAC Trends Anal. Chem. 2014, 57, 147–158. [Google Scholar] [CrossRef]
- Abuzaytoun, R.; Budge, S.; Hansen, L.T.; MacKinnon, S. Modification of the Ferrous Oxidation-Xylenol Orange Method for Determination of Peroxide Value in Highly Pigmented Sea Cucumber Viscera Lipid. J. Am. Oil Chem. Soc. 2020, 97, 509–516. [Google Scholar] [CrossRef]
- Muresan, V.; Muste, S.; Racolta, E.; Semeniuc, C.A.; Simona, M.; Pop, A.B.; Chircu, C. Determination of peroxide value in sunflower halva using a spectrophotometric method. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Agric. 2010, 67, 334–339. [Google Scholar] [CrossRef]
- DeLong, J.M.; Prange, R.K.; Hodges, D.M.; Forney, C.F.; Bishop, M.C.; Quilliam, M. Using a Modified Ferrous Oxidation−Xylenol Orange (FOX) Assay for Detection of Lipid Hydroperoxides in Plant Tissue. J. Agric. Food Chem. 2002, 50, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Guillén, M.D.; Ruiz, A. Edible oils: Discrimination by 1H nuclear magnetic resonance. J. Sci. Food Agric. 2003, 83, 338–346. [Google Scholar] [CrossRef]
- Liu, X.; Wang, S.; Tamogami, S.; Chen, J.; Zhang, H. An Evaluation Model for the Quality of Frying Oil Using Key Aldehyde Detected by HS-GC/MS. Foods 2022, 11, 2413. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Bhardwaj, A.; Khanduja, G.; Kumar, S.; Bagchi, S.; Kaur, R.; Sharma, M.; Singla, M.; Ravinder, T.; Bhondekar, A.P.; et al. Determination of Hexanal Using Static Headspace GC-FID Method and Its Correlation with Oxidative Rancidity in Edible Oils. Food Anal. Methods 2022, 15, 2652–2663. [Google Scholar] [CrossRef]
- Lu, Y.; Xiong, R.; Tang, Y.; Yu, N.; Nie, X.; Zhang, L.; Meng, X. An overview of the detection methods to the edible oil oxidation degree: Recent progress, challenges, and perspectives. Food Chem. 2025, 463, 141443. [Google Scholar] [CrossRef] [PubMed]
- BDS EN ISO 3960:2017; Animal and Vegetable Fats and Oils—Determination of Peroxide Value—Iodometric (Visual) Endpoint Determination. Bulgarian Institute for Standardization: Sofia, Bulgaria, 2017. Available online: https://bds-bg.org/en/project/show/iso:proj:71268 (accessed on 14 January 2025).
- Chen, J.; Cai, D.; Zhang, Y. Rapid determination of lipid peroxidation using a novel pyridoxamine-participating ferrous oxidation-sulfosalicylic acid spectrophotometric method. Food Chem. 2016, 211, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Aryan, Z.; Khajehsharifi, H.; Shahrokhian, S. AuNPs-Ultrathin/Graphitic-C3N4 nanosheets as a sensitive platform for electrochemical detection and determination of dopamine. Microchem. J. 2024, 198, 110087. [Google Scholar] [CrossRef]
- Jyothi, S.P.; Vinod, D.; Chandran, D.; Antherjanam, S.; Saraswathyamma, B.; Balaraman, V.; Rajamani, R. Poly-4-amino-6-chloro-1,3-benzene disulfonamide decorated pencil graphite electrode for the simultaneous electrochemical quantification of catechol and hydroquinone. J. Appl. Electrochem. 2024, 54, 1819–1831. [Google Scholar] [CrossRef]
- Manikanta, M.P.; Nikam, R.R.; Tigari, G.; Nagaraja, B.M. Novel nickel(ii) phthalocyanine/reduced graphene oxide: An electrochemical sensing platform for analysis of hydroquinone and chloramphenicol in environmental samples. Anal. Methods 2024, 16, 1770–1784. [Google Scholar] [CrossRef]
- Suriyaprakash, J.; Thangavelu, I.; Huang, Y.; Hu, Z.; Wang, H.; Zhan, Y.; Wu, L.; Shan, L. Precise surface molecular engineering of 2D-Bi2S3 enables the ultrasensitive simultaneous detection of dopamine, epinephrine, serotonin and uric acid. Surf. Interfaces 2024, 46, 104021. [Google Scholar] [CrossRef]
- Wang, R.; Liu, S.; Song, X.; Jiang, K.; Hou, Y.; Cheng, Q.; Miao, W.; Tian, L.; Ren, Y.; Xu, S. Polypyrrole/α-Fe2O3 Hybrids for Enhanced Electrochemical Sensing Performance towards Uric Acid. Coatings 2024, 14, 227. [Google Scholar] [CrossRef]
- Cosio, M.S.; Ballabio, D.; Benedetti, S.; Gigliotti, C. Evaluation of different storage conditions of extra virgin olive oils with an innovative recognition tool built by means of electronic nose and electronic tongue. Food Chem. 2007, 101, 485–491. [Google Scholar] [CrossRef]
- Majchrzak, T.; Wojnowski, W.; Dymerski, T.; Gębicki, J.; Namieśnik, J. Electronic noses in classification and quality control of edible oils: A review. Food Chem. 2018, 246, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, N.; Dias, L.G.; Veloso, A.C.A.; Pereira, J.A.; Peres, A.M. Monitoring olive oils quality and oxidative resistance during storage using an electronic tongue. LWT 2016, 73, 683–692. [Google Scholar] [CrossRef]
- Rodrigues, N.; Marx, Í.M.G.; Casal, S.; Dias, L.G.; Veloso, A.C.A.; Pereira, J.A.; Peres, A.M. Application of an electronic tongue as a single-run tool for olive oils’ physicochemical and sensory simultaneous assessment. Talanta 2019, 197, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Fagiolari, L.; Sampò, M.; Lamberti, A.; Amici, J.; Francia, C.; Bodoardo, S.; Bella, F. Integrated energy conversion and storage devices: Interfacing solar cells, batteries and supercapacitors. Energy Storage Mater. 2022, 51, 400–434. [Google Scholar] [CrossRef]
- Pollok, D.; Waldvogel, S.R. Electro-organic synthesis—A 21st century technique. Chem. Sci. 2020, 11, 12386–12400. [Google Scholar] [CrossRef]
- McCreery, R.L. The merger of electrochemistry and molecular electronics. Chem. Rec. 2012, 12, 149–163. [Google Scholar] [CrossRef]
- Kraft, A. Electrochromism: A fascinating branch of electrochemistry. ChemTexts 2018, 5, 1. [Google Scholar] [CrossRef]
- Bi, P.; Li, H.; Zhao, G.; Ran, M.; Cao, L.; Guo, H.; Xue, Y. Robust Super-Hydrophobic Coating Prepared by Electrochemical Surface Engineering for Corrosion Protection. Coatings 2019, 9, 452. [Google Scholar] [CrossRef]
- Díaz-Cruz, J.M.; Serrano, N.; Pérez-Ràfols, C.; Ariño, C.; Esteban, M. Electroanalysis from the past to the twenty-first century: Challenges and perspectives. J. Solid State Electrochem. 2020, 24, 2653–2661. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Cai, D.; Shao, Y.; Tian, J.; Wang, L.; Dong, Y. Detection of di(2-ethylhexyl) phthalate in edible vegetable oils using a sensitive aptasensor based on carbon nanomaterials and copper metal-organic framework. J. Food Compos. Anal. 2023, 123, 105510. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Cao, X.; Wu, X.-J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G.-H.; et al. Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chem. Rev. 2017, 117, 6225–6331. [Google Scholar] [CrossRef]
- Mamba, G.; Mishra, A.K. Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B Environ. 2016, 198, 347–377. [Google Scholar] [CrossRef]
- Hu, T.; Mei, X.; Wang, Y.; Weng, X.; Liang, R.; Wei, M. Two-dimensional nanomaterials: Fascinating materials in biomedical field. Sci. Bull. 2019, 64, 1707–1727. [Google Scholar] [CrossRef] [PubMed]
- Moraes, L.P.R.; Mei, J.; Fonseca, F.C.; Sun, Z. 2—Two-dimensional metal oxide nanomaterials for sustainable energy applications. In 2D Nanomaterials for Energy Applications; Zafeiratos, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 39–72. [Google Scholar]
- Joshi, N.; Hayasaka, T.; Liu, Y.; Liu, H.; Oliveira, O.N.; Lin, L. A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim. Acta 2018, 185, 213. [Google Scholar] [CrossRef]
- Wang, M.; Wu, Z.; Dai, L. Graphitic carbon nitrides supported by nitrogen-doped graphene as efficient metal-free electrocatalysts for oxygen reduction. J. Electroanal. Chem. 2015, 753, 16–20. [Google Scholar] [CrossRef]
- Jiang, S.; Zhang, Z.; Yang, N.; Li, L.; Wei, Z. Probing the Interaction between Nitrogen Dopants and Edge Structures of Doped Graphene Catalysts for the Highly Efficient Oxygen Reduction Reaction. J. Phys. Chem. C 2022, 126, 19113–19121. [Google Scholar] [CrossRef]
- Ong, W.-J.; Tan, L.-L.; Ng, Y.H.; Yong, S.-T.; Chai, S.-P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80. [Google Scholar] [CrossRef]
- Agnihotri, A.S.; Varghese, A.; Nidhin, M. Transition metal oxides in electrochemical and bio sensing: A state-of-art review. Appl. Surf. Sci. Adv. 2021, 4, 100072. [Google Scholar] [CrossRef]
- Li, J.; Fang, J.; Ye, P.; Wu, D.; Wang, M.; Li, X.; Xu, A. Peroxymonosulfate activation by iron oxide modified g-C3N4 under visible light for pollutants degradation. J. Photochem. Photobiol. A Chem. 2017, 342, 85–93. [Google Scholar] [CrossRef]
- Pimpilova, M.; Ivanova-Kolcheva, V.; Stoyanova, M.; Dimcheva, N. 2D Nanomaterial—Based Electrocatalyst for Water Soluble Hydroperoxide Reduction. Catalysts 2022, 12, 807. [Google Scholar] [CrossRef]
- Ivanova-Kolcheva, V.V.; Stoyanova, M.K. Catalytic activation of PMS by Co3O4 modified g-C3N4 for oxidative degradation of the azo dye Acid Orange 7 in aqueous solutions. Bulg. Chem. Commun. 2019, 51, 158–164. [Google Scholar]
- Yu, Y.; Pan, M.; Peng, J.; Hu, D.; Hao, Y.; Qian, Z. A review on recent advances in hydrogen peroxide electrochemical sensors for applications in cell detection. Chin. Chem. Lett. 2022, 33, 4133–4145. [Google Scholar] [CrossRef]
- Vasudevan, D. Cyclic voltammetric studies on the electroreduction of peroxides in aprotic media. Bull. Electrochem. 2000, 16, 277–279. [Google Scholar]
- Ziyatdinova, G.; Guss, E.; Yakupova, E. Electrochemical Sensors Based on the Electropolymerized Natural Phenolic Antioxidants and Their Analytical Application. Sensors 2021, 21, 8385. [Google Scholar] [CrossRef]
Expected PV, meq O2/kg (Standard Solution) | Measured PV, meq O2/kg, by Titrimetric Method | Deviation of the Titrimetric Value from the Expected, in % | Measured PV, meq O2/kg, by Electrochemical Method | Deviation of the Electrochemically Measured PV from the Expected, in % |
---|---|---|---|---|
67 | 97.0 | +44.78 | 84.2 | +25.67 |
134 | 165.3 | +23.36 | 153.3 | +14.40 |
268 | 195.0 | −27.24 | 292.1 | +8.99 |
403 | 297.4 | −26.20 | 457.5 | +13.52 |
537 | 417.3 | −22.29 | 565.8 | +5.36 |
Standard Solution | Volume (BPO/CHCl3), mL, with the Given Concentration | Mass of the Weighed Oil, g |
---|---|---|
St1 | 0.5 mL 1 mM BPO/CHCl3 | 0.4000 ± 0.0075 |
St2 | 0.5 mL 2 mM BPO/CHCl3 | 0.4000 ± 0.0075 |
St3 | 0.5 mL 3 mM BPO/CHCl3 | 0.4000 ± 0.0075 |
St4 | 0.5 mL 6 mM BPO/CHCl3 | 0.4000 ± 0.0075 |
St5 | 0.5 mL 10 mM BPO/CHCl3 | 0.4000 ± 0.0075 |
Standard Solution | Volume (BPO/Chcl3) with Certain Concentration, Ml | DF * | Mass of the Weighed Oil, g |
---|---|---|---|
St0 | 0.5 mL chloroform | 1 | 0.4000 ± 0.0075 |
St1 | 0.5 mL 50mM BPO/CHCl3 | 4 | 0.4000 ± 0.0075 |
St2 | 0.5 mL 100 mM BPO/CHCl3 | 10 | 0.4000 ± 0.0075 |
St3 | 0.5 mL 200 mM BPO/CHCl3 | 20 | 0.4000 ± 0.0075 |
St4 | 0.5 mL 300 mM BPO/CHCl3 | 30 | 0.4000 ± 0.0075 |
St5 | 0.5 mL 400 mM BPO/CHCl3 | 50 | 0.4000 ± 0.0075 |
Standard Solution | Volume of a Highly Rancid Anti-Cellulite Oil—Rivana, mL | Volume of a Standard 10 mM BPO/CHCl3 Solution, mL |
---|---|---|
St0 | 0.1 | 0.000 |
St1 | 1.0 | 0.150 |
St2 | 1.0 | 0.200 |
St3 | 1.0 | 0.250 |
St4 | 1.0 | 0.300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanova, V.; Pimpilova, M.; Stoyanova, M.; Dimcheva, N. Electrochemical Method for the Assay of Organic Peroxides Directly in Acetonitrile. Molecules 2025, 30, 374. https://doi.org/10.3390/molecules30020374
Ivanova V, Pimpilova M, Stoyanova M, Dimcheva N. Electrochemical Method for the Assay of Organic Peroxides Directly in Acetonitrile. Molecules. 2025; 30(2):374. https://doi.org/10.3390/molecules30020374
Chicago/Turabian StyleIvanova, Vanina, Mariya Pimpilova, Maria Stoyanova, and Nina Dimcheva. 2025. "Electrochemical Method for the Assay of Organic Peroxides Directly in Acetonitrile" Molecules 30, no. 2: 374. https://doi.org/10.3390/molecules30020374
APA StyleIvanova, V., Pimpilova, M., Stoyanova, M., & Dimcheva, N. (2025). Electrochemical Method for the Assay of Organic Peroxides Directly in Acetonitrile. Molecules, 30(2), 374. https://doi.org/10.3390/molecules30020374