Abstract
Magnesium oxide (MgO) nanoparticles were fabricated at the ambient temperature by a chemical precipitation method. The as-synthesized nanoparticles were analyzed by using X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM) equipped with energy dispersive X-ray spectrometer (EDS), particle size analyzer (PSA), Fourier transform infrared spectroscopy (FTIR), and UV–Vis absorption spectroscopy. The strain and crystallite size of the prepared nanopowders were studied by means of X-ray profile calculations. The size–strain plot (SSP) and Williamson–Hall (W–H) techniques were applied to investigate the effect of crystallite size and obtained strain in the lattice based on the peak broadening of MgO nanopowders. Various models such as size–strain plot (SSP), uniform deformation stress model (UDSM), uniform deformation model (UDM), and uniform deformation energy density model (UDEDM) method were applied to estimate certain physical parameters including strain, energy density, and stress values. Besides, the measured crystallite size by the above-mentioned models, FESEM, and TEM images and Scherrer's equation were compared to each other. The optical band gap energy of the nanoparticles estimated from the UV–Vis absorption spectrum was found to be equal to 4.6 and 4.9 eV.
Similar content being viewed by others
References
M. S. Chavali and M. P. Nikolova (2019). SN Appl. Sci. 1, 607.
Y. Cai, C. Li, D. Wu, W. Wang, F. Tan, X. Wang, P. K. Wong, and X. Qiao (2017). Chem. Eng. J. 312, 158.
R. Mbarki, I. Madhi, and A. M’nif, and A. H. Hamzaoui, (2015). Mater. Sci. Semicond. Process. 39, 119.
N. A. Aal, A. A. Al-Ghamdi, F. El-Tantawy, F. Yakuphanoglu, and W. A. Farooq (2014). J. Sol–Gel Sci. Technol. 70, 14.
S. Demirci, B. Ozttirk, S. Yildirim, F. Bakal, M. Erol, O. Sancakojlu, R. Yigit, E. Celik, and T. Batar (2015). Mater. Sci. Semicond. Process. 34, 154.
M. R. Bindliu, M. Umadevi, M. Ravin Micheal, M. V. Arasu, and N. Abdullah Al-Dhabi (2016). Mater Lett. 166, 19.
A. Bagheri Gh, M. Sabbaghan, and Z. Mirgani (2015). Spectrochim. Acta A 137, 1286.
A. Das, A. C. Mandal, S. Roy, P. Prashanth, S. I. Aliamed, S. Kar, M. S. Prasad, and P. M. G. Nambissan (2016). Physica E 83, 389.
M. S. Hamdy, N. S. Awwad, and A. M. Alsliahrani (2016). Mater. Des. 110, 503.
V. Stengl, S. Bakardjieva, M. Marikova, P. Bezdicka, and J. Subrt (2003). Mater. Lett. 57, 3989.
W. Peng, J. Li, B. Chen, N. Wang, G. Luo, and F. Wei (2016). Catal. Commun. 74, 39.
N. K. Nga, P. T. T. Hong, T. D. Lam, and T. Q. Huy (2013). J. Colloid Interface Sci. 398, 210.
N. M. A. Hadia and H. A. H. Mohamed (2015). Mater. Sci. Semicond. Process. 29, 238.
S. Balamuragan, L. Aslma, and P. Paithiban (2014). J. Nanotechnol. 2014, 1.
N. C. S. Selvam, R. T. Kumar, L. J. Kennedy, and J. J. Vijaya (2011). J. Alloys Compd. 509, 9809.
A. Ganguly, P. Trinh, K. V. Ramanujachary, T. Ahmad, A. Mugweru, and A. K. Ganguli (2011). J. Colloid Interface Sci. 353, 137.
K. Zak, W. H. Abd Majid, M. E. Abrishami, and R. Yousefi (2011). Solid State Sci. 13, 251.
R. Sivakami, S. Dhanuskodi, and R. Karvembu (2016). Spectrochim. Acta A 152, 43.
R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, and A. C. Bose (2009). Solid State Commun. 149, 1919.
R. Rai, T. Triloki, and B. K. Singh (2016). Appl. Phys. A 122, 1.
K. A. Aly, N. M. Khalil, Y. Algamal, and Q. M. A. Saleem (2016). J. Alloys Compd. 676, 606.
A. Kalita and M. P. C. Kalita (2017). Physica E 92, 36.
K. A. Aly, N. M. Khalil, Y. Algamal, and Q. M. A. Saleem (2017). Mater. Chem. Phys. 193, 182.
N. Rani, S. Chahal, A. S. Chauhan, P. Kumar, R. Shukla, and S. K. Singh (2019). Mater. Today Proc. 12, 543.
S. Yousefi, B. Ghasemi, M. Tajally, and A. Asghari (2017). J. Alloys Compd. 711, 521.
S. Yousefi, B. Ghasemi, M. Tajalli, and A. Asghari (2018). J. Adv. Mater. Eng. 36, 59.
S. Yousefi and B. Ghasemi (2019). Micro–Nano Lett. 9, 1019.
S. Yousefi, B. Ghasemi, and M. P. Nikolova (2021). Appl. Phys. A 127, 549.
S. Yousefi and B. Ghasemi (2021). Res. Chem. Intermed. 47, 2029.
S. Yousefi, B. Ghasemi, and M. Tajally (2020). Appl. Phys. A 126, 1.
D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, 3rd ed. (Prentice Hall, Hoboken, 2014), pp. 615–617.
N. Rani, S. Chahal, P. Kumar, R. Shukla, and S. K. Singh (2020). J. Supercond. Nov. Magn. 33, 1473.
N. Rani, S. Chahal, P. Kumar, A. Kumar, R. Shukla, and S. K. Singh (2020). Vacuum 179, 109539.
P. Bindu and S. Thomas (2014). J. Theor. Appl. Phys. 8, 123.
B. Rajesh Kumar and B. Hymavathi (2017). J. Asian Ceram. Soc. 5, 94.
K. Venkateswarlu, A. Chandra Bose, and N. Rameshbabu (2010). Physica B 405, 4256.
W. Martienssen and H. Warlimont, Springer Handbook of Condensed Matter and Materials Data. (Springer, Berlin, 2005), pp. 829–830.
S. G. Pandya, J. P. Corbett, W. M. Jadwisienczak, and M. E. Kordesch (2016). Physica E 79, 98.
G. S. Thool, A. K. Singh, R. S. Singh, A. Gupta, and M. A. B. H. Susan (2014). J. Saudi Chem. Soc. 18, 712.
V. Biju, N. Sugathan, V. Vrinda, and S. L. Salini (2008). J. Mater. Sci. 43, 1175.
K. Magesliwaii, S. S. Mali, R. Satliyamooilhy, and P. S. Patil (2013). Powder Technol. 249, 456.
S. Yousefi and B. Ghasemi (2020). SN Appl. Sci. 2, 852.
M. A. Dar and D. Varslmey (2018). RSC Adv. 8, 14120.
R. Al-Gaashani, S. Radiman, A. R. Daud, N. Tabet, and Y. Al-Douri (2013). Ceram. Int. 39, 2283.
R. Al-Gaashani, S. Radiman, Y. Al-Douri, N. Tabet, and A. R. Daud (2012). J. Alloys Compd. 521, 71.
M. M. Obeid, S. J. Edrees, and M. M. Shukur (2018). Superlattices Microstruct. 122, 124.
T. Selvamani, T. Yagyu, S. Kawasaki, and I. Mukliopadhyay (2010). Catal. Commun. 11, 537.
M. P. Dharshini, G. Jayam Sr, V. Shally, and D. Manoharan (2012). Appl. Res. Dev. Inst. J. 6, 150.
M. C. C. Wobbe, A. Kerridge, and M. A. Zwijnenburg (2014). Phys. Chem. Chem. Phys. 16, 22052.
L. Kumaii, W. Z. Li, C. H. Vannoy, R. M. Leblanc, and D. Z. Wang (2009). Ceram. Int. 35, 3355.
Y. Zhao and G. Zhu (2007). Mater. Sci. Eng. R 142, 93.
Acknowledgements
The lovely help of Mrs. M. Alipour and Mr. Abbas Alipour (Khosur-Barreh) are gratefully acknowledged. This is dedicated to our little scientist “Parnia Yousefi”.
Funding
There are no sources of financial funding and support.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Research Involving Human Participants and Animals
The research did not involve human participants and/or animals.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yousefi, S., Ghasemi, B. & Nikolova, M.P. Morpho/Opto-structural Characterizations and XRD-Assisted Estimation of Crystallite Size and Strain in MgO Nanoparticles by Applying Williamson–Hall and Size–Strain Techniques. J Clust Sci 33, 2197–2207 (2022). https://doi.org/10.1007/s10876-021-02144-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10876-021-02144-y