Cyclodextrins: Advances in Chemistry, Toxicology, and Multifaceted Applications
<p>The general structure of CD (the figure represents the structure of the first three CDs: α-CD, β-CD, and γ-CD) [<a href="#B3-molecules-29-05319" class="html-bibr">3</a>].</p> "> Figure 2
<p>Schematic representation of the inclusion mechanism of a drug into the cyclodextrin cavity (adapted from [<a href="#B5-molecules-29-05319" class="html-bibr">5</a>]).</p> ">
Abstract
:1. Introduction
- (i)
- Methylation involves the substitution of hydroxyl groups on the cyclodextrin molecule with methyl groups, resulting in derivatives such as methyl-β-cyclodextrin (M-β-CD). This modification enhances the hydrophobic character of cyclodextrin, thereby improving its solubility in organic solvents and increasing its ability to solubilize hydrophobic guest molecules. Dimethyl-beta-cyclodextrin (DIMEB) is characterized by the substitution of two hydroxyl groups on each glucose unit with methyl groups. DIMEB is known for its enhanced hydrophobicity and reduced toxicity compared to native β-cyclodextrin, making it suitable for applications in drug delivery and the encapsulation of hydrophobic drugs. DIMEB is particularly effective in forming inclusion complexes with poorly soluble compounds, enhancing their solubility and bioavailability. Randomly methylated beta-cyclodextrin (RAMEB) is produced through the random methylation of β-cyclodextrin, resulting in a mixture of substitution patterns. This randomness provides a balance of hydrophilicity and hydrophobicity, making RAMEB highly versatile in various applications, including pharmaceutical formulations and food industry applications. The variability in substitution can lead to unique interaction profiles with guest molecules, allowing for tailored complexation properties.
- (ii)
- Hydroxypropylation involves the introduction of hydroxypropyl groups to the cyclodextrin structure. Hydroxypropyl-β-cyclodextrin (HP-β-CD) is a notable example, offering improved water solubility and biocompatibility compared to its native counterparts. This modification not only increases the solubility of HP-β-CD but also enhances its ability to form inclusion complexes with various pharmaceuticals, thus facilitating controlled release and targeted drug delivery applications.
- (iii)
- Acylation modifies cyclodextrins by introducing acyl groups, which can alter the solubility and lipophilicity of the derivatives. Acylated cyclodextrins can be tailored for specific applications in drug delivery systems, providing better drug stabilization and release profiles.
- (iv)
- Sulfation and phosphorylation introduce charged groups onto the cyclodextrin backbone, increasing hydrophilicity and enhancing interaction with biological systems. Functionalization techniques allow for the attachment of various functional groups (e.g., amino, carboxylic, or thiol groups) to cyclodextrins. This customization can fit the interaction properties of CDs, enhancing their performance in applications, such as chiral separation, drug delivery, and targeted therapies.
2. Cyclodextrin Complexation Chemistry
2.1. Structural Modifications and Derivative Synthesis
2.2. Mechanisms of Inclusion Complex Formation
2.3. Cyclodextrin-Based Nano-Sponges
3. Applications of Cyclodextrin Inclusion Complexes
3.1. Cyclodextrin in Pharmacology and Pharmacokinetics
3.1.1. Enhancing Drug Solubility and Bioavailability
3.1.2. Modulating Drug Pharmacokinetics
3.2. Challenges and Considerations in Cyclodextrin–Drug Formulations
4. Industrial Applications of Cyclodextrin Inclusion Complexes in Advanced Drug Delivery Systems
4.1. Cyclodextrins in Nanomaterials and Nanostructured Coatings
4.2. Cyclodextrins in Environmental Remediation
5. Toxicity and Safety Considerations
5.1. Toxicological Profile of Cyclodextrins
5.2. Toxicity of Cyclodextrin Inclusion Complexes
6. Future Prospects
6.1. Advances in Cyclodextrin Chemistry and Derivative Design
6.2. Cyclodextrins in Drug Delivery and Therapeutics
6.3. Environmental and Industrial Applications
6.4. Safety and Toxicology Research
6.5. Cyclodextrins in Emerging Technologies
7. Conclusions
Funding
Conflicts of Interest
References
- Freudenberg, K.; Meyer-Delius, M. Uber die Schardinger-dextrine aus starke. Ber. Chem. 1938, 71, 1596–1600. [Google Scholar] [CrossRef]
- Freudenberg, K.; Schaaf, E.; Dumpert, G.; Ploetz, T. Neue ansichten über die stärke. Naturwissenschaften 1939, 27, 850–853. [Google Scholar] [CrossRef]
- Morán-Serradilla, C.; Plano, D.; Sharma, A.K.; Sanmartín, C. Following the Trace of Cyclodextrins on the Selenium and Tellurium Odyssey. Int. J. Mol. Sci. 2024, 25, 7799. [Google Scholar] [CrossRef] [PubMed]
- Sonnendecker, C.; Thürmann, S.; Przybylski, C.; Zitzmann, F.D.; Heinke, N.; Krauke, Y.; Monks, K.; Robitzki, A.A.; Belder, D.; Zimmermann, W. Large-Ring Cyclodextrins as Chiral Selectors for Enantiomeric Pharmaceuticals. Angew. Chem. Int. Ed. Engl. 2019, 58, 6411–6414. [Google Scholar] [CrossRef]
- Yousaf, R.; Abdul Razzaq, F.; Asghar, S.; Irfan, M.; Ullah Khan, I.; Haroon Khalid, S. Cyclodextrins: An Overview of Fundamentals, Types, and Applications; IntechOpen: Rijeka, Croatia, 2023. [Google Scholar] [CrossRef]
- Alvarez-Lorenzo, C.; Goyanes, A.; Concheiro, A. Cyclodextrins in 3D/4D printing for biomedical applications. Addit. Manuf. 2024, 84, 104120. [Google Scholar] [CrossRef]
- Novac, M.; Musuc, A.M.; Ozon, E.A.; Sarbu, I.; Mitu, M.A.; Rusu, A.; Petrescu, S.; Atkinson, I.; Gheorghe, D.; Lupuliasa, D. Design and Evaluation of Orally Dispersible Tablets Containing Amlodipine Inclusion Complexes in Hydroxypropyl-β-cyclodextrin and Methyl-β-cyclodextrin. Materials 2022, 15, 5217. [Google Scholar] [CrossRef]
- Steiner, D.; Meyer, A.; Immohr, L.I.; Pein-Hackelbusch, M. Critical View on the Qualification of Electronic Tongues Regarding Their Performance in the Development of Peroral Drug Formulations with Bitter Ingredients. Pharmaceutics 2024, 16, 658. [Google Scholar] [CrossRef]
- Villiers, A. Sur la fermentation de la fécule par l’action du fermentbutyrique. Compt. Rend. Acad. Sci. 1891, 112, 536–553. [Google Scholar]
- Schardinger, F. Über thermophile Bakterien aus verschiedenen Speisen und Milch: Sowie über einige Umsetzungsprodukte derselben in kohlenhydrathaltigen Nährlösungen, darunter krystallisierte Polysaccharide (Dextrine) aus Stärke. Z. Für Unters. Der Nahr.-und Genussm. Sowie Der Gebrauchsgegenstände 1903, 6, 865–880. [Google Scholar] [CrossRef]
- Schardinger, F. Bildung kristallisierter Polysaccharide (Dextrine) aus Stärkekleister durch Microben. Zentralbl. Bakteriol. Parasitenk. Abt. II 1911, 29, 188–197. [Google Scholar]
- Saha, P.; Rafe, M.R. Cyclodextrin: A prospective nanocarrier for the delivery of antibacterial agents against bacteria that are resistant to antibiotics. Heliyon 2023, 9, e19287. [Google Scholar] [CrossRef] [PubMed]
- Christaki, S.; Spanidi, E.; Panagiotidou, E.; Athanasopoulou, S.; Kyriakoudi, A.; Mourtzinos, I.; Gardikis, K. Cyclodextrins for the Delivery of Bioactive Compounds from Natural Sources: Medicinal, Food and Cosmetics Applications. Pharmaceuticals 2023, 16, 1274. [Google Scholar] [CrossRef] [PubMed]
- Belenguer-Sapiña, C.; Pellicer-Castell, E.; Mauri-Aucejo, A.R.; Simó-Alfonso, E.F.; Amorós, P. Cyclodextrins as a Key Piece in Nanostructured Materials: Quantitation and Remediation of Pollutants. Nanomaterials 2021, 11, 7. [Google Scholar] [CrossRef]
- Velázquez-Contreras, F.; Zamora-Ledezma, C.; López-González, I.; Meseguer-Olmo, L.; Núñez-Delicado, E.; Gabaldón, J.A. Cyclodextrins in Polymer-Based Active Food Packaging: A Fresh Look at Nontoxic, Biodegradable, and Sustainable Technology Trends. Polymers 2022, 14, 104. [Google Scholar] [CrossRef]
- Bao, K.; Zhang, A.; Cao, Y.; Xu, L. Achievements in Preparation of Cyclodextrin–Based Porous Materials for Removal of Pollutants. Separations 2024, 11, 143. [Google Scholar] [CrossRef]
- Poulson, B.G.; Alsulami, Q.A.; Sharfalddin, A.; El Agammy, E.F.; Mouffouk, F.; Emwas, A.-H.; Jaremko, L.; Jaremko, M. Cyclodextrins: Structural, Chemical, and Physical Properties, and Applications. Polysaccharides 2022, 3, 1–31. [Google Scholar] [CrossRef]
- Kali, G.; Haddadzadegan, S.; Bernkop-Schnürch, A. Cyclodextrins and derivatives in drug delivery: New developments, relevant clinical trials, and advanced products. Carbohydr. Polym. 2024, 324, 121500. [Google Scholar] [CrossRef]
- Haley, R.M.; Gottardi, R.; Langer, R.; Mitchell, M.J. Cyclodextrins in drug delivery: Applications in gene and combination therapy. Drug Deliv. Transl. Res. 2020, 10, 661–677. [Google Scholar] [CrossRef]
- Esmaeilpour, D.; Broscheit, J.A.; Shityakov, S. Cyclodextrin-Based Polymeric Materials Bound to Corona Protein for Theranostic Applications. Int. J. Mol. Sci. 2022, 23, 13505. [Google Scholar] [CrossRef]
- Ferreira, L.; Campos, J.; Veiga, F.; Cardoso, C.; Paiva-Santos, A.C. Cyclodextrin-based delivery systems in parenteral formulations: A critical update review. Eur. J. Pharm. Biopharm. 2022, 178, 35–52. [Google Scholar] [CrossRef]
- Li, Z.; Chen, S.; Gu, Z.; Chen, J.; Wu, J. Alpha-cyclodextrin: Enzymatic production and food applications. Trends Food Sci. Technol. 2014, 35, 151–160. [Google Scholar] [CrossRef]
- Ozon, E.A.; Novac, M.; Gheorghe, D.; Musuc, A.M.; Mitu, M.A.; Sarbu, I.; Anuta, V.; Rusu, A.; Petrescu, S.; Atkinson, I.; et al. Formation and Physico-Chemical Evaluation of Nifedipine-hydroxypropyl-β-cyclodextrin and Nifedipine-methyl-β-cyclodextrin: The Development of Orodispersible Tablets. Pharmaceuticals 2022, 15, 993. [Google Scholar] [CrossRef] [PubMed]
- Novac, M.; Musuc, A.M.; Ozon, E.A.; Sarbu, I.; Mitu, M.A.; Rusu, A.; Gheorghe, D.; Petrescu, S.; Atkinson, I.; Lupuliasa, D. Manufacturing and Assessing the New Orally Disintegrating Tablets, Containing Nimodipine-hydroxypropyl-β-cyclodextrin and Nimodipine-methyl-β-cyclodextrin Inclusion Complexes. Molecules 2022, 27, 2012. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xie, X.; Zhang, F.; Zhou, Q.; Tao, Q.; Zou, Y.; Chen, C.; Zhou, C.; Yu, S. Evaluation of cholesterol depletion as a marker of nephrotoxicity in vitro for novel β-cyclodextrin derivatives. Food Chem. Toxicol. 2011, 49, 1387–1393. [Google Scholar] [CrossRef]
- Cerri, L.; Migone, C.; Vizzoni, L.; Grassiri, B.; Fabiano, A.; Piras, A.M.; Zambito, Y. Cross-Linked Thiolated Hydroxypropil-β-Cyclodextrin for Pulmonary Drug Delivery. Int. J. Mol. Sci. 2024, 25, 9394. [Google Scholar] [CrossRef]
- Matencio, A.; Navarro-Orcajada, S.; García-Carmona, F.; López-Nicolás, J.M. Applications of cyclodextrins in food science. A review. Trends Food Sci. Technol. 2020, 104, 132–143. [Google Scholar] [CrossRef]
- Musuc, A.M.; Anuta, V.; Atkinson, I.; Sarbu, I.; Popa, V.T.; Munteanu, C.; Mircioiu, C.; Ozon, E.A.; Nitulescu, G.M.; Mitu, M.A. Formulation of Chewable Tablets Containing Carbamazepine-β-cyclodextrin Inclusion Complex and F-Melt Disintegration Excipient. The Mathematical Modeling of the Release Kinetics of Carbamazepine. Pharmaceutics 2021, 13, 915. [Google Scholar] [CrossRef]
- Musuc, A.M.; Anuta, V.; Atkinson, I.; Popa, V.T.; Sarbu, I.; Mircioiu, C.; Abdalrb, G.A.; Mitu, M.A.; Ozon, E.A. Development and Characterization of Orally Disintegrating Tablets Containing a Captopril-Cyclodextrin Complex. Pharmaceutics 2020, 12, 744. [Google Scholar] [CrossRef]
- Pany, A.; Wohlgenannt, M.; Klopprogge, S.; Wolzt, M.; Heuser, T.; Kotisch, H.; Valenta, C.; Klang, V. Effect of hydroxypropyl-β-cyclodextrin in fluid and semi-solid submicron emulsions on physiological skin parameters during regular in vivo application. Int. J. Cosmet. Sci. 2021, 43, 263–268. [Google Scholar] [CrossRef]
- Eid, E.E.M.; Alshehade, S.A.; Almaiman, A.A.; Kamran, S.; Lee, V.S.; Alshawsh, M.A. Enhancing the Anti-Leukemic Potential of Thymoquinone/Sulfobutylether-β-cyclodextrin (SBE-β-CD) Inclusion Complexes. Biomedicines 2023, 11, 1891. [Google Scholar] [CrossRef]
- Balaci, T.; Velescu, B.; Karampelas, O.; Musuc, A.M.; Nițulescu, G.M.; Ozon, E.A.; Nițulescu, G.; Gîrd, C.E.; Fița, C.; Lupuliasa, D. Physico-Chemical and Pharmaco-Technical Characterization of Inclusion Complexes Formed by Rutoside with β-Cyclodextrin and Hydroxypropyl-β-Cyclodextrin Used to Develop Solid Dosage Forms. Processes 2021, 9, 26. [Google Scholar] [CrossRef]
- Durk, M.R.; Jones, N.S.; Liu, J.; Nagapudi, K.; Mao, C.; Plise, E.G.; Wong, S.; Chen, J.Z.; Chen, Y.; Chinn, L.W.; et al. Understanding the Effect of Hydroxypropyl-β-Cyclodextrin on Fenebrutinib Absorption in an Itraconazole-Fenebrutinib Drug-Drug Interaction Study. Clin. Pharmacol. Ther. 2020, 108, 1224–1232. [Google Scholar] [CrossRef] [PubMed]
- Abdellatif, A.A.H.; Ahmed, F.; Mohammed, A.M.; Alsharidah, M.; Al-Subaiyel, A.; Samman, W.A.; Alhaddad, A.A.; Al-Mijalli, S.H.; Amin, M.A.; Barakat, H.; et al. Recent Advances in the Pharmaceutical and Biomedical Applications of Cyclodextrin-Capped Gold Nanoparticles. Int. J. Nanomed. 2023, 18, 3247–3281. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; She, P.; Ma, B.; Zhao, Z.; Li, G.; Wang, Y. ROS responsive nanoparticles loaded with lipid-specific AIEgen for atherosclerosis-targeted diagnosis and bifunctional therapy. Biomaterials 2022, 288, 121734. [Google Scholar] [CrossRef]
- Xing, C.; Zheng, X.; Deng, T.; Zeng, L.; Liu, X.; Chi, X. The Role of Cyclodextrin in the Construction of Nanoplatforms: From Structure, Function and Application Perspectives. Pharmaceutics 2023, 15, 1536. [Google Scholar] [CrossRef]
- Pocrnić, M.; Hoelm, M.; Ignaczak, A.; Čikoš, A.; Budimir, A.; Tomišić, V.; Galić, N. Inclusion complexes of loratadine with β-cyclodextrin and its derivatives in solution. Integrated spectroscopic, thermodynamic and computational studies. J. Mol. Liq. 2024, 410, 125515. [Google Scholar] [CrossRef]
- Ganjali Koli, M.; Fogolari, F. Exploring the role of cyclodextrins as a cholesterol scavenger: A molecular dynamics investigation of conformational changes and thermodynamics. Sci. Rep. 2023, 13, 21765. [Google Scholar] [CrossRef]
- Shahriari, M.; Kesharwani, P.; Johnston, T.P.; Sahebkar, A. Anticancer potential of curcumin-cyclodextrin complexes and their pharmacokinetic properties. Int. J. Pharm. 2023, 631, 122474. [Google Scholar] [CrossRef]
- Mazurek, A.H.; Szeleszczuk, Ł.; Bethanis, K.; Christoforides, E.; Dudek, M.K.; Zielińska-Pisklak, M.; Pisklak, D.M. 17-β-Estradiol—β-Cyclodextrin Complex as Solid: Synthesis, Structural and Physicochemical Characterization. Molecules 2023, 28, 3747. [Google Scholar] [CrossRef]
- Ogawa, N.; Takahashi, C.; Yamamoto, H. Physicochemical characterization of cyclodextrin–drug interactions in the solid state and the effect of water on these interactions. J. Pharm. Sci. 2015, 104, 942–954. [Google Scholar] [CrossRef]
- Utzeri, G.; Matias, P.M.; Murtinho, D.; Valente, A.J. Cyclodextrin-Based Nanosponges: Overview and Opportunities. Front. Chem. 2022, 10, 859406. [Google Scholar] [CrossRef] [PubMed]
- Rubin Pedrazzo, A.; Trotta, F.; Hoti, G.; Cesano, F.; Zanetti, M. Sustainable Mechanochemical Synthesis of β-cyclodextrin Polymers by Twin Screw Extrusion. Environ. Sci. Pollut. Res. 2022, 29, 251–263. [Google Scholar] [CrossRef]
- Krabicová, I.; Appleton, S.L.; Tannous, M.; Hoti, G.; Caldera, F.; Rubin Pedrazzo, A.; Cecone, C.; Cavalli, R.; Trotta, F. History of Cyclodextrin Nanosponges. Polymers 2020, 12, 1122. [Google Scholar] [CrossRef] [PubMed]
- Salústio, P.J.; Pontes, P.; Conduto, C.; Sanches, I.; Carvalho, C.; Arrais, J.; Marques, H.M. Advanced technologies for oral controlled release: Cyclodextrins for oral controlled release. AAPS Pharmscitech 2011, 12, 1276–1292. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Miranda, G.M.; Santos, V.O.R.e.; Bessa, J.R.; Teles, Y.C.F.; Yahouédéhou, S.C.M.A.; Goncalves, M.S.; Ribeiro-Filho, J. Inclusion Complexes of Non-Steroidal Anti-Inflammatory Drugs with Cyclodextrins: A Systematic Review. Biomolecules 2021, 11, 361. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.; Mascarenhas-Melo, F.; Rabaça, S.; Mathur, A.; Sharma, A.; Giram, P.S.; Pawar, K.D.; Rahdar, A.; Raza, F.; Veiga, F.; et al. Cyclodextrin-based dermatological formulations: Dermopharmaceutical and cosmetic applications. Colloids Surf. B Biointerfaces 2023, 221, 113012. [Google Scholar] [CrossRef]
- Ozon, E.A.; Mati, E.; Karampelas, O.; Anuta, V.; Sarbu, I.; Musuc, A.M.; Mitran, R.A.; Culita, D.C.; Atkinson, I.; Anastasescu, M.; et al. The development of an innovative method to improve the dissolution performance of rivaroxaban. Heliyon 2024, 10, E33162. [Google Scholar] [CrossRef]
- Chankvetadze, B.; Scriba, G.K. Cyclodextrins as chiral selectors in capillary electrophoresis: Recent trends in mechanistic studies. TrAC Trends Anal. Chem. 2023, 160, 116987. [Google Scholar] [CrossRef]
- Szabó, Z.-I.; Benkő, B.-M.; Bartalis-Fábián, Á.; Iványi, R.; Varga, E.; Szőcs, L.; Tóth, G. Chiral Separation of Apremilast by Capillary Electrophoresis Using Succinyl-β-Cyclodextrin—Reversal of Enantiomer Elution Order by Cationic Capillary Coating. Molecules 2023, 28, 3310. [Google Scholar] [CrossRef]
- Wu, K.; Zhang, T.; Chai, X.; Duan, X.; He, D.; Yu, H.; Liu, X.; Tao, Z. Encapsulation Efficiency and Functional Stability of Cinnamon Essential Oil in Modified β-cyclodextrins: In Vitro and In Silico Evidence. Foods 2022, 12, 45. [Google Scholar] [CrossRef]
- Zhou, J.; Jia, J.; He, J.; Li, J.; Cai, J. Cyclodextrin Inclusion Complexes and Their Application in Food Safety Analysis: Recent Developments and Future Prospects. Foods 2022, 11, 3871. [Google Scholar] [CrossRef] [PubMed]
- Marijan, M.; Tomić, D.; Strawa, J.W.; Jakupović, L.; Inić, S.; Jug, M.; Tomczyk, M.; Zovko Končić, M. Optimization of Cyclodextrin-Assisted Extraction of Phenolics from Helichrysum italicum for Preparation of Extracts with Anti-Elastase and Anti-Collagenase Properties. Metabolites 2023, 13, 257. [Google Scholar] [CrossRef] [PubMed]
- Spanidi, E.; Karapetsas, A.; Voulgaridou, G.P.; Letsiou, S.; Aligiannis, N.; Tsochantaridis, I.; Kynigopoulos, S.; Lambropoulou, M.; Mourtzinos, I.; Pappa, A.; et al. A new controlled release system for propolis polyphenols and its biochemical activity for skin applications. Plants 2021, 10, 420. [Google Scholar] [CrossRef]
- Syed, S.E.Z.; Nowacka, D.; Khan, M.S.; Skwierawska, A.M. Recent Advancements in Cyclodextrin-Based Adsorbents for the Removal of Hazardous Pollutants from Waters. Polymers 2022, 14, 2341. [Google Scholar] [CrossRef]
- Liu, C.; Crini, G.; Wilson, L.D.; Balasubramanian, P.; Li, F. Removal of contaminants present in water and wastewater by cyclodextrin-based adsorbents: A bibliometric review from 1993 to 2022. Environ. Pollut. 2024, 348, 123815. [Google Scholar] [CrossRef]
- Li, D.; Yadav, A.; Zhou, H.; Roy, K.; Thanasekaran, P.; Lee, C. Advances and Applications of Metal-Organic Frameworks (MOFs) in Emerging Technologies: A Comprehensive Review. Glob. Chall. 2024, 8, 2300244. [Google Scholar] [CrossRef]
- Healy, B.; Yu, T.; da Silva Alves, D.C.; Okeke, C.; Breslin, C.B. Cyclodextrins as Supramolecular Recognition Systems: Applications in the Fabrication of Electrochemical Sensors. Materials 2021, 14, 668. [Google Scholar] [CrossRef] [PubMed]
- Aiassa, V.; Garnero, C.; Zoppi, A.; Longhi, M.R. Cyclodextrins and Their Derivatives as Drug Stability Modifiers. Pharmaceuticals 2023, 16, 1074. [Google Scholar] [CrossRef]
- Ding, Y.; Cui, W.; Zhang, Z.; Ma, Y.; Ding, C.; Lin, Y.; Xu, Z. Solubility and Pharmacokinetic Profile Improvement of Griseofulvin through Supercritical Carbon Dioxide-Assisted Complexation with HP-γ-Cyclodextrin. Molecules 2023, 28, 7360. [Google Scholar] [CrossRef]
- Azman, M.; Sabri, A.H.; Anjani, Q.K.; Mustaffa, M.F.; Hamid, K.A. Intestinal Absorption Study: Challenges and Absorption Enhancement Strategies in Improving Oral Drug Delivery. Pharmaceuticals 2022, 15, 975. [Google Scholar] [CrossRef]
- Sarafska, T.; Ivanova, S.; Dudev, T.; Tzachev, C.; Petrov, V.; Spassov, T. Enhanced Solubility of Ibuprofen by Complexation with β-Cyclodextrin and Citric Acid. Molecules 2024, 29, 1650. [Google Scholar] [CrossRef] [PubMed]
- Haimhoffer, Á.; Rusznyák, Á.; Réti-Nagy, K.; Vasvári, G.; Váradi, J.; Vecsernyés, M.; Bácskay, I.; Fehér, P.; Ujhelyi, Z.; Fenyvesi, F. Cyclodextrins in Drug Delivery Systems and Their Effects on Biological Barriers. Sci. Pharm. 2019, 87, 33. [Google Scholar] [CrossRef]
- Dilova, V.; Zlatarova, V.; Spirova, N.; Filcheva, K.; Pavlova, A.; Grigorova, P. Study of Insolubility Problems of Dexamethasone and Digoxin: Cyclodextrin Complexation. Boll. Chim. Farm. 2004, 143, 20–23. [Google Scholar] [PubMed]
- Platon, V.-M.; Dragoi, B.; Marin, L. Erythromycin Formulations—A Journey to Advanced Drug Delivery. Pharmaceutics 2022, 14, 2180. [Google Scholar] [CrossRef] [PubMed]
- Doan, A.T.N.; Kojima, N.; Sakurai, K. Reduced nephrotoxicity of epichlorohydrin-crosslinked β-cyclodextrin nanoparticles (βCDNPs) and its enhanced binding with hydrophobic compounds. J. Bioact. Compat. Polym. 2024, 39, 522–535. [Google Scholar] [CrossRef]
- Mayukh, G.; Chowdhury, A. Nanomedicinal Approaches to Treat Fungal Livestock Diseases. In Nanotechnology Theranostics in Livestock Diseases and Management; Springer Nature: Singapore, 2024; pp. 515–546. [Google Scholar]
- Vasincu, I.M.; Apotrosoaei, M.; Lupascu, F.; Iacob, A.-T.; Giusca, S.-E.; Caruntu, I.-D.; Marangoci, N.-L.; Petrovici, A.R.; Stanciu, G.D.; Tamba, B.-I.; et al. Complexes of Ibuprofen Thiazolidin-4-One Derivatives with β-Cyclodextrin: Characterization and In Vivo Release Profile and Biological Evaluation. Pharmaceutics 2023, 15, 2492. [Google Scholar] [CrossRef]
- He, Z.G.; Li, Y.S.; Zhang, T.H.; Tang, X.; Zhao, C.; Zhang, R.H. Effects of 2-hydroxypropyl-β-cyclodextrin on pharmacokinetics of digoxin in rabbits and humans. Die Pharm.-Int. J. Pharm. Sci. 2004, 59, 200–202. [Google Scholar]
- Khatoon, H.; Faudzi, S.M.M. Exploring quinoxaline derivatives: An overview of a new approach to combat antimicrobial resistance. Eur. J. Med. Chem. 2024, 276, 116675. [Google Scholar] [CrossRef]
- Arya, P.; Sharma, M.R.; Bendi, A.; Raghav, N. Enhanced curcumin solubility in epichlorohydrin engineered β-Cyclodextrin copolymer for gastric maladies. J. Mol. Liq. 2024, 409, 125434. [Google Scholar] [CrossRef]
- Bhargav, A. Beta-Cyclodextrin As An Excipient In Drug Formulation. Asian J. Pharm. Res. Dev. 2021, 9, 122–127. [Google Scholar]
- Baek, J.S.; Cho, C.W. 2-Hydroxypropyl-β-cyclodextrin-modified SLN of paclitaxel for overcoming p-glycoprotein function in multidrug-resistant breast cancer cells. J. Pharm. Pharmacol. 2013, 65, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Asghar, N.; Hussain, A.; Nguyen, D.A.; Ali, S.; Hussain, I.; Junejo, A.; Ali, A. Advancement in nanomaterials for environmental pollutants remediation: A systematic review on bibliometrics analysis, material types, synthesis pathways, and related mechanisms. J. Nanobiotechnol. 2024, 22, 26. [Google Scholar] [CrossRef] [PubMed]
- Yazdanpanah, M.; Nojavan, S. Micro-solid phase extraction of some polycyclic aromatic hydrocarbons from environmental water samples using magnetic β-cyclodextrin-carbon nano-tube composite as a sorbent. J. Chromatogr. A 2019, 1585, 34–45. [Google Scholar] [CrossRef]
- Şuta, L.-M.; Ridichie, A.; Ledeţi, A.; Temereancă, C.; Ledeţi, I.; Muntean, D.; Rădulescu, M.; Văruţ, R.-M.; Watz, C.; Crăineanu, F.; et al. Host–Guest Complexation of Itraconazole with Cyclodextrins for Bioavailability Enhancement. Pharmaceutics 2024, 16, 560. [Google Scholar] [CrossRef] [PubMed]
- Yuliani, S.; Torley, P.J.; D’Arcy, B.; Nicholson, T.; Bhandari, B. Extrusion of mixtures of starch and d-limonene encapsulated with β-cyclodextrin: Flavour retention and physical properties. Food Res. Int. 2006, 39, 318–331. [Google Scholar] [CrossRef]
- Xing, C.; Xu, X.; Song, L.; Wang, X.; Li, B.; Guo, K. β-Cyclodextrin-Based Poly (Vinyl Alcohol) Fibers for Sustained Release of Fragrances. Polymers 2022, 14, 2002. [Google Scholar] [CrossRef]
- Utzeri, G.; Verissimo, L.; Murtinho, D.; Pais, A.A.C.C.; Perrin, F.X.; Ziarelli, F.; Iordache, T.-V.; Sarbu, A.; Valente, A.J.M. Poly(β-cyclodextrin)-Activated Carbon Gel Composites for Removal of Pesticides from Water. Molecules 2021, 26, 1426. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Jiang, J.-Y.; Liu, Y.-Y.; Fu, Y.; Zhao, L.-X.; Li, C.-Y.; Ye, F. Enhanced Solubility, Stability, and Herbicidal Activity of the Herbicide Diuron by Complex Formation with β-Cyclodextrin. Polymers 2019, 11, 1396. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Lv, P.; Zhou, C.; Zhao, Y.; Liao, X.; Yang, B. Cyclodextrin-based delivery systems for cancer treatment. Mater. Sci. Eng. C 2019, 96, 872–886. [Google Scholar] [CrossRef]
- Liu, G.; Li, L.; Gao, Y.; Gao, M.; Huang, X.; Lv, J.; Xu, D. A beta-cyclodextrin-functionalized magnetic metal organic framework for efficient extraction and determination of prochloraz and triazole fungicides in vegetables samples. Ecotoxicol. Environ. Saf. 2019, 183, 109546. [Google Scholar] [CrossRef]
- Farouk, A.; Sharaf, S.; Refaie, R.; Abd El-Hady, M.M. Highly Durable Antibacterial Properties of Cellulosic Fabric via β-Cyclodextrin/Essential Oils Inclusion Complex. Polymers 2022, 14, 4899. [Google Scholar] [CrossRef] [PubMed]
- Karthic, A.; Roy, A.; Lakkakula, J.; Alghamdi, S.; Shakoori, A.; Babalghith, A.O.; Emran, T.B.; Sharma, R.; Lima, C.M.G.; Kim, B.; et al. Cyclodextrin nanoparticles for diagnosis and potential cancer therapy: A systematic review. Front. Cell Dev. Biol. 2022, 10, 984311. [Google Scholar] [CrossRef] [PubMed]
- Bui, C.V.; Rosenau, T.; Hettegger, H. Polysaccharide- and β-Cyclodextrin-Based Chiral Selectors for Enantiomer Resolution: Recent Developments and Applications. Molecules 2021, 26, 4322. [Google Scholar] [CrossRef] [PubMed]
- Chin, S.Y.; Chia, L.Y.; Karahan, M.; Kumar, P.V. Preparation Methods and Potential Biomedical Applications of β-Cyclodextrin Functionalized Heavy and Soft Metal Ion Nanoparticles. BioNanoScience 2024, 14, 3757–3783. [Google Scholar] [CrossRef]
- Cova, T.F.; Murtinho, D.; Aguado, R.; Pais, A.A.C.C.; Valente, A.J.M. Cyclodextrin Polymers and Cyclodextrin-Containing Polysaccharides for Water Remediation. Polysaccharides 2021, 2, 16–38. [Google Scholar] [CrossRef]
- Hao, Z.; Yi, Z.; Bowen, C.; Yaxing, L.; Sheng, Z. Preparing γ-Cyclodextrin-Immobilized Starch and the Study of its Removal Properties to Dyestuff from Wastewater. Pol. J. Environ. Stud. 2019, 28, 1701–1711. [Google Scholar] [CrossRef]
- Wang, Z.; Cui, F.; Pan, Y.; Hou, L.; Zhang, B.; Li, Y.; Zhu, L. Hierarchically micro-mesoporous β-cyclodextrin polymers used for ultrafast removal of micropollutants from water. Carbohydr. Polym. 2019, 213, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Kadam, V.; Truong, Y.B.; Schutz, J.; Kyratzis, I.L.; Padhye, R.; Wang, L. Gelatin/β–Cyclodextrin Bio–Nanofibers as respiratory filter media for filtration of aerosols and volatile organic compounds at low air resistance. J. Hazard. Mater. 2021, 403, 123841. [Google Scholar] [CrossRef]
- Dastjerdi, R.; Montazer, M. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids Surf. B Biointerfaces 2010, 79, 5–18. [Google Scholar] [CrossRef]
- Rao, M.R.; Sonawane, A.; Sapate, S.; Paul, G.; Rohom, S. Nanosponges: A multifunctional drug delivery system. Int. J. All Res. Educ. Sci. Methods (IJARESM) 2021, 9, 2455–6211. [Google Scholar]
- Mehta, V.N.; Chettiar, S.S.; Bhamore, J.R.; Kailasa, S.K.; Patel, R.M. Green synthetic approach for synthesis of fluorescent carbon dots for lisinopril drug delivery system and their confirmations in the cells. J. Fluoresc. 2017, 27, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Kumari, P.; Singh, P.; Singhal, A. Cyclodextrin-based nanostructured materials for sustainable water remediation applications. Environ. Sci. Pollut. Res. 2020, 27, 32432–32448. [Google Scholar] [CrossRef]
- Urooj, T.; Mishra, M.; Pandey, S. Unlocking environmental solutions: A review of cyclodextrins in pollutant removal. Discov. Environ. 2024, 2, 65. [Google Scholar] [CrossRef]
- Jia, J.; Wu, D.; Yu, J.; Gao, T.; Guo, L.; Li, F. Upgraded β-cyclodextrin-based broad-spectrum adsorbents with enhanced antibacterial property for high-efficient dyeing wastewater remediation. J. Hazard. Mater. 2024, 461, 132610. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Yuan, Y.; Meng, Q.; Zhang, G.; Deng, F.; Wang, L.; Tao, Y.; Jiang, Z.; Zhang, Y. Simultaneously enhanced removal and stepwise recovery of atrazine and Pb(II) from water using β–cyclodextrin functionalized cellulose: Characterization, adsorptive performance and mechanism exploration. J. Hazard. Mater. 2020, 400, 123142. [Google Scholar] [CrossRef]
- Das, K.P.; Singh, P.; Satapathy, B.K. Nanofibrous-substrate-based controlled herbicidal release systems: Atrazine/hydroxypropyl-β-cyclodextrin inclusion complex loaded PVA agro-augmenting electrospun mats. J. Environ. Chem. Eng. 2023, 11, 111586. [Google Scholar] [CrossRef]
- Hoffman, D.R.; Anderson, P.P.; Schubert, C.M.; Gault, M.B.; Blanford, W.J.; Sandrin, T.R. Carboxymethyl-β-cyclodextrin mitigates toxicity of cadmium, cobalt, and copper during naphthalene biodegradation. Bioresour. Technol. 2010, 101, 2672–2677. [Google Scholar] [CrossRef]
- Munro, I.C.; Newberne, P.M.; Young, V.R.; Bär, A. Safety assessment of gamma-cyclodextrin. Regul. Toxicol. Pharmacol. 2004, 39 (Suppl. S1), S3–S13. [Google Scholar] [CrossRef]
- Jambhekar, S.S.; Breen, P. Cyclodextrins in pharmaceutical formulations II: Solubilization, binding constant, and complexation efficiency. Drug Discov. Today 2016, 21, 363–368. [Google Scholar] [CrossRef]
- Gould, S.; Scott, R.C. 2-Hydroxypropyl-beta-cyclodextrin (HP-beta-CD): A toxicology review. Food Chem. Toxicol. 2005, 43, 1451–1459. [Google Scholar] [CrossRef]
- Kraszni, M.; Ágh, F.; Horváth, D.; Mirzahosseini, A.; Horváth, P. Effect of Substitution Degree and Homogeneity on Cyclodextrin-Ligand Complex Stability: Comparison of Fenbufen and Fenoprofen Using CD and NMR Spectroscopy. Int. J. Mol. Sci. 2023, 24, 7544. [Google Scholar] [CrossRef] [PubMed]
- Skuredina, A.A.; Tychinina, A.S.; Le-Deygen, I.M.; Golyshev, S.A.; Kopnova, T.Y.; Le, N.T.; Belogurova, N.G.; Kudryashova, E.V. Cyclodextrins and Their Polymers Affect the Lipid Membrane Permeability and Increase Levofloxacin’s Antibacterial Activity In Vitro. Polymers 2022, 14, 4476. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Pereira, A.; Carpena, M.; García Oliveira, P.; Mejuto, J.C.; Prieto, M.A.; Simal Gandara, J. Main Applications of Cyclodextrins in the Food Industry as the Compounds of Choice to Form Host–Guest Complexes. Int. J. Mol. Sci. 2021, 22, 1339. [Google Scholar] [CrossRef] [PubMed]
- Munnangi, S.R.; Youssef, A.A.A.; Narala, N.; Lakkala, P.; Narala, S.; Vemula, S.K.; Repka, M. Drug complexes: Perspective from Academic Research and Pharmaceutical Market. Pharm. Res. 2023, 40, 1519–1540. [Google Scholar] [CrossRef]
- Mu, K.; Jiang, K.; Wang, Y.; Zhao, Z.; Cang, S.; Bi, K.; Li, Q.; Liu, R. The Biological Fate of Pharmaceutical Excipient β-Cyclodextrin: Pharmacokinetics, Tissue Distribution, Excretion, and Metabolism of β-Cyclodextrin in Rats. Molecules 2022, 27, 1138. [Google Scholar] [CrossRef]
- Ghitman, J.; Voicu, S.I. Controlled drug delivery mediated by cyclodextrin-based supramolecular self-assembled carriers: From design to clinical performances. Carbohydr. Polym. Technol. Appl. 2023, 5, 100266. [Google Scholar] [CrossRef]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef]
- Mazurek, A.H.; Szeleszczuk, Ł. Current Status of Quantum Chemical Studies of Cyclodextrin Host–Guest Complexes. Molecules 2022, 27, 3874. [Google Scholar] [CrossRef]
- Jitapunkul, K.; Toochinda, P.; Lawtrakul, L. Molecular Dynamic Simulation Analysis on the Inclusion Complexation of Plumbagin with β-Cyclodextrin Derivatives in Aqueous Solution. Molecules 2021, 26, 6784. [Google Scholar] [CrossRef]
- Anderson, A.; Piñeiro, Á.; García-Fandiño, R.; O’Connor, M.S. Cyclodextrins: Establishing building blocks for AI-driven drug design by determining affinity constants in silico. Comput. Struct. Biotechnol. J. 2024, 6, 1117–1128. [Google Scholar] [CrossRef]
- Pang, A.S.-R.; Dinesh, T.; Pang, N.Y.-L.; Dinesh, V.; Pang, K.Y.-L.; Yong, C.L.; Lee, S.J.J.; Yip, G.W.; Bay, B.H.; Srinivasan, D.K. Nanoparticles as Drug Delivery Systems for the Targeted Treatment of Atherosclerosis. Molecules 2024, 29, 2873. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shen, X.; Jiang, W.; Xi, Y.; Li, S. Comprehensive review of emerging contaminants: Detection technologies, environmental impact, and management strategies. Ecotoxicol. Environ. Saf. 2024, 278, 116420. [Google Scholar] [CrossRef] [PubMed]
Property | Alpha | Beta | Gamma |
---|---|---|---|
Glucose subunits Synonyms Height | Hexa Cyclo-hexaamylose (alfadex) 7.9 | Hepta Cyclo-heptaamylose (betadex) 7.9 | Octa Cyclo-octaamylose (gammadex) 7.9 |
Cavity diameter | 4.5–5.3 | 6–6.5 | 7.5–8.3 |
External diameter | 14.6 | 15.4 | 17.5 |
Molecular weight | 972 | 1135 | 1297 |
Cyclodextrin Derivative | Solubility (mg/100 mL) | Toxicity (LD50 of NOEL Values) | Applications | References |
---|---|---|---|---|
α-Cyclodextrin (α-CD) | 14.5 | Low (1000 mg/kg; rat; IV route) | Food additives, pharmaceuticals | [27] |
β-Cyclodextrin (β-CD) | 1.8 | Moderate (nephrotoxicity) (788 mg/kg; rat; IV route) | Pharmaceuticals, environmental remediation | [28,29] |
γ-Cyclodextrin (γ-CD) | 23.2 | Low (>3750 mg/kg; rat; IV route) | Drug delivery, food industry | [18] |
Hydroxypropyl-β-cyclodextrin (HP-β-CD) | >60.0 | Very Low (NOEL: 500 mg/kg/day; oral) | Drug solubilization, cosmetics | [30] |
Methyl-β-cyclodextrin (M-β-CD) | 50.0 | High (cytotoxicity) (>8000 mg/kg; rat; oral route) | Research, drug delivery | [28] |
Sulfobutylether-β-cyclodextrin (SBE-β-CD) | >50.0 | Low (NOEL: 500 mg/kg/day; oral) | Injectable drug formulations, toxicity reduction | [31] |
Drug | Cyclodextrin Type | Application | Benefit | Example of Effect |
---|---|---|---|---|
Griseofulvin | β-Cyclodextrin | Antifungal therapy | Increased solubility and improved absorption | Enhanced bioavailability leading to effective treatment [67] |
Ibuprofen | β-Cyclodextrin | Pain relief | Enhanced absorption rates | Faster onset of action and improved therapeutic effect [68] |
Digoxin | 2-Hydroxypropyl-β-cyclodextrin | Cardiac therapy | Prolonged duration of action | Reduced dosing frequency and stabilized plasma levels [69] |
Erythromycin | Hydroxypropyl-β-cyclodextrin | Antibiotic treatment | Enhanced stability in acidic environments | Maintained drug efficacy following oral administration [70] |
Curcumin | β-Cyclodextrin | Anti-inflammatory | Improved solubility and bioavailability | Greater therapeutic effects in managing inflammation [71] |
Theophylline | Methylated β-cyclodextrin | Asthma treatment | Controlled release and reduced side effects | Steady plasma concentrations resulting in effective therapy [72] |
Taxol (Paclitaxel) | 2-Hydroxypropyl-β-cyclodextrin | Cancer treatment | Enhanced solubility and bioavailability | Improved therapeutic index and reduced toxicity [73] |
Application Field | Guest Molecule | Cyclodextrin Type | Function/Benefit | Example |
---|---|---|---|---|
Pharmaceuticals | Poorly soluble drugs (e.g., antifungals, steroids) | β-CD, γ-CD | Enhances solubility, bioavailability, and stability of drugs | Improved delivery of drugs, such as itraconazole and dexamethasone [76] |
Food industry | Flavors, essential oils, vitamins | α-CD, β-CD, γ-CD | Stabilizes volatile compounds, protects against oxidation, improves shelf life | Encapsulation of limonene (flavor) to prevent evaporation in citrus-based products [77] |
Cosmetics and personal care | Fragrances, vitamins (e.g., retinol), peptides | β-CD, modified CDs | Controls release of active ingredients, enhances stability of sensitive compounds, reduces skin irritation | Controlled release of fragrances in perfumes or sustained release of retinol in anti-aging creams [78] |
Environmental remediation | Organic pollutants (e.g., pesticides, hydrocarbons) | β-CD, modified CDs | Traps and removes organic pollutants from water and soil, reduces environmental impact | Use of CD-based materials for removing phenols or pesticides from contaminated water [79] |
Agriculture | Pesticides, herbicides, plant growth regulators | β-CD, γ-CD | Improves solubility and stability of agrochemicals, reduces environmental toxicity | Cyclodextrin-enhanced delivery of herbicides, reducing runoff and improving soil uptake [80] |
Biomedical | Anticancer agents, gene therapy vectors | β-CD, γ-CD, modified CDs | Enhances targeted drug delivery, improves the stability and release of biomolecules | Cyclodextrin-based nanocarriers for delivering doxorubicin in cancer therapy [81] |
Food safety analysis | Contaminants (e.g., toxins, preservatives, pesticides) | α-CD, β-CD | Enhances sensitivity and accuracy of detecting harmful substances in food | Detection of pesticide residues and mycotoxins in food products [82] |
Textile industry | Fragrances, antimicrobial agents | β-CD, modified CDs | Encapsulation for controlled release of fragrances or antimicrobial agents in fabrics | CDs used in fabrics to provide long-lasting fragrance release or antimicrobial properties [83] |
Nanotechnology | Nanoparticles, drugs, bioactive molecules | β-CD, γ-CD, modified CDs | Enables formation of nanocarriers for targeted delivery and diagnostic purposes | Cyclodextrin-based nanoparticles for targeted drug delivery in cancer treatment or imaging [84] |
Analytical chemistry | Chiral molecules, toxins | β-CD, modified CDs | Used in chromatographic separations and sensing for chiral or hazardous compounds | Chiral separation in high-performance liquid chromatography (HPLC) using cyclodextrin-modified columns [85] |
Packaging | Oxygen, ethylene gas | β-CD, γ-CD | Absorbs gases to extend the shelf life of packaged products, prevents spoilage | Cyclodextrins used in packaging materials to absorb ethylene gas in fresh produce packaging, extending shelf life [15] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musuc, A.M. Cyclodextrins: Advances in Chemistry, Toxicology, and Multifaceted Applications. Molecules 2024, 29, 5319. https://doi.org/10.3390/molecules29225319
Musuc AM. Cyclodextrins: Advances in Chemistry, Toxicology, and Multifaceted Applications. Molecules. 2024; 29(22):5319. https://doi.org/10.3390/molecules29225319
Chicago/Turabian StyleMusuc, Adina Magdalena. 2024. "Cyclodextrins: Advances in Chemistry, Toxicology, and Multifaceted Applications" Molecules 29, no. 22: 5319. https://doi.org/10.3390/molecules29225319
APA StyleMusuc, A. M. (2024). Cyclodextrins: Advances in Chemistry, Toxicology, and Multifaceted Applications. Molecules, 29(22), 5319. https://doi.org/10.3390/molecules29225319