β-Cyclodextrin-Based Poly (Vinyl Alcohol) Fibers for Sustained Release of Fragrances
<p>(<b>a</b>) Schematic illustration of the preparation of the composite fibers; (<b>b</b>). SEM image of the surface of PVA fibers; (<b>c</b>) SEM image of the surface of PVA/75CD fibers; (<b>d</b>) SEM image of the cross-section of PVA fibers; (<b>e</b>) SEM image of the cross-section of PVA/75CD fibers; (<b>f</b>) FTIR spectra of PVA and PVA/75CD fibers.</p> "> Figure 2
<p>(<b>a</b>) XRD results of PVA, PVA/50CD, PVA/75CD and PVA/100CD fibers; illustration of the structure of (<b>b</b>) PVA/CD fibers before hot stretching, (<b>c</b>) after hot stretching and (<b>d</b>) coil resistance behavior; (<b>e</b>) DSC results of PVA, PVA/50CD, PVA/75CD and PVA/100CD fibers; (<b>f</b>) crystallinity ratio of PVA, PVA/50CD, PVA/75CD and PVA/100CD fibers; (<b>g</b>) mechanical properties of PVA, PVA/50CD, PVA/75CD and PVA/100CD fibers.</p> "> Figure 3
<p>(<b>a</b>) Schematic illustration of PVA/CD fibers crosslinked with GA; (<b>b</b>) SEM images of PVA/GA fibers; (<b>c</b>) SEM images of PVA/75CD fibers; (<b>d</b>) cross-section SEM images of PVA/GA fibers; (<b>e</b>) cross-section SEM images of PVA/75CD/GA fibers; FTIR of PVA/GA and PVA/75CD/GA fibers; (<b>f</b>) FTIR spectra of acetylated fibers.</p> "> Figure 4
<p>(<b>a</b>) Mechanical properties of PVA/GA, PVA/50CD/GA, PVA/75CD/GA and PVA/100CD/GA fibers; EDS mapping of Cl substituted PVA/75CD fiber before (<b>b</b>) and after (<b>c</b>) 10 wash cycles.</p> "> Figure 5
<p>Fragrance retention HPLC results of <span class="html-italic">cis</span>-jasmone (<b>a</b>) and citronella (<b>b</b>) for PVA/GA, PVA/50CD/GA, PVA/75CD/GA and PVA/100CD/GA fibers; single-blind result of <span class="html-italic">cis</span>-jasmone (<b>c</b>) and citronella (<b>d</b>) for PVA/GA, PVA/50CD/GA, PVA/75CD/GA and PVA/100CD/GA fibers.</p> "> Figure 6
<p>2D Asynchronous FTIR spectra calculated from the temperature-dependent spectra of 25–77 °C in the range of 1800–600 cm<sup>−1</sup>. (<b>a</b>) β-CD-<span class="html-italic">cis</span>-jasmone host-guest inclusion complex; (<b>b</b>) β-CD-<span class="html-italic">cis</span>-jasmone blend; (<b>c</b>) Interaction of β-CD with <span class="html-italic">cis</span>-jasmone; (<b>d</b>) β-CD-citronella host-guest inclusion complex; (<b>e</b>) β-CD-citronella blend. (<b>f</b>) Interaction of β-CD with citronella. Pink and blue areas represent the positive and negative correlation intensity, respectively. (<b>g</b>) Illustration of the distribution of fragrance molecules in PVA/CD/GA fibers.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the PVA and PVA/CD Fibers
2.3. Preparation of the PVA/GA and PVA/CD/GA Fibers
2.4. Shrinkage of PVA/75CD after Crosslinked by Different Concentration of GA
2.5. Preparation of Chloroacetyl Substituted β-CD
2.6. Two-Dimensional Fourier Transform Infrared Spectroscopy (2D-FTIR Spectrum)
2.7. Fragrance Retention Performance
2.8. Characterization
3. Results and Discussion
3.1. Preparation of PVA and PVA/CD Fibers
3.2. Fabrication of PVA/GA and PVA/CD/GA Fibers
3.3. Fragrance Sustained-Release Ability of PVA/CD/GA Fibers
3.4. Proposed Mechanism for Fragrance Retention
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alsbaiee, A.; Smith, B.J.; Xiao, L.; Ling, Y.; Helbling, D.E.; Dichtel, W.R. Rapid removal of organic micropollutants from water by a porous beta-cyclodextrin polymer. Nature 2016, 529, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Stasse, M.; Laurichesse, E.; Vandroux, M.; Ribaut, T.; Héroguez, V.; Schmitt, V. Cross-linking of double oil-in-water-in-oil emulsions: A new way for fragrance encapsulation with tunable sustained releas. Colloids Surf. A Physicochem. Eng. Asp. 2020, 607, 125448. [Google Scholar] [CrossRef]
- Celebioglu, A.; Sen, H.S.; Durgun, E.; Uyar, T. Molecular entrapment of volatile organic compounds (VOCs) by electrospun cyclodextrin nanofibers. Chemosphere 2016, 144, 736–744. [Google Scholar] [CrossRef] [PubMed]
- Ciriminna, R.; Pagliaro, M. Sol-gel microencapsulation of odorants and flavors: Opening the route to sustainable fragrances and aromas. Chem. Soc. Rev. 2013, 42, 9243–9250. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Meaney, S.P.; Abedin, M.J.; Holt, P.; Majumder, M.; Tabor, R.F. Graphene oxide-silica hybrid capsules for sustained fragrance release. J. Colloid Interf. Sci. 2019, 552, 528–539. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Huang, J.; Ye, L.; Lv, Y.; Zhou, Z.; Shen, Y.; He, Y.; Jiang, L. Encapsulation of highly volatile fragrances in Y zeolites for sustained Rrelease: Experimental and theoretical Sstudies. ASC Omega 2020, 5, 31925–31935. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Hu, J.; Deng, W. Preparation and application of flavor and fragrance capsules. Polym. Chem. 2018, 9, 4926–4946. [Google Scholar] [CrossRef]
- Xie, C.; Zhang, Q.; Li, Z.; Ge, S.; Ma, B. Sustained and microenvironment-accelerated release of minocycline from alginate injectable hydrogel for bacteria-infected wound healing. Polymers 2022, 14, 1816. [Google Scholar] [CrossRef]
- Cecone, C.; Hoti, G.; Krabicová, I.; Appleton, S.L.; Caldera, F.; Bracco, P.; Zanetti, M.; Trotta, F. Sustainable synthesis of cyclodextrin-based polymers by exploiting natural deep eutectic solvents. Green Chem. 2020, 22, 5806–5814. [Google Scholar] [CrossRef]
- Yao, Y.; Yu, S.; Shen, Y.; Wu, H. Facile synthesis of self-dispersed β-cyclodextrin-coupled cellulose microgel for sustained release of vanillin. Int. J. Biol. Macromol. 2022, 208, 70–79. [Google Scholar] [CrossRef]
- Baur, X.; Schneider, E.M.; Wieners, D.; Czuppon, A.B. Occupational asthma to perfume. Allergy 1999, 54, 1334–1335. [Google Scholar] [CrossRef] [PubMed]
- Lessenger, J.E. Occupational acute anaphylactic reaction to assault by perfume spray in the face. J. Am. Board Fam. Pract. 2001, 14, 137–140. [Google Scholar] [PubMed]
- Huynh, T.-P.; Haick, H. Autonomous flexible sensors for health monitoring. Adv. Mater. 2018, 30, e1802337. [Google Scholar] [CrossRef] [PubMed]
- Eid, B.M.; Ibrahim, N.A. Recent developments in sustainable finishing of cellulosic textiles employing biotechnology. J. Clean. Prod. 2021, 284, 124701. [Google Scholar] [CrossRef]
- Xiao, Y.; Luo, H.; Tang, R.; Hou, J. Preparation and applications of electrospun optically transparent fibrous membrane. Polymers 2021, 13, 506. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, L.; Liu, J.; Li, C. A flexible bimodal sensor based on an electrospun nanofibrous structure for simultaneous pressure-temperature detection. Nanoscale 2019, 11, 14242–14249. [Google Scholar] [CrossRef]
- Radishevskii, M.B.; Serkov, A.T. Coagulation mechanism in wet spinning of fibres. Fibre Chem. 2005, 37, 266–271. [Google Scholar] [CrossRef]
- Peng, K.; Chen, C.; Pan, W.; Liu, W.; Wang, Z.; Zhu, L. Preparation and properties of β-cyclodextrin/4,4′-diphenylmethane diisocyanate/polyethylene glycol (β-CD/MDI/PEG) crosslinking copolymers as polymeric solid-solid phase change materials. Sol. Energy Mater. Sol. Cells 2016, 145, 238–247. [Google Scholar] [CrossRef]
- Mansur, H.S.; Oréfice, R.L.; Mansur, A.A.P. Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer 2004, 45, 7193–7202. [Google Scholar] [CrossRef]
- Paranhos, C.M.; Soares, B.G.; Machado, J.C.; Windmöller, D.; Pessan, L.A. Microstructure and free volume evaluation of poly (vinyl alcohol) nanocomposite hydrogels. Eur. Polym. J. 2007, 43, 4882–4890. [Google Scholar] [CrossRef]
- Song, Y.; Li, J.; Ye, G.; Xu, J.; Jiang, M. Polyamidoxime/Poly (vinyl alcohol) Composite Chelating Fiber Prepared by Emulsion Spinning and Its Adsorption Properties for Metal Ions. Ind. Eng. Chem. Res. 2015, 54, 12367–12373. [Google Scholar] [CrossRef]
- Tian, Y.; Zhu, C.; Gong, J.; Ma, J.; Xu, J. Transition from shish-kebab to fibrillar crystals during ultra-high hot stretching of ultra-high molecular weight polyethylene fibers: In situ small and wide angle X-ray scattering studies. Eur. Polym. J. 2015, 73, 127–136. [Google Scholar] [CrossRef]
- Kimata, S.; Sakurai, T.; Nozue, Y.; Kasahara, T.; Yamaguchi, N.; Karino, T.; Shibayama, M.; Kornfield, J.A. Molecular basis of the shish-kebab morphology in polymer crystallization. Science 2007, 316, 1014–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, K.; Ingole, P.G.; Bajaj, H.C.; Gupta, H. Preparation, characterization and application of β-cyclodextrin-glutaraldehyde crosslinked membrane for the enantiomeric separation of amino acids. Desalination 2012, 298, 13–21. [Google Scholar] [CrossRef]
- Wang, W.; Jin, X.; Zhu, Y.; Zhu, C.; Yang, J.; Wang, H.; Lin, T. Effect of vapor-phase glutaraldehyde crosslinking on electrospun starch fibers. Carbohydr. Polym. 2016, 140, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Noda, I. Two-dimensional infrared spectroscopy. J. Am. Chem. Soc. 1989, 111, 8116–8118. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, C.; Xu, X.; Song, L.; Wang, X.; Li, B.; Guo, K. β-Cyclodextrin-Based Poly (Vinyl Alcohol) Fibers for Sustained Release of Fragrances. Polymers 2022, 14, 2002. https://doi.org/10.3390/polym14102002
Xing C, Xu X, Song L, Wang X, Li B, Guo K. β-Cyclodextrin-Based Poly (Vinyl Alcohol) Fibers for Sustained Release of Fragrances. Polymers. 2022; 14(10):2002. https://doi.org/10.3390/polym14102002
Chicago/Turabian StyleXing, Chengyuan, Xia Xu, Lei Song, Xiaoling Wang, Bangjing Li, and Kun Guo. 2022. "β-Cyclodextrin-Based Poly (Vinyl Alcohol) Fibers for Sustained Release of Fragrances" Polymers 14, no. 10: 2002. https://doi.org/10.3390/polym14102002
APA StyleXing, C., Xu, X., Song, L., Wang, X., Li, B., & Guo, K. (2022). β-Cyclodextrin-Based Poly (Vinyl Alcohol) Fibers for Sustained Release of Fragrances. Polymers, 14(10), 2002. https://doi.org/10.3390/polym14102002