Following the Trace of Cyclodextrins on the Selenium and Tellurium Odyssey
<p>General structure of α-, β-, and γ-CDs.</p> "> Figure 2
<p>Structure of 6-SeCD (<b>1</b>), 2-SeCD (<b>2</b>), 6-CySeCD (<b>3</b>), 6-AnSeCD (<b>4</b>), DisecysCD (<b>5</b>), and 6-diSeCD (<b>6</b>).</p> "> Figure 3
<p>Structure of the bis-β-CDs linked by a 2,2′-diselenobis(benzoyl) spacer along with its corresponding platinum (Pt) (IV) complexes herein reported.</p> "> Figure 4
<p>Schematic illustration of the chemical structures of 2-TeCD (<b>15</b>), 2-α-TeCD (<b>16</b>), and 2-γ-TeCD (<b>17</b>).</p> "> Figure 5
<p>Structure of 6-TeCD (<b>18</b>).</p> "> Figure 6
<p>Schematic illustration of the chemical structures of 2-γ-TeCD (<b>17</b>), 2-γ-SeCD (<b>19</b>), 6-Te-γ-CD (<b>20</b>), 6-Se-γ-CD (<b>21</b>), 6-diTe-γ-CD (<b>22</b>), 6-diSe-γ-CD (<b>23</b>), and Disecys-γ-CD (<b>24</b>).</p> "> Figure 7
<p>Chemical structure of the described β-CDs with the functional moiety of ebselen.</p> "> Figure 8
<p>Chemical structure of the β-CD-derived organotellurium compounds.</p> "> Figure 9
<p>Schematic representation of the β-, HP-β-, and γ-CDs containing selenocompounds as guests.</p> "> Scheme 1
<p>Synthesis of selenazoles (<b>52</b>–<b>61</b>) using α-bromo ketones, β-CD as catalyst, and selenoureas in water [<a href="#B73-ijms-25-07799" class="html-bibr">73</a>].</p> "> Scheme 2
<p>One-pot tandem synthetic strategy for obtaining selenazoles (<b>62</b>–<b>66</b>) using β-CDs as catalysts in water [<a href="#B74-ijms-25-07799" class="html-bibr">74</a>].</p> "> Scheme 3
<p>Synthetic procedure to obtain compound <b>67</b> [<a href="#B74-ijms-25-07799" class="html-bibr">74</a>].</p> "> Scheme 4
<p>(<b>A</b>) Synthesis of β-hydroxy selenides (<b>68</b>–<b>75</b>) by the regioselective ring opening of oxiranes with benzeneselenol catalyzed by β-CDs in water. (<b>B</b>,<b>C</b>) Specific synthetic procedures for obtaining compounds <b>76</b> and <b>77</b>, respectively [<a href="#B75-ijms-25-07799" class="html-bibr">75</a>].</p> "> Scheme 5
<p>(<b>A</b>) Synthesis of β-(phenylseleno)-substituted derivatives (<b>78</b>–<b>85</b>) by the Michael addition reaction of conjugated alkenes with benzeneselenol catalyzed by β-CDs in water. (<b>B</b>,<b>C</b>) Specific synthetic procedures for obtaining compounds <b>86</b> and <b>87</b>, respectively [<a href="#B76-ijms-25-07799" class="html-bibr">76</a>].</p> "> Scheme 6
<p>Synthetic procedure for obtaining stereoselective allyl aryl selenides (<b>88</b>–<b>94</b>) from several Baylis–Hillman acetates and benzeneselenol catalyzed by β-CD in water [<a href="#B77-ijms-25-07799" class="html-bibr">77</a>].</p> ">
Abstract
:1. Introduction
2. Dimeric CDs through a Se or Te Bridge
Compound | Hydroperoxide | Activity (U/µmol) |
---|---|---|
1 | H2O2 | 4.2 |
2 | H2O2 | 7.4 |
BHP | 4.0 | |
CHP | 10.5 | |
5 | H2O2 | 4.13 |
BHP | 2.11 | |
CHP | 5.82 | |
6 | H2O2 | 13.5 |
Ebselen | H2O2 | 0.99 |
SeCys | H2O2 | 0.05 |
PhSeSePh | H2O2 | 1.95 |
β-CD | H2O2 | 0.03 |
β-CD + SeCys | H2O2 | 0.11 |
GPx-Mimicking Activities (U/µmol) | |||
---|---|---|---|
Ref. | H2O2 | BHP | CHP |
Ebselen | 0.99 ± 0.01 | 0.33 ± 0.01 | 1.26 ± 0.01 |
15 | 34.4 ± 0.17 | 23.8 ± 0.10 | - |
16 | 46.7 ± 0.20 | 32.3 ± 0.15 | 87.3 ± 0.26 |
17 | 80.5 ± 0.36 | 109.8 ± 0.38 | 149.6 ± 0.43 |
3. CDs Monosubstituted with Organochalcogen Compounds at Position 6
4. CDs Containing Selenocompounds as Guests
5. CDs as Catalysts for Obtaining Selenocompounds
6. Conclusions and Future Prospects
- The formation of dimeric CDs through a diselenide or ditelluride bridge can render outstanding structures with protective effects toward several radical species, including ROOH (i.e., H2O2, CHP, and BHP) and ROS, as many of them have been demonstrated to exert a GPx-mimetic activity. Of note, it has been reported that a great number of these bridged bis-CDs have a greater protective potential than ebselen, a well-studied organoselenium compound. In view of the former, both Se- and Te-bridged CDs can be considered a promising strategy for the treatment of diseases caused by free radicals. Furthermore, some of these CD-based mimics of GPx can provide protection from UV-B radiation. Thus, 2-SeCD was demonstrated to protect NIHT3 fibroblast cells from the oxidative stress generated by this radiation. Likewise, 6-CySeCD was able to impede the apoptosis in the HaCaT cells damaged by UV-B radiation.
- Among bridged bis-CDs, ditelluride bridges exhibit stronger protective effects than their Se counterparts. For example, 2-TeCD exhibited a GPx-mimicking activity of 34.4 U/µmol, whereas the reported activity for 2-SeCD was 7.4 U/µmol. Additionally, joining two CDs through a SeCys molecule (DisecysCD) led to a higher activity than the one reported for this amino acid, the native β-CD itself, and the combination of both.
- It appears that the use of different CDs to form guest–host complexes with selenocompounds can present several advantages for the derivatives that exhibit several limitations, i.e., solubility problems and/or volatile nature. This is due to the fact that CDs can modify and improve pivotal properties of these compounds, such as volatility, solubility, degradability, and bioavailability. Therefore, the vehiculation of these compounds could pave the way for using them in a safe and effective way for the treatment of a myriad of disorders. In fact, EβpolySol can be considered a promising candidate for the PrEP treatment in HIV infections, as it has been proven to exert an in vitro effective anti-HIV activity and reduce the vaginal fungal burden and exhibits low toxicity towards cervical cells.
- A more recent application of CDs in the development of novel Se and Te compounds is their use as catalysts. Thereby, not only can greener conditions be used but much greater yields can be achieved with almost no byproduct formation. This strategy has been demonstrated to be effective in an ample range of reactions, such as cyclizations, oxirane ring opening, and nucleophilic additions to Baylis–Hillman acetates. Some reactions can be achieved regio- or stereoselectively.
- Further research should prioritize in vivo studies to verify the safety and effectiveness of the described Se- and Te-CDs. This is crucial given that many chalcogen-containing compounds face limitations, such as systemic toxicity, which impede their progression in drug development. On the other hand, data from several in vivo studies support that the formation of complexes with CDs can provide considerable improvements in the oral permeability, pharmacokinetics, stability, solubility, efficacy, and bioavailability of a vast variety of drugs and biologically active molecules such as docetaxel [78], curcumin and its derivatives [79,80], glipizide [81], naproxen [82,83], quercetin [84,85,86,87], tamoxifen [88], galangin [89], agomelatine [90], shikonin [91], resveratrol [92], and hydrochlorothiazide [93]. Therefore, the CD formulation of Se and Te derivatives could be a feasible and promising strategy to surmount their drawbacks, thus improving their clinical relevance.
- Considering that the use of β-CDs as catalysts in organic reactions can be considered a safe, highly efficient, eco-friendly, and cost-effective strategy, we consider that it would be interesting to further explore the synthesis of a wider range of Se compounds with different functional groups and scaffolds. In this line, it should be highlighted that the synthesis of a wider variety and larger libraries of organotellurium compounds remains a considerable, but worthwhile, challenge, as they usually display unusual reactivities. Albeit there are no reports of the synthesis of Te derivatives catalyzed by CDs, this strategy could nudge the research focus into using greener conditions for obtaining these compounds.
- CD-based nanosponges (CD-NSs), nanoparticles, and supramolecular hydrogels have attracted great attention in the past years, as CDs have led to several fascinating applications of these materials [94,95,96]. Therefore, studying the role of Se- and Te-CDs could pave the way for discovering novel materials with different potential applications.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Henriquez-Figuereo, A.; Morán-Serradilla, C.; Angulo-Elizari, E.; Sanmartín, C.; Plano, D. Small molecules containing chalcogen elements (S, Se, Te) as new warhead to fight neglected tropical diseases. Eur. J. Med. Chem. 2023, 246, 115002. [Google Scholar] [CrossRef]
- Halperin-Sheinfeld, M.; Gertler, A.; Okun, E.; Sredni, B.; Cohen, H.Y. The Tellurium compound, AS101, increases SIRT1 level and activity and prevents type 2 diabetes. Aging 2012, 4, 436–447. [Google Scholar] [CrossRef]
- Gross, M.; Stanciu, E.; Kenigsbuch-Sredni, D.; Sredni, B.; Pinhasov, A. The immunomodulatory tellurium compound ammonium trichloro (dioxoethylene-O,O’) tellurate reduces anxiety-like behavior and corticosterone levels of submissive mice. Behav. Pharmacol. 2017, 28, 458–465. [Google Scholar] [CrossRef]
- Sredni, B. Immunomodulating tellurium compounds as anti-cancer agents. Semin. Cancer Biol. 2012, 22, 60–69. [Google Scholar] [CrossRef]
- Tripathi, A.; Khan, A.; Srivastava, R. Synthesis and screening for anticancer activity of two novel telluro-amino acids: 1,3-Tellurazolidine-4-carboxylic acid and tellurohomocystine. Amino Acids 2023, 55, 1361–1370. [Google Scholar] [CrossRef]
- Oliveira Rocha, A.M.; Severo Sabedra Sousa, F.; Mascarenhas Borba, V.; Munchen, T.S.; Guerin Leal, J.; Dorneles Rodrigues, O.E.; Fronza, M.G.; Savegnago, L.; Collares, T.; Kömmling Seixas, F. Evaluation of the effect of synthetic compounds derived from azidothymidine on MDA-MB-231 type breast cancer cells. Bioorg. Med. Chem. Lett. 2020, 30, 127365. [Google Scholar] [CrossRef]
- Gomes, G.B.; Zubieta, C.S.; Guilhermi, J.D.S.; Toffoli-Kadri, M.C.; Beatriz, A.; Rafique, J.; Parisotto, E.B.; Saba, S.; Perdomo, R.T. Selenylated Imidazo [1,2-a]pyridine Induces Apoptosis and Oxidative Stress in 2D and 3D Models of Colon Cancer Cells. Pharmaceuticals 2023, 16, 814. [Google Scholar] [CrossRef]
- Voss, G.T.; de Oliveira, R.L.; Davies, M.J.; Domingues, W.B.; Campos, V.F.; Soares, M.P.; Luchese, C.; Schiesser, C.H.; Wilhelm, E.A. Suppressive effect of 1,4-anhydro-4-seleno-D-talitol (SeTal) on atopic dermatitis-like skin lesions in mice through regulation of inflammatory mediators. J. Trace Elem. Med. Biol. 2021, 67, 126795. [Google Scholar] [CrossRef]
- Ramos-Inza, S.; Henriquez-Figuereo, A.; Moreno, E.; Berzosa, M.; Encío, I.; Plano, D.; Sanmartín, C. Unveiling a New Selenocyanate as a Multitarget Candidate with Anticancer, Antileishmanial and Antibacterial Potential. Molecules 2022, 27, 7477. [Google Scholar] [CrossRef]
- Karelia, D.N.; Kim, S.; Pandey, M.K.; Plano, D.; Amin, S.; Lu, J.; Sharma, A.K. Novel Seleno-Aspirinyl Compound AS-10 Induces Apoptosis, G1 Arrest of Pancreatic Ductal Adenocarcinoma Cells, Inhibits Their NF-κB Signaling, and Synergizes with Gemcitabine Cytotoxicity. Int. J. Mol. Sci. 2021, 22, 4966. [Google Scholar] [CrossRef]
- Ribeiro, R.C.B.; de Marins, D.B.; Di Leo, I.; da Silva Gomes, L.; de Moraes, M.G.; Abbadi, B.L.; Villela, A.D.; da Silva, W.F.; da Silva, L.C.R.P.; Machado, P.; et al. Anti-tubercular profile of new selenium-menadione conjugates against Mycobacterium tuberculosis H37Rv (ATCC 27294) strain and multidrug-resistant clinical isolates. Eur. J. Med. Chem. 2021, 209, 112859. [Google Scholar] [CrossRef]
- Papezhuk, M.V.; Volynkin, V.A.; Panyushkin, V.T. The structure and properties of functionalized cyclodextrins and complex compounds based on them. Russ. Chem. Bull. 2022, 71, 430–442. [Google Scholar] [CrossRef]
- Pandey, A. Cyclodextrin-based nanoparticles for pharmaceutical applications: A review. Environ. Chem. Lett. 2021, 19, 4297–4310. [Google Scholar] [CrossRef]
- Liu, Z.; Ye, L.; Xi, J.; Wang, J.; Feng, Z.-G. Cyclodextrin polymers: Structure, synthesis, and use as drug carriers. Prog. Polym. Sci. 2021, 118, 101408. [Google Scholar] [CrossRef]
- Noël, S.; Léger, B.; Ponchel, A.; Sadjadi, S.; Monflier, E. Cyclodextrins as multitask agents for metal nano-heterogeneous catalysis: A review. Environ. Chem. Lett. 2021, 19, 4327–4348. [Google Scholar] [CrossRef]
- Dalal, D.S.; Patil, D.R.; Tayade, Y.A. β-Cyclodextrin: A Green and Efficient Supramolecular Catalyst for Organic Transformations. Chem. Rec. 2018, 18, 1560–1582. [Google Scholar] [CrossRef]
- Abbasi, M. β-Cyclodextrin as an Efficient and Recyclable Supramolecular Catalyst for the Synthesis of Heterocyclic Compounds. J. Chin. Chem. Soc. 2017, 64, 896–917. [Google Scholar] [CrossRef]
- Payamifar, S.; Poursattar Marjani, A. Recent advances in β-cyclodextrin-based catalysts for reducing toxic nitroaromatic: An overview. Appl. Organomet. Chem. 2023, 37, e7287. [Google Scholar] [CrossRef]
- Xu, F.; Wang, Y.; He, F.; Li, Z.; Guo, S.; Xie, Y.; Luo, D.; Wu, J. Facile construction of spiroindoline derivatives as potential anti-viral agent via three-component reaction in aqueous with β-cyclodextrin-SO3H as an efficient catalyst. Green Chem. Lett. Rev. 2022, 15, 139–152. [Google Scholar] [CrossRef]
- Payamifar, S.; Poursattar Marjani, A. The recent development of β-cyclodextrin-based catalysts system in click reactions: A review. Appl. Organomet. Chem. 2024, 38, e7365. [Google Scholar] [CrossRef]
- Liu, J.Q.; Gao, S.J.; Luo, G.M.; Yan, G.L.; Shen, J.C. Artificial imitation of glutathione peroxidase with 6-selenium-bridged beta-cyclodextrin. Biochem. Biophys. Res. Commun. 1998, 247, 397–400. [Google Scholar] [CrossRef]
- Liu, J.; Luo, G.; Ren, X.; Mu, Y.; Bai, Y.; Shen, J. A bis-cyclodextrin diselenide with glutathione peroxidase-like activity. Biochim. Biophys. Acta 2000, 1481, 222–228. [Google Scholar] [CrossRef]
- Mu, Y.; Lv, S.; Ren, X.; Jin, G.; Liu, J.; Yan, G.; Li, W.; Shen, J.; Luo, G. UV-B induced keratinocyte apoptosis is blocked by 2-selenium-bridged beta-cyclodextrin, a GPX mimic. J. Photochem. Photobiol. B-Biol. 2003, 69, 7–12. [Google Scholar] [CrossRef]
- Sun, Y.; Mu, Y.; Ma, S.; Gong, P.; Yan, G.; Liu, J.; Shen, J.; Luo, G. The molecular mechanism of protecting cells against oxidative stress by 2-selenium-bridged beta-cyclodextrin with glutathione peroxidase activity. Biochim. Biophys. Acta 2005, 1743, 199–204. [Google Scholar] [CrossRef]
- Jia, Z.-D.; Lin, F.; Liu, L.; Mu, Y.; Yan, G.-L.; Luo, G.-M. Comparison between the Effects of 2-Selenium Bridged β-Cyclodextrin and Ebselen on Treating SHRsp Stroke. Chem. Res. Chin. Univ. 2008, 24, 322–329. [Google Scholar] [CrossRef]
- Lin, T.T.; Wang, B.M.; Li, X.Y.; Pan, Y.; Wang, W.; Mu, Y.; Liu, J.Q.; Shen, J.C.; Luo, G.M. An insight into the protection of rat liver against ischemia/reperfusion injury by 2-selenium-bridged beta-cyclodextrin. Hepatol. Res. 2009, 39, 1125–1136. [Google Scholar] [CrossRef]
- Lv, S.W.; Wang, X.G.; Mu, Y.; Zang, T.Z.; Ji, Y.T.; Liu, J.Q.; Shen, J.C.; Luo, G.M. A novel dicyclodextrinyl diselenide compound with glutathione peroxidase activity. FEBS J. 2007, 274, 3846–3854. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Xu, Y.W.; Wang, C.; Zhao, Y.; Yu, P.; Lv, S.W.; Yan, G.L.; Liu, J.Q.; Luo, G.M. The protective effects of 6-CySeCD with GPx activity against UVB-induced injury in HaCaT cells. Australas. J. Dermatol. 2013, 54, 120–125. [Google Scholar] [CrossRef]
- Yan, F.; Mu, Y. Selenoprotein Mimics and Diseases. In Selenoproteins and Mimics; Liu, J., Luo, G., Mu, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 303–322. [Google Scholar]
- Ren, X.; Liu, J.; Luo, G.; Zhang, Y.; Luo, Y.; Yan, G.; Shen, J. A novel selenocystine-beta-cyclodextrin conjugate that acts as a glutathione peroxidase mimic. Bioconjug. Chem. 2000, 11, 682–687. [Google Scholar] [CrossRef]
- Ren, X.; Yang, L.; Liu, J.; Su, D.; You, D.; Liu, C.; Zhang, K.; Luo, G.; Mu, Y.; Yan, G.; et al. A novel glutathione peroxidase mimic with antioxidant activity. Arch. Biochem. Biophys. 2001, 387, 250–256. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.; Zhang, H.Y.; Song, Y. Synthesis of novel bis(beta-cyclodextrin)s and metallobridged bis(beta-cyclodextrin)s with 2,2′-diselenobis(benzoyl) tethers and their molecular multiple recognition with model substrates. J. Org. Chem. 2003, 68, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Xue, Y.; Liu, J.; Zhang, K.; Zheng, J.; Luo, G.; Guo, C.; Mu, Y.; Shen, J. A novel cyclodextrin-derived tellurium compound with glutathione peroxidase activity. Chembiochem 2002, 3, 356–363. [Google Scholar] [CrossRef]
- Dong, Z.Y.; Huang, X.; Mao, S.Z.; Liang, K.; Liu, J.Q.; Luo, G.M.; Shen, J.C. Cyclodextrin-derived mimic of glutathione peroxidase exhibiting enzymatic specificity and high catalytic efficiency. Chemistry 2006, 12, 3575–3579. [Google Scholar] [CrossRef]
- Dong, Z.; Liu, J.; Mao, S.; Huang, X.; Yang, B.; Ren, X.; Luo, G.; Shen, J. Aryl thiol substrate 3-carboxy-4-nitrobenzenethiol strongly stimulating thiol peroxidase activity of glutathione peroxidase mimic 2,2′-ditellurobis(2-deoxy-beta-cyclodextrin). J. Am. Chem. Soc. 2004, 126, 16395–16404. [Google Scholar] [CrossRef]
- Wang, K.; Gong, P.; Liu, L.; Gong, S.; Liu, J.; Shen, J.; Luo, G. Effect of 2-TeCD on the expression of adhesion molecules in human umbilical vein endothelial cells under the stimulation of tumor necrosis factor-alpha. Int. Immunopharmacol. 2009, 9, 1087–1091. [Google Scholar] [CrossRef]
- Hao, Y.Q.; Liu, X.C.; Liu, J.Q.; Wu, Y.Q. Association mechanism of S-dinitrophenyl glutathione with two glutathione peroxidase mimics: 2,2 cent-ditelluro- and 2,2 cent-diseleno-bridged b-cyclodextrins. Molecules 2009, 14, 904–916. [Google Scholar] [CrossRef]
- Jiao, A.; Yang, N.; Wang, J.; Toure, A.; Xu, X.; Jin, Z. Organotellurium-bridged cyclodextrin dimers as artificial glutathione peroxidase models. J. Incl. Phenom. Macrocycl. Chem. 2012, 74, 335–341. [Google Scholar] [CrossRef]
- Dong, Z.; Liu, J.; Mao, S.; Huang, X.; Luo, G.; Shen, J. A Glutathione Peroxidase Mimic 6,6′-Ditellurobis (6-Deoxy-β-Cyclodextrin) with High Substrate Specificity. J. Incl. Phenom. Macrocycl. Chem. 2006, 56, 179–182. [Google Scholar] [CrossRef]
- Jiao, A.; Yang, N.; Wang, J.; Xu, X.; Jin, Z. Cyclodextrin-derived chalcogenides as glutathione peroxidase mimics and their protection of mitochondria against oxidative damage. J. Incl. Phenom. Macrocycl. Chem. 2013, 75, 155–163. [Google Scholar] [CrossRef]
- Fenger, T.H.; Marinescu, L.G.; Bols, M. Cyclodextrin ketones as oxidation catalysts: Investigation of bridged derivatives. Org. Biomol. Chem. 2009, 7, 933–943. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, Z.; Zhang, H.Y.; Yang, Y.W.; Ding, F.; Liu, S.X.; Wu, X.; Wada, T.; Inoue, Y. Supramolecular self-assemblies of beta-cyclodextrins with aromatic tethers: Factors governing the helical columnar versus linear channel superstructures. J. Org. Chem. 2003, 68, 8345–8352. [Google Scholar] [CrossRef] [PubMed]
- Kuah, E.; Toh, S.; Yee, J.; Ma, Q.; Gao, Z. Enzyme Mimics: Advances and Applications. Chem.-Eur. J. 2016, 22, 8404–8430. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, A.G. Designer metalloenzymes for synthetic biology: Enzyme hybrids for catalysis. Curr. Opin. Chem. Biol. 2020, 58, 63–71. [Google Scholar] [CrossRef]
- Liu, Y.; Li, B.; Li, L.; Zhang, H.-Y. Synthesis of Organoselenium-Modified β-Cyclodextrins Possessing a 1,2-Benzisoselenazol-3(2H)-one Moiety and Their Enzyme-Mimic Study. Helv. Chim. Acta 2002, 85, 9–18. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Q.; Xu, H. Synthesis of novel cyclomaltoheptaose (β-cyclodextrin) derivatives containing the Ebselen key moiety of benzoisoselenazolone. Carbohydr. Res. 2002, 337, 1309–1312. [Google Scholar] [CrossRef] [PubMed]
- McNaughton, M.; Engman, L.; Birmingham, A.; Powis, G.; Cotgreave, I.A. Cyclodextrin-Derived Diorganyl Tellurides as Glutathione Peroxidase Mimics and Inhibitors of Thioredoxin Reductase and Cancer Cell Growth. J. Med. Chem. 2004, 47, 233–239. [Google Scholar] [CrossRef]
- Kanda, T.; Engman, L.; Cotgreave, I.A.; Powis, G. Novel Water-Soluble Diorganyl Tellurides with Thiol Peroxidase and Antioxidant Activity. J. Org. Chem. 1999, 64, 8161–8169. [Google Scholar] [CrossRef]
- Mangiavacchi, F.; Coelho Dias, I.F.; Di Lorenzo, I.; Grzes, P.; Palomba, M.; Rosati, O.; Bagnoli, L.; Marini, F.; Santi, C.; Lenardao, E.J.; et al. Sweet Selenium: Synthesis and Properties of Selenium-Containing Sugars and Derivatives. Pharmaceuticals 2020, 13, 211. [Google Scholar] [CrossRef]
- Ruberte, A.C.; González-Gaitano, G.; Sharma, A.K.; Aydillo, C.; Encío, I.; Sanmartín, C.; Plano, D. New Formulation of a Methylseleno-Aspirin Analog with Anticancer Activity towards Colon Cancer. Int. J. Mol. Sci. 2020, 21, 9017. [Google Scholar] [CrossRef]
- Ramos-Inza, S.; Morán-Serradilla, C.; Gaviria-Soteras, L.; Sharma, A.K.; Plano, D.; Sanmartín, C.; Font, M. Formulation Studies with Cyclodextrins for Novel Selenium NSAID Derivatives. Int. J. Mol. Sci. 2024, 25, 1532. [Google Scholar] [CrossRef]
- Ramos-Inza, S.; Aliaga, C.; Encío, I.; Raza, A.; Sharma, A.K.; Aydillo, C.; Martínez-Sáez, N.; Sanmartín, C.; Plano, D. First Generation of Antioxidant Precursors for Bioisosteric Se-NSAIDs: Design, Synthesis, and In Vitro and In Vivo Anticancer Evaluation. Antioxidants 2023, 12, 1666. [Google Scholar] [CrossRef] [PubMed]
- Thenin-Houssier, S.; de Vera, I.M.; Pedro-Rosa, L.; Brady, A.; Richard, A.; Konnick, B.; Opp, S.; Buffone, C.; Fuhrmann, J.; Kota, S.; et al. Ebselen, a Small-Molecule Capsid Inhibitor of HIV-1 Replication. Antimicrob. Agents Chemother. 2016, 60, 2195–2208. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.-W.; Yan, H.-L.; Xu, X.-S.; Xu, L.; Yin, Z.-H.; Chang, S.; Luo, H. The selenium-containing drug ebselen potently disrupts LEDGF/p75-HIV-1 integrase interaction by targeting LEDGF/p75. J. Enzym. Inhib. Med. Chem. 2020, 35, 906–912. [Google Scholar] [CrossRef] [PubMed]
- Thangamani, S.; Eldesouky, H.E.; Mohammad, H.; Pascuzzi, P.E.; Avramova, L.; Hazbun, T.R.; Seleem, M.N. Ebselen exerts antifungal activity by regulating glutathione (GSH) and reactive oxygen species (ROS) production in fungal cells. Biochim. Biophys. Acta-Gen. Subj. 2017, 1861, 3002–3010. [Google Scholar] [CrossRef] [PubMed]
- Sakita, K.M.; Capoci, I.R.G.; Conrado, P.C.V.; Rodrigues-Vendramini, F.A.V.; Faria, D.R.; Arita, G.S.; Becker, T.C.A.; Bonfim-Mendonça, P.S.; Svidzinski, T.I.E.; Kioshima, E.S. Efficacy of Ebselen Against Invasive Aspergillosis in a Murine Model. Front. Cell. Infect. Microbiol. 2021, 11, 684525. [Google Scholar] [CrossRef]
- Vartak, R.; Menon, S.; Patki, M.; Billack, B.; Patel, K. Ebselen nanoemulgel for the treatment of topical fungal infection. Eur. J. Pharm. Sci. 2020, 148, 105323. [Google Scholar] [CrossRef] [PubMed]
- Jaromin, A.; Zarnowski, R.; Piętka-Ottlik, M.; Andes, D.R.; Gubernator, J. Topical delivery of ebselen encapsulated in biopolymeric nanocapsules: Drug repurposing enhanced antifungal activity. Nanomedicine 2018, 13, 1139–1155. [Google Scholar] [CrossRef] [PubMed]
- Menon, S.; Vartak, R.; Patel, K.; Billack, B. Evaluation of the antifungal activity of an ebselen-loaded nanoemulsion in a mouse model of vulvovaginal candidiasis. Nanomedicine 2021, 37, 102428. [Google Scholar] [CrossRef]
- Vartak, R.; Patki, M.; Menon, S.; Jablonski, J.; Mediouni, S.; Fu, Y.; Valente, S.T.; Billack, B.; Patel, K. β-cyclodextrin polymer/Soluplus® encapsulated Ebselen ternary complex (EβpolySol) as a potential therapy for vaginal candidiasis and pre-exposure prophylactic for HIV. Int. J. Pharm. 2020, 589, 119863. [Google Scholar] [CrossRef]
- de Marco, B.A.; Rechelo, B.S.; Tótoli, E.G.; Kogawa, A.C.; Salgado, H.R.N. Evolution of green chemistry and its multidimensional impacts: A review. Saudi Pharm. J. 2019, 27, 1–8. [Google Scholar] [CrossRef]
- Kar, S.; Sanderson, H.; Roy, K.; Benfenati, E.; Leszczynski, J. Green Chemistry in the Synthesis of Pharmaceuticals. Chem. Rev. 2022, 122, 3637–3710. [Google Scholar] [CrossRef]
- Rodríguez Ugalde, A.A.; Bloom, S. Teaching water new tricks through boron coordination: Applications to green and sustainable synthesis. Curr. Opin. Green Sustain. Chem. 2023, 40, 100776. [Google Scholar] [CrossRef]
- Engel, E.R.; Scott, J.L. Advances in the green chemistry of coordination polymer materials. Green Chem. 2020, 22, 3693–3715. [Google Scholar] [CrossRef]
- Celebioglu, A.; Topuz, F.; Yildiz, Z.I.; Uyar, T. One-step green synthesis of antibacterial silver nanoparticles embedded in electrospun cyclodextrin nanofibers. Carbohydr. Polym. 2019, 207, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yao, L.; Li, S.; Li, S.; Wu, Y.; Li, Z.; Qiu, H. Green materials with promising applications: Cyclodextrin-based deep eutectic supramolecular polymers. Green Chem. 2023, 25, 4180–4195. [Google Scholar] [CrossRef]
- Narender, M.; Reddy, M.S.; Sridhar, R.; Nageswar, Y.V.D.; Rao, K.R. Aqueous phase synthesis of thiazoles and aminothiazoles in the presence of β-cyclodextrin. Tetrahedron Lett. 2005, 46, 5953–5955. [Google Scholar] [CrossRef]
- Bai, C.C.; Tian, B.R.; Zhao, T.; Huang, Q.; Wang, Z.Z. Cyclodextrin-Catalyzed Organic Synthesis: Reactions, Mechanisms, and Applications. Molecules 2017, 22, 1475. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.; Zhao, C.; Liu, J.; Du, Y. Design and synthesis of selenazole-substituted ritonavir analogs. Bioorg. Med. Chem. Lett. 2018, 28, 2379–2381. [Google Scholar] [CrossRef]
- Ignat Grozav, A.I.; Gaina, L.; Kuete, V.; Silaghi-Dumitrescu, L.; Efferth, T.; Zaharia, V. Microwave-assisted synthesis of new selenazole derivatives with antiproliferative activity. Molecules 2013, 18, 4679–4688. [Google Scholar] [CrossRef]
- Zhao, H.-C.; Shi, Y.-P.; Liu, Y.-M.; Li, C.-W.; Xuan, L.-N.; Wang, P.; Zhang, K.; Chen, B.-Q. Synthesis and antitumor-evaluation of 1,3-selenazole-containing 1,3,4-thiadiazole derivatives. Bioorg. Med. Chem. Lett. 2013, 23, 6577–6579. [Google Scholar] [CrossRef]
- Guan, Q.; Cheng, Z.; Ma, X.; Wang, L.; Feng, D.; Cui, Y.; Bao, K.; Wu, L.; Zhang, W. Synthesis and bioevaluation of 2-phenyl-4-methyl-1,3-selenazole-5-carboxylic acids as potent xanthine oxidase inhibitors. Eur. J. Med. Chem. 2014, 85, 508–516. [Google Scholar] [CrossRef]
- Narender, M.; Reddy, M.S.; Kumar, V.P.; Reddy, V.P.; Nageswar, Y.V.; Rao, K.R. Supramolecular synthesis of selenazoles using selenourea in water in the presence of beta-cyclodextrin under atmospheric pressure. J. Org. Chem. 2007, 72, 1849–1851. [Google Scholar] [CrossRef]
- Madhav, B.; Narayana Murthy, S.; Anil Kumar, B.S.P.; Ramesh, K.; Nageswar, Y.V.D. A tandem one-pot aqueous phase synthesis of thiazoles/selenazoles. Tetrahedron Lett. 2012, 53, 3835–3838. [Google Scholar] [CrossRef]
- Sridhar, R.; Srinivas, B.; Surendra, K.; Krishnaveni, N.S.; Rao, K.R. Synthesis of β-hydroxy selenides using benzeneselenol and oxiranes under supramolecular catalysis in the presence of β-cyclodextrin in water. Tetrahedron Lett. 2005, 46, 8837–8839. [Google Scholar] [CrossRef]
- Srinivas, B.; Kumar, V.P.; Sridhar, R.; Reddy, V.P.; Nageswar, Y.V.D.; Rao, K.R. β-Cyclodextrin-Promoted Addition of Benzeneselenol to Conjugated Alkenes in Water. Helv. Chim. Acta 2009, 92, 1080–1084. [Google Scholar] [CrossRef]
- Karnakar, K.; Ramesh, K.; Narayana Murthy, S.; Venkata Durga Nageswar, Y. Stereoselective Synthesis of (Z)- and (E)-Allyl Aryl Sulfides and Selenides from Baylis—Hillman Acetates under Neutral Conditions Using β-Cyclodextrin in Water. Helv. Chim. Acta 2013, 96, 2276–2281. [Google Scholar] [CrossRef]
- Wu, J.; Shen, Q.; Fang, L. Sulfobutylether-β-cyclodextrin/chitosan nanoparticles enhance the oral permeability and bioavailability of docetaxel. Drug Dev. Ind. Pharm. 2013, 39, 1010–1019. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, S.; Wong, L.R.; Xie, H.; Ho, P.C.-L. In Vitro and In Vivo Comparison of Curcumin-Encapsulated Chitosan-Coated Poly(lactic-co-glycolic acid) Nanoparticles and Curcumin/Hydroxypropyl-β-Cyclodextrin Inclusion Complexes Administered Intranasally as Therapeutic Strategies for Alzheimer’s Disease. Mol. Pharm. 2020, 17, 4256–4269. [Google Scholar] [CrossRef]
- Dandawate, P.R.; Vyas, A.; Ahmad, A.; Banerjee, S.; Deshpande, J.; Swamy, K.V.; Jamadar, A.; Dumhe-Klaire, A.C.; Padhye, S.; Sarkar, F.H. Inclusion Complex of Novel Curcumin Analogue CDF and β-Cyclodextrin (1:2) and Its Enhanced In Vivo Anticancer Activity against Pancreatic Cancer. Pharm. Res. 2012, 29, 1775–1786. [Google Scholar] [CrossRef] [PubMed]
- Aly, A.M.; Qato, M.K.; Ahmad, M. Enhancement of the dissolution rate and bioavailability of glipizide through cyclodextrin inclusion complex. Pharm. Technol. 2003, 27, 54–62. [Google Scholar]
- Ramirez, H.L.; Valdivia, A.; Cao, R.; Fragoso, A.; Torres Labandeira, J.J.; Baños, M.; Villalonga, R. Preparation of β-Cyclodextrin-Dextran Polymers and their Use as Supramolecular Carrier Systems for Naproxen. Polym. Bull. 2007, 59, 597–605. [Google Scholar] [CrossRef]
- Ramírez, H.L.; Cao, R.; Fragoso, A.; Torres-Labandeira, J.J.; Dominguez, A.; Schacht, E.H.; Baños, M.; Villalonga, R. Improved Anti-Inflammatory Properties for Naproxen with Cyclodextrin-Grafted Polysaccharides. Macromol. Biosci. 2006, 6, 555–561. [Google Scholar] [CrossRef]
- Kale, R.; Saraf, M.; Juvekar, A.; Tayade, P. Decreased B16F10 melanoma growth and impaired tumour vascularization in BDF1 mice with quercetin-cyclodextrin binary system. J. Pharm. Pharmacol. 2010, 58, 1351–1358. [Google Scholar] [CrossRef]
- Zhang, Y.; Gong, S.; Liu, L.; Shen, H.; Liu, E.; Pan, L.; Gao, N.; Chen, R.; Huang, Y. Cyclodextrin-Coordinated Liposome-in-Gel for Transcutaneous Quercetin Delivery for Psoriasis Treatment. ACS Appl. Mater. Interfaces 2023, 15, 40228–40240. [Google Scholar] [CrossRef]
- Sun, D.; Zou, Y.; Song, L.; Han, S.; Yang, H.; Chu, D.; Dai, Y.; Ma, J.; O’Driscoll, C.M.; Yu, Z.; et al. A cyclodextrin-based nanoformulation achieves co-delivery of ginsenoside Rg3 and quercetin for chemo-immunotherapy in colorectal cancer. Acta Pharm. Sin. B 2022, 12, 378–393. [Google Scholar] [CrossRef]
- Kapoor, M.P.; Moriwaki, M.; Uguri, K.; Timm, D.; Kuroiwa, Y. Bioavailability of dietary isoquercitrin-γ-cyclodextrin molecular inclusion complex in Sprague–Dawley rats and healthy humans. J. Funct. Food. 2021, 85, 104663. [Google Scholar] [CrossRef]
- Erdoğar, N.; Nemutlu, E.; İskit, A.B.; Kara, S.C.; Teksin, Z.Ş.; Bilensoy, E. Improved oral bioavailability of anticancer drug tamoxifen through complexation with water soluble cyclodextrins: In vitro and in vivo evaluation. J. Incl. Phenom. Macrocycl. Chem. 2020, 96, 81–91. [Google Scholar] [CrossRef]
- Abbas, Z.S.; Sulaiman, G.M.; Jabir, M.S.; Mohammed, S.A.A.; Khan, R.A.; Mohammed, H.A.; Al-Subaiyel, A. Galangin/β-Cyclodextrin Inclusion Complex as a Drug-Delivery System for Improved Solubility and Biocompatibility in Breast Cancer Treatment. Molecules 2022, 27, 4521. [Google Scholar] [CrossRef]
- Liao, Y.; Zhang, X.; Li, C.; Huang, Y.; Lei, M.; Yan, M.; Zhou, Y.; Zhao, C. Inclusion complexes of HP-β-cyclodextrin with agomelatine: Preparation, characterization, mechanism study and in vivo evaluation. Carbohydr. Polym. 2016, 147, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Fang, Y.; Jia, R.; Cao, K.; Chen, X.; Xia, H.; Cheng, Z. Study on the Antioxidant Effect of Shikonin-Loaded β-Cyclodextrin Forming Host–Guest Complexes That Prevent Skin from Photoaging. Int. J. Mol. Sci. 2023, 24, 15177. [Google Scholar] [CrossRef] [PubMed]
- Pushpalatha, R.; Selvamuthukumar, S.; Kilimozhi, D. Carbonyl and carboxylate crosslinked cyclodextrin as a nanocarrier for resveratrol: In silico, in vitro and in vivo evaluation. J. Incl. Phenom. Macrocycl. Chem. 2018, 92, 261–272. [Google Scholar] [CrossRef]
- Cirri, M.; Mennini, N.; Maestrelli, F.; Mura, P.; Ghelardini, C.; Di Cesare Mannelli, L. Development and in vivo evaluation of an innovative “Hydrochlorothiazide-in Cyclodextrins-in Solid Lipid Nanoparticles” formulation with sustained release and enhanced oral bioavailability for potential hypertension treatment in pediatrics. Int. J. Pharm. 2017, 521, 73–83. [Google Scholar] [CrossRef]
- Jain, M.; Nowak, B.P.; Ravoo, B.J. Supramolecular Hydrogels Based on Cyclodextrins: Progress and Perspectives. ChemNanoMat 2022, 8, e202200077. [Google Scholar] [CrossRef]
- Gowda, B.H.J.; Ahmed, M.G.; Almoyad, M.A.A.; Wahab, S.; Almalki, W.H.; Kesharwani, P. Nanosponges as an Emerging Platform for Cancer Treatment and Diagnosis. Adv. Funct. Mater. 2024, 34, 2307074. [Google Scholar] [CrossRef]
- Iravani, S.; Varma, R.S. Nanosponges for Drug Delivery and Cancer Therapy: Recent Advances. Nanomaterials 2022, 12, 2440. [Google Scholar] [CrossRef]
υ0 (M min−1) | Activity | |||
---|---|---|---|---|
Ref. | Hydroperoxide | ArSH | ArSH | GSH |
PhSeSePh | H2O2 | (0.12 ± 0.01) × 107 | 1 | 1 |
PhTeTePh | H2O2 | (8.03 ± 0.17) × 107 | 67 | 0.90 |
β-CD | H2O2 | 0 | 0 | 0.00052 |
18 | H2O2 | (0.49 ± 0.03) × 106 | 4083 | 2.03 |
BHP | (3.66 ± 0.12) × 106 | 30,500 | 4.12 | |
CHP | (1.50 ± 0.04) × 105 | 125,000 | 8.97 |
GPx-Mimicking Activities (U/µmol) | |||
---|---|---|---|
Ref. | H2O2 | BHP | CHP |
Ebselen | 0.99 ± 0.01 | 0.34 ± 0.01 | 1.24 ± 0.01 |
17 | 76.71 ± 0.36 | 104.5 ± 0.73 | 143.4 ± 0.82 |
19 | 12.21 ± 0.11 | 14.97 ± 0.17 | 18.32 ± 0.51 |
20 | 7.83 ± 0.25 | 9.82 ± 0.26 | 12.33 ± 0.33 |
21 | 6.08 ± 0.16 | 7.39 ± 0.08 | 8.63 ± 0.09 |
22 | 145.8 ± 0.71 | 645.3 ± 1.15 | 832.2 ± 2.56 |
23 | 22.57 ± 0.40 | 12.88 ± 0.21 | 38.51 ± 0.35 |
24 | 7.23 ± 0.16 | 3.76 ± 0.08 | 10.28 ± 0.10 |
Ref. | Activity (U/mg) | Activity (U/µmol) |
---|---|---|
β-CD | 0 | 0 |
β-CDen | 0 | 0 |
β-CDdien | 0 | 0 |
β-CDtrien | 0 | 0 |
β-CDprn | 0 | 0 |
25 | 179 | 269 |
26 | 330 | 510 |
27 | 221 | 343 |
28 | 206 | 301 |
29 | 121 | 184 |
30 | 162 | 262 |
Ref. | Activity (U/mg) | Activity (U/µmol) |
---|---|---|
β-CD | 361 | 99 |
β-CDen | 0 | 0 |
β-CDdien | 0 | 0 |
β-CDtrien | 0 | 0 |
β-CDprn | 0 | 0 |
Ebselen | 3.61 | 0.99 |
25 | 0 | 0 |
26 | 25 | 37 |
27 | 28 | 43 |
28 | 31 | 48 |
29 | 26 | 38 |
30 | 22 | 34 |
GPx-Mimicking Activities (%) | IC50 (µM) | |||||
---|---|---|---|---|---|---|
Ref. | H2O2 | BHP | CHP | TxR/Trx | TxR | MCF-7 |
1 | 100 | 120 | 105 | 18.0 | 17.8 | 10.2 |
36 | 170 | 560 | 2075 | 7.6 | 1.6 | 10.1 |
37 | 230 | 640 | 2200 | 7.6 | 1.6 | 4.6 |
38 | 225 | 940 | 1850 | 4.0 | 18.0 | 1.6 |
39 | 430 | 1240 | 2370 | 3.4 | 0.26 | 10.4 |
40 | 520 | 3680 | 6240 | 1.2 | 18.0 | 6.0 |
Water Solubility (M) | |||
---|---|---|---|
Ref. | Compound | Compound + β-CD | Compound + γ-CD |
42 | 9.70 × 10−6 | 9.92 × 10−4 | 2.73 × 10−4 |
43 | 2.24 × 10−5 | 5.65 × 10−5 | 5.24 × 10−5 |
44 | 1.20 × 10−5 | 1.57 × 10−4 | 4.39 × 10−5 |
45 | 2.00 × 10−5 | 4.53 × 10−5 | 3.37 × 10−5 |
46 | 5.72 × 10−6 | 4.55 × 10−5 | 4.21 × 10−5 |
47 | 8.43 × 10−6 | 1.01 × 10−4 | 1.51 × 10−5 |
48 | 1.32 × 10−7 | 7.96 × 10−6 | 7.60 × 10−6 |
49 | 6.05 × 10−7 | 2.19 × 10−7 | 6.14 × 10−6 |
50 | 5.57 × 10−6 | 2.70 × 10−5 | 1.77 × 10−5 |
51 | 2.12 × 10−5 | 5.42 × 10−3 | 7.50 × 10−3 |
MIC (µM) | ||
---|---|---|
Ref. | Candida albicans | Candida glabrata |
EβpolySol | 20 µM | 20 µM |
Ebselen (in DMSO) | 20 µM | 20 µM |
Blank film | >500 µM | >500 µM |
Fluconazole | >500 µM | >500 µM |
Miconazole | 100 µM | 100 µM |
Ref. | R | X | Time (min) | Yield (%) |
---|---|---|---|---|
52 | H | 40 | 92 | |
53 | H | 45 | 94 | |
54 | H | 40 | 95 | |
55 | H | 50 | 93 | |
56 | H | 50 | 92 | |
57 | H | 50 | 90 | |
58 | H | 35 | 94 | |
59 | 45 | 91 | ||
60 | H | 60 | 86 | |
61 | 55 | 87 |
Ref. | X | Y | R1 | R2 | Yield (%) |
---|---|---|---|---|---|
62 | H | C | H | H | 69 |
63 | F | C | H | H | 68 |
64 | H | C | CH3 | CH3 | 70 |
65 | H | N | CH3 | CH3 | 72 |
66 | CN | C | CH3 | CH3 | 61 |
67 | - | - | - | - | 64 |
Ref. | R | Time (min) | Yield (%) |
---|---|---|---|
68 | 30 | 86 | |
69 | 30 | 86 | |
70 | 30 | 84 | |
71 | 35 | 82 | |
72 | 35 | 82 | |
73 | 35 | 80 | |
74 | 25 | 78 | |
75 | 40 | 75 | |
76 | - | 40 | 80 |
77 | - | 40 | 80 |
Ref. | X | R | Time (min) | Yield (%) |
---|---|---|---|---|
78 | COCH3 | H | 20 | 88 |
79 | CN | H | 25 | 86 |
80 | CHO | H | 20 | 85 |
81 | CO2Me | H | 25 | 86 |
82 | CO2Me | CH3 | 45 | 82 |
83 | CO2Et | H | 25 | 86 |
84 | CO2Et | CH3 | 45 | 80 |
85 | CONH2 | H | 30 | 80 |
86 | - | - | 45 | 82 |
87 | - | - | 45 | 80 |
Ref. | R1 | R2 | Isomer | Time (h) | Yield (%) |
---|---|---|---|---|---|
88 | COOMe | Z | 5 | 88 | |
89 | COOEt | Z | 5 | 85 | |
90 | COOEt | Z | 5 | 82 | |
91 | COOEt | Z | 5 | 81 | |
92 | COOMe | Z | 55 | 68 | |
93 | COOEt | Z | 6 | 70 | |
94 | CN | E | 5 | 75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morán-Serradilla, C.; Plano, D.; Sharma, A.K.; Sanmartín, C. Following the Trace of Cyclodextrins on the Selenium and Tellurium Odyssey. Int. J. Mol. Sci. 2024, 25, 7799. https://doi.org/10.3390/ijms25147799
Morán-Serradilla C, Plano D, Sharma AK, Sanmartín C. Following the Trace of Cyclodextrins on the Selenium and Tellurium Odyssey. International Journal of Molecular Sciences. 2024; 25(14):7799. https://doi.org/10.3390/ijms25147799
Chicago/Turabian StyleMorán-Serradilla, Cristina, Daniel Plano, Arun K. Sharma, and Carmen Sanmartín. 2024. "Following the Trace of Cyclodextrins on the Selenium and Tellurium Odyssey" International Journal of Molecular Sciences 25, no. 14: 7799. https://doi.org/10.3390/ijms25147799
APA StyleMorán-Serradilla, C., Plano, D., Sharma, A. K., & Sanmartín, C. (2024). Following the Trace of Cyclodextrins on the Selenium and Tellurium Odyssey. International Journal of Molecular Sciences, 25(14), 7799. https://doi.org/10.3390/ijms25147799