Recent Advances in Dietary Sources, Health Benefits, Emerging Encapsulation Methods, Food Fortification, and New Sensor-Based Monitoring of Vitamin B12: A Critical Review
<p>Chemical structure of VB<sub>12.</sub> (Co<sup>+</sup> is central cobalt ion linked to the upper ligand (R).</p> "> Figure 2
<p>Scanning electron microscopy (SEM; magnification of 5000×, scale bar of 20 μm) images of electrospun and electrosprayed VB<sub>12</sub>-loaded zein microstructures (70% ethanol, 10–20% zein (Z), and 1–10% VB<sub>12</sub>) prepared by electrospinning and spray-drying techniques under different operating and formulation conditions: (<b>A</b>), 10 Z:1 VB<sub>12</sub>; (<b>B</b>), 10 Z:5 VB<sub>12</sub>; (<b>C</b>), 10 Z:10 VB<sub>12</sub>; 0.3 mL/h of flow rate, 7 cm distance; 20 Z:5 VB<sub>12</sub>; 0.2 mL/h of flow rate with 7 cm (<b>D</b>), 10 cm (<b>E</b>), and 15 cm (<b>F</b>) distances). Reprinted with permission from [<a href="#B90-molecules-28-07469" class="html-bibr">90</a>].</p> "> Figure 3
<p>SEM images (magnification of 5000×, scale bar of 20 μm) of 20% zein (Z)-based microcapsules loaded with VB<sub>12</sub> (1–10%) and prepared by spray-drying: (<b>A</b>), Z20:1 VB<sub>12</sub>; (<b>B</b>), Z20:5 VB<sub>12</sub>; (<b>C</b>), Z20:10 VB<sub>12</sub>). Reprinted with permission from [<a href="#B90-molecules-28-07469" class="html-bibr">90</a>].</p> "> Figure 4
<p>In vitro release profiles of EGCG/VB<sub>12</sub>/(EGCG + VB<sub>12</sub>) normalized by the total amount released, in water of the electrospun zein (30% <span class="html-italic">w</span>/<span class="html-italic">v</span>) microstructures loaded with active compounds (0.5, 1, and 5% <span class="html-italic">w</span>/<span class="html-italic">w</span>). Reprinted from [<a href="#B83-molecules-28-07469" class="html-bibr">83</a>].</p> "> Figure 5
<p>The release profile of VB<sub>12</sub> at pH 7.46 (<b>a</b>), doxorubicin at pH 7.46 (<b>b</b>), and doxorubicin at pH 4.5 (<b>c</b>). The pictorial representation of release of VB<sub>12</sub> (<b>d</b>) and doxorubicin (<b>e</b>). Reprinted with permission from [<a href="#B102-molecules-28-07469" class="html-bibr">102</a>].</p> "> Figure 6
<p>Representative images of lyophilized VB<sub>12</sub> lipid vesicles: (<b>a</b>) empty liposome with lactose, (<b>b</b>) empty liposome with sorbitol, (<b>c</b>) VB<sub>12</sub>-loaded liposome with lactose, (<b>d</b>) VB<sub>12</sub>-loaded liposome with sorbitol, (<b>e</b>) empty transfersome with lactose, (<b>f</b>) empty transfersome with sorbitol, (<b>g</b>) VB<sub>12</sub>-loaded transfersome with lactose, and (<b>h</b>) VB<sub>12</sub>-loaded transfersome with sorbitol. Reprinted from [<a href="#B107-molecules-28-07469" class="html-bibr">107</a>].</p> "> Figure 7
<p>Schematic images of some VB<sub>12</sub>-nanoencapsulating systems including niosome (<b>A</b>), liposome (<b>B</b>), O/W emulsion (<b>C</b>), W/O/W emulsion (<b>D</b>), and SLNs (<b>E</b>). Reprinted from [<a href="#B131-molecules-28-07469" class="html-bibr">131</a>,<a href="#B132-molecules-28-07469" class="html-bibr">132</a>].</p> "> Figure 8
<p>The limit of detection (LOD) and linear range of VB<sub>12</sub> detected by some electrochemical sensors (see <a href="#molecules-28-07469-t003" class="html-table">Table 3</a> for more information) [<a href="#B173-molecules-28-07469" class="html-bibr">173</a>,<a href="#B174-molecules-28-07469" class="html-bibr">174</a>,<a href="#B175-molecules-28-07469" class="html-bibr">175</a>,<a href="#B176-molecules-28-07469" class="html-bibr">176</a>,<a href="#B178-molecules-28-07469" class="html-bibr">178</a>,<a href="#B179-molecules-28-07469" class="html-bibr">179</a>,<a href="#B180-molecules-28-07469" class="html-bibr">180</a>,<a href="#B181-molecules-28-07469" class="html-bibr">181</a>].</p> "> Figure 9
<p>(<b>A</b>) Cyclic voltammograms recorded during the growth process of the PTH film on GCE in a nitrogen-saturated 0.1 M pH 6.0 buffer solution containing 5 mmol L<sup>−1</sup> TH and 0.1 mol L<sup>−1</sup> NaNO<sub>3</sub>, with a scan rate of 100 mV s<sup>−1</sup>. (<b>B</b>) SEM image of the GCE(ea)/PTH surface. (<b>C</b>) FTIR spectrum of the PTH film (The wavenumbers corresponding to the primary chemo-functional groups (−OH, −NH<sub>2</sub>, C=N, and −C=C−) are highlighted in red). (<b>D</b>) Cyclic voltammograms of GCE(ea)/PTH in 0.1 mol L<sup>−1</sup> pH 6.5 buffer at various scan rates (ν, color curves), ranging from a to i: from 10 to 600 mV s<sup>−1</sup>. Reprinted with permission from [<a href="#B179-molecules-28-07469" class="html-bibr">179</a>].</p> ">
Abstract
:1. Introduction
2. Chemical Structure and Dietary Sources of Vitamin B12
3. Nutritional Effects and Health Functions of Vitamin B12
3.1. Absorption Mechanism and Bioavailability Assay
3.2. Health Benefits and Disease Prevention
4. Emerging Encapsulation Methods of Vitamin B12
4.1. Microencapsulation
4.1.1. Single-Core Microcapsules
4.1.2. Double- and Multiple-Core Microcapsules
4.2. Nanoencapsulation
4.2.1. Nanovesicles
4.2.2. Nanoemulsions
4.2.3. Nanoparticles
5. Food Fortification
5.1. Direct Enrichment of Vitamin B12
5.2. Enrichment with Vitamin B12 Capsules
6. Methods for Extracting Vitamin B12 from Capsules
7. Emerging Biosensing Technologies for Vitamin B12 Detection
7.1. Fluorescent Carbon Dots Nanosensors of Vitamin B12
7.2. Nanoclusters as Fluorescent Probes of Vitamin B12
7.3. Electrochemical Sensors of Vitamin B12
Electrode Material | Chemical Modification of Electrode (with) | Electrochemical Technique | Sample Media | Sensitivity | Ref. |
---|---|---|---|---|---|
Platinum (Pt) | Cu(1,3,5-benzenetricarboxylic acid)(4,4′-bipyridine)·3 (N,N′-dimethylformamide) | Cyclic voltammetry (CV) | Two commercial pharmaceutical VB12-tablets | 0.104 µA µM−1 | [172] |
Indium tin oxide (ITO) | Gold-tin dioxide (AuSnO2) | Differential pulse voltammetry (DPV) | Fresh cow’s milk | - | [173] |
Glassy carbon | Gold-polypyrrole nanoparticles and functionalized carbon nanotubes (Au-PPyNPs@f-CNTs) | Amperometry | VB12 capsule, Human plasma | 4.3597 µA µM−1 | [174] |
Carbon fiber paper | Palladium-gold polypyrrole (PdAu-PPy) | Differential pulse voltammetry (DPV) | Human Blood serum, Urine | 10.576 μA μM−1 cm−2 | [175] |
Graphenic carbon (GUITAR) | Copper oxide | Linear sweep voltammetry (LSV) | Four biological Samples | - | [176] |
Boron-doped diamond | - | Squarewave voltammetry (SWV) | VB12 supplementation tablets, VB12-fortified toothpaste | 4.17 μA μM−1 cm−2 | [177] |
Gold | Polypyrrole/ferromagnetic nanoparticles/triazine dendrimer (PPy/FMNPs@TD) | Differential pulse voltammetry (DPV) | Food product | 25.6 (μA/μM) | [178] |
Glassy carbon | Poly(thionine) film | Cyclic voltammetry (CV) | Injection sample | - | [179] |
Pencil graphite | Poly(3,4-ethylenedioxythiophene/silver nanoparticles (PEDOT)/AgNPs | Differential pulse voltammetry (DPV) | Human blood serum, Urine | - | [180] |
Glassy carbon | Polymethylene blue/zinc oxide nanoparticles (polyMB/ZnONPs) | Differential pulse voltammetry (DPV) | Two commercial pharmaceutical VB12-tablets | - | [181] |
Carbon paste | [Mn(thiophen-2-carboxylic acid)2(triethanolamine)] | Squarewave voltammetry (SWV) | Commercial VB12-tablets, Dietary VB12-supplements | - | [183] |
Pencil graphite | Methyl blue (MB)-adsorbed reduced graphene oxide (rGO) and functionalized multiwalled carbon nanotubes (f-MWCNTs)/acryloylurea-molecularly imprinted polymer (AU-MIP) | Differential pulse anodic voltammetry (DPAV) | Pharmaceutics, Blood serum, Urine, Cerebrospinal fluid (CSF) | - | [182] |
8. Conclusions and Future Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carazo, A.; Macáková, K.; Matoušová, K.; Krčmová, L.K.; Protti, M.; Mladěnka, P. Vitamin A Update: Forms, Sources, Kinetics, Detection, Function, Deficiency, Therapeutic Use and Toxicity. Nutrients 2021, 13, 1703. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.A. Physiological Functions of Vitamin D in Adipose Tissue. J. Steroid Biochem. Mol. Biol. 2017, 165, 369–381. [Google Scholar] [CrossRef]
- Hashemifesharaki, R.; Gharibzahedi, S.M.T. Future Nutrient-Dense Diets Rich in Vitamin D: A New Insight Toward the Reduction of Adverse Impacts of Viral Infections Similar to COVID-19. Nutrire 2020, 45, 19. [Google Scholar] [CrossRef]
- Zaaboul, F.; Liu, Y. Vitamin E in Foodstuff: Nutritional, Analytical, and Food Technology Aspects. Compr. Rev. Food Sci. Food Saf. 2022, 21, 964–998. [Google Scholar] [CrossRef] [PubMed]
- Gharibzahedi, S.M.T.; Mousavi, S.M.; Hamedi, M.; Rezaei, K.; Khodaiyan, F. Evaluation of Physicochemical Properties and Antioxidant Activities of Persian Walnut Oil Obtained by Several Extraction Methods. Ind. Crops Prod. 2013, 45, 133–140. [Google Scholar] [CrossRef]
- Palmer, C.R.; Blekkenhorst, L.C.; Lewis, J.R.; Ward, N.C.; Schultz, C.J.; Hodgson, J.M.; Croft, K.D.; Sim, M. Quantifying Dietary Vitamin K and Its Link to Cardiovascular Health: A Narrative Review. Food Funct. 2020, 11, 2826–2837. [Google Scholar] [CrossRef]
- Doseděl, M.; Jirkovský, E.; Macáková, K.; Krčmová, L.K.; Javorská, L.; Pourová, J.; Mercolini, L.; Remião, F.; Nováková, L.; Mladěnka, P.; et al. Vitamin C—Sources, Physiological Role, Kinetics, Deficiency, Use, Toxicity, and Determination. Nutrients 2021, 13, 615. [Google Scholar] [CrossRef]
- Rostami, H.; Gharibzahedi, S.M.T. Mathematical Modeling of Mucilage Extraction Kinetic from the Waste Hydrolysates of Fruiting Bodies of Zizyphus jujuba Mill. J. Food Process. Preserv. 2017, 41, e13064. [Google Scholar] [CrossRef]
- Hanna, M.; Jaqua, E.; Nguyen, V.; Clay, J.B. Vitamins: Functions and Uses in Medicine. Perm. J. 2022, 26, 89–97. [Google Scholar] [CrossRef]
- Ahmadi, R.; Kalbasi-Ashtari, A.; Gharibzahedi, S.M.T. Physical Properties of Psyllium Seed. Int. Agrophys. 2012, 26, 91–93. [Google Scholar] [CrossRef]
- Hrubša, M.; Siatka, T.; Nejmanová, I.; Vopršalová, M.; Kujovská Krčmová, L.; Matoušová, K.; Javorská, L.; Macáková, K.; Mercolini, L.; Remião, F.; et al. Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B1, B2, B3, and B5. Nutrients 2022, 14, 484. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, A.; Safari, M.; Khodaiyan, F.; Gharibzahedi, S.M.T. Bioconversion Enhancement of Conjugated Linoleic Acid by Lactobacillus plantarum Using the Culture Media Manipulation and Numerical Optimization. J. Food Sci. Technol. 2015, 52, 5781–5789. [Google Scholar] [CrossRef]
- Saghiri, M.A.; Asatourian, A.; Ershadifar, S.; Moghadam, M.M.; Sheibani, N. Vitamins and Regulation of Angiogenesis: [A, B1, B2, B3, B6, B9, B12, C, D, E, K]. J. Funct. Foods 2017, 38, 180–196. [Google Scholar] [CrossRef]
- Pathan, A.S.; Jain, P.G.; Mahajan, A.B.; Kumawat, V.S.; Ahire, E.D.; Surana, K.R.; Rajora, A.K.; Rajora, M.A.K. Beneficial Effects of Water-Soluble Vitamins in Nutrition and Health Promotion. In Vitamins as Nutraceuticals: Recent Advances and Applications; Ahire, E.D., Keservani, R.K., Surana, K.R., Singh, S., Kesharwani, R.K., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2023; pp. 235–251. [Google Scholar] [CrossRef]
- Green, R.; Allen, L.H.; Bjørke-Monsen, A.L.; Brito, A.; Guéant, J.L.; Miller, J.W.; Molloy, A.M.; Nexo, E.; Stabler, S.; Toh, B.H.; et al. Vitamin B12 Deficiency. Nat. Rev. Dis. Primers 2017, 3, 17040. [Google Scholar] [CrossRef]
- Infante, M.; Leoni, M.; Caprio, M.; Fabbri, A. Long-term Metformin Therapy and Vitamin B12 Deficiency: An Association to Bear in Mind. World J. Diabetes 2021, 12, 916–931. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Jafari, S.M. Nano-encapsulation of Minerals. In Nano-Encapsulation of Food Bioactive Ingredients: Principles and Applications, 1st ed.; Jafari, S.M., Ed.; Elsevier UK: London, UK, 2017; pp. 333–400. [Google Scholar] [CrossRef]
- Guéant, J.L.; Guéant-Rodriguez, R.M.; Alpers, D.H. Vitamin B12 Absorption and Malabsorption. Vitam. Horm. 2022, 119, 241–274. [Google Scholar] [CrossRef]
- Golbargi, F.; Gharibzahedi, S.M.T.; Zoghi, A.; Mohammadi, M.; Hashemifesharaki, R. Microwave-Assisted Extraction of Arabinan-rich Pectic Polysaccharides from Melon Peels: Optimization, Purification, Bioactivity, and Techno-Functionality. Carbohydr. Polym. 2021, 256, 117522. [Google Scholar] [CrossRef]
- Nakos, M.; Pepelanova, I.; Beutel, S.; Krings, U.; Berger, R.G.; Scheper, T. Isolation and Analysis of Vitamin B12 from Plant Samples. Food Chem. 2017, 216, 301–308. [Google Scholar] [CrossRef]
- Maiorova, L.A.; Erokhina, S.I.; Pisani, M.; Barucca, G.; Marcaccio, M.; Koifman, O.I.; Salnikov, D.S.; Gromova, O.A.; Astolfi, P.; Ricci, V.; et al. Encapsulation of Vitamin B12 into Nanoengineered Capsules and Soft Matter Nanosystems for Targeted Delivery. Colloids Surf. B Biointerfaces 2019, 182, 110366. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Jafari, S.M. Nanocapsule Formation by Cyclodextrins. In Nanoencapsulation Technologies for the Food and Nutraceutical Industries; Jafari, S.M., Ed.; Academic Press: London, UK, 2017; pp. 187–261. [Google Scholar] [CrossRef]
- Susanti, D.; Ruslan, F.S.; Shukor, M.I.; Nor, N.M.; Aminudin, N.I.; Taher, M.; Khotib, J. Optimisation of Vitamin B12 Extraction from Green Edible Seaweed (Ulva lactuca) by Applying the Central Composite Design. Molecules 2022, 27, 4459. [Google Scholar] [CrossRef]
- Akbari, N.; Assadpour, E.; Kharazmi, M.S.; Jafari, S.M. Encapsulation of Vitamin B12 by Complex Coacervation of Whey Protein Concentrate–Pectin; Optimization and Characterization. Molecules 2022, 27, 6130. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, W.E.; Yan, J.Q.; Liu, M.; Zhou, Y.; Shen, X.; Ma, Y.L.; Feng, X.S.; Yang, J.; Li, G.H. A Review of the Extraction and Determination Methods of Thirteen Essential Vitamins to the Human Body: An Update from 2010. Molecules 2018, 23, 1484. [Google Scholar] [CrossRef]
- Ströhle, A.; Richter, M.; González-Gross, M.; Neuhäuser-Berthold, M.; Wagner, K.-H.; Leschik-Bonnet, E.; Egert, S.; German Nutrition Society (DGE). The Revised D-A-CH-Reference Values for the Intake of Vitamin B12: Prevention of Deficiency and Beyond. Mol. Nutr. Food Res. 2019, 63, 1801178. [Google Scholar] [CrossRef] [PubMed]
- Bensky, M.J.; Ayalon-Dangur, I.; Ayalon-Dangur, R.; Naamany, E.; Gafter-Gvili, A.; Koren, G.; Shiber, S. Comparison of Sublingual vs. Intramuscular Administration of Vitamin B12 for the Treatment of Patients with Vitamin B12 Deficiency. Drug Deliv. Transl. Res. 2019, 9, 625–630. [Google Scholar] [CrossRef]
- Estourgie-van Burk, G.F.; van der Kuy, P.H.M.; de Meij, T.G.; Benninga, M.A.; Kneepkens, C.M.F. Intranasal Treatment of Vitamin B12 Deficiency in Children. Eur. J. Pediatr. 2020, 179, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Temova Rakuša, Ž.; Roškar, R.; Hickey, N.; Geremia, S. Vitamin B12 in Foods, Food Supplements, and Medicines—A Review of Its Role and Properties with a Focus on Its Stability. Molecules 2023, 28, 240. [Google Scholar] [CrossRef]
- Andrès, E.; Zulfiqar, A.-A.; Vogel, T. State of the Art Review: Oral and Nasal Vitamin B12 Therapy in the Elderly. QJM 2020, 113, 5–15. [Google Scholar] [CrossRef]
- Ali, S.M.; Abdelkader, H.; Elrehany, M.; Mansour, H.F. Vitamin B12 buccoadhesive tablets: Auspicious non-invasive substitute for intra muscular injection: Formulation, in vitro and in vivo appraisal. Drug Dev. Ind. Pharm. 2019, 45, 244–251. [Google Scholar] [CrossRef]
- Antherjanam, S.; Saraswathyamma, B.; Krishnan, R.G.; Gopakumar, G.M. Electrochemical Sensors as a Versatile Tool for the Quantitative Analysis of Vitamin B12. Chem. Pap. 2021, 75, 2981–2995. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Barba, F.J.; Zhou, J.; Wang, M.; Altintas, Z. Electronic Sensor Technologies in Monitoring Quality of Tea: A Review. Biosensors 2022, 12, 356. [Google Scholar] [CrossRef] [PubMed]
- Gharibzahedi, S.M.T.; Barba, F.J.; Mofid, V.; Altintas, Z. Biosensing Technology in Food Production and Processing. In Advanced Sensor Technology; Barhoum, A., Altintas, Z., Eds.; Elsevier: London, UK, 2023; pp. 743–824. [Google Scholar] [CrossRef]
- Osman, D.; Cooke, A.; Young, T.R.; Deery, E.; Robinson, N.J.; Warren, M.J. The Requirement for Cobalt in Vitamin B12: A Paradigm for Protein Metalation. Biochim. Biophys. Acta Mol. Cell Res. 2021, 1868, 118896. [Google Scholar] [CrossRef] [PubMed]
- Froese, D.S.; Fowler, B.; Baumgartner, M.R. Vitamin B12, Folate, and the Methionine Remethylation Cycle—Biochemistry, PathWays, and Regulation. J. Inherit. Metab. Dis. 2019, 42, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Dubascoux, S.; Payot, J.R.; Sylvain, P.; Nicolas, M.; Gimenez, E.C. Vitamin B12 Quantification in Human Milk–Beyond Current Limitations Using Liquid Chromatography and Inductively Coupled Plasma–Mass Spectrometry. Food Chem. 2021, 362, 130197. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, F. Vitamin B12 Sources and Bioavailability. Exp. Biol. Med. 2007, 232, 1266–1274. [Google Scholar] [CrossRef]
- Butola, L.K.; Kute, P.K.; Anjankar, A.; Dhok, A.; Gusain, N.; Vagga, A. Vitamin B12—Do You Know Everything. J. Evolut. Med. Dent. Sci. 2020, 9, 3139–3147. [Google Scholar] [CrossRef]
- Antony, A.C. Vegetarianism and Other Restricted Diets. In Nutritional Anemia: Scientific Principles, Clinical Practice, and Public Health; Means, R.T., Jr., Ed.; Cambridge University Press: Cambridge, UK, 2019; pp. 165–166. [Google Scholar]
- Lee, K.; Lee, H.; Choi, Y.; Kim, Y.; Jeong, H.S.; Lee, J. Effect of Different Cooking Methods on the True Retention of Vitamins, Minerals, and Bioactive Compounds in Shiitake Mushrooms (Lentinula edodes). Food Sci. Technol. Res. 2019, 25, 115–122. [Google Scholar] [CrossRef]
- Singh, M.P.; Rai, S.N.; Dubey, S.K.; Pandey, A.T.; Tabassum, N.; Chaturvedi, V.K.; Singh, N.B. Biomolecules of Mushroom: A Recipe of Human Wellness. Crit. Rev. Biotechnol. 2022, 42, 913–930. [Google Scholar] [CrossRef] [PubMed]
- Marques de Brito, B.; Campos, V.D.M.; Neves, F.J.; Ramos, L.R.; Tomita, L.Y. Vitamin B12 Sources in Non-Animal Foods: A Systematic Review. Crit. Rev. Food Sci. Nutr. 2023, 63, 7853–7867. [Google Scholar] [CrossRef]
- Arora, N.; Philippidis, G.P. The Prospects of Algae-Derived Vitamins and Their Precursors for Sustainable Cosmeceuticals. Processes 2023, 11, 587. [Google Scholar] [CrossRef]
- Oh, S.; Cave, G.; Lu, C. Vitamin B12 (Cobalamin) and Micronutrient Fortification in Food Crops Using Nanoparticle Technology. Front. Plant Sci. 2021, 12, 668819. [Google Scholar] [CrossRef]
- Mikkelsen, K.; Apostolopoulos, V. Vitamin B12, Folic Acid, and the Immune System. In Nutrition and Immunity; Mahmoudi, M., Rezaei, N., Eds.; Springer: Cham, Switzerland, 2019; pp. 103–114. [Google Scholar] [CrossRef]
- Rashid, S.; Meier, V.; Patrick, H. Review of Vitamin B12 Deficiency in Pregnancy: A Diagnosis Not to Miss as Veganism and Vegetarianism Become More Prevalent. Eur. J. Haematol. 2021, 106, 450–455. [Google Scholar] [CrossRef]
- Sharma, P.; Pathak, P.; Tyagi, V.; Khan, F.; Shanker, K.; Darokar, M.P.; Pal, A. Investigation of the Potential of Glycyrrhiza glabra as a Bioavailability Enhancer of Vitamin B12. Front. Nutr. 2022, 9, 1038902. [Google Scholar] [CrossRef]
- Allen, L.H. Bioavailability of Vitamin B12. Int. J. Vitam. Nutr. Res. 2010, 80, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.W.; Green, R. Assessing Vitamin B-12 Absorption and Bioavailability: Read the Label. Am. J. Clin. Nutr. 2020, 112, 1420–1421. [Google Scholar] [CrossRef] [PubMed]
- Harrington, D.J. Laboratory Assessment of Vitamin B12 Status. J. Clin. Pathol. 2017, 70, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Brito, A.; Habeych, E.; Silva-Zolezzi, I.; Galaffu, N.; Allen, L.H. Methods to Assess Vitamin B12 Bioavailability and Technologies to Enhance Its Absorption. Nutr. Rev. 2018, 76, 778–792. [Google Scholar] [CrossRef]
- Garrod, M.G.; Rossow, H.A.; Calvert, C.C.; Miller, J.W.; Green, R.; Buchholz, B.A.; Allen, L.H. 14C-Cobalamin Absorption from Endogenously Labeled Chicken Eggs Assessed in Humans Using Accelerator Mass Spectrometry. Nutrients 2019, 11, 2148. [Google Scholar] [CrossRef] [PubMed]
- Garrod, M.G.; Buchholz, B.A.; Miller, J.W.; Haack, K.W.; Green, R.; Allen, L.H. Vitamin B12 Added as a Fortificant to Flour Retains High Bioavailability When Baked in Bread. Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. At. 2019, 438, 136–140. [Google Scholar] [CrossRef]
- Devi, S.; Pasanna, R.M.; Shamshuddin, Z.; Bhat, K.; Sivadas, A.; Mandal, A.K.; Kurpad, A.V. Measuring Vitamin B-12 Bioavailability with [13C]-Cyanocobalamin in Humans. Am. J. Clin. Nutr. 2020, 112, 1504–1515. [Google Scholar] [CrossRef]
- Guéant, J.L.; Guéant-Rodriguez, R.M.; Kosgei, V.J.; Coelho, D. Causes and Consequences of Impaired Methionine Synthase Activity in Acquired and Inherited Disorders of Vitamin B12 Metabolism. Crit. Rev. Biochem. Mol. Biol. 2022, 57, 133–155. [Google Scholar] [CrossRef]
- Ge, Y.; Zadeh, M.; Mohamadzadeh, M. Vitamin B12 Regulates the Transcriptional, Metabolic, and Epigenetic Programing in Human Ileal Epithelial Cells. Nutrients 2022, 14, 2825. [Google Scholar] [CrossRef] [PubMed]
- Surana, K.R.; Ahire, E.D.; Patil, S.J.; Mahajan, S.K.; Patil, D.M.; Sonawane, D.D. Introduction to Nutraceutical Vitamins. In Vitamins as Nutraceuticals: Recent Advances and Applications; Ahire, E.D., Keservani, R.K., Surana, K.R., Singh, S., Kesharwani, R.K., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2023; pp. 1–34. [Google Scholar] [CrossRef]
- Lyon, P.; Strippoli, V.; Fang, B.; Cimmino, L. B Vitamins and One-Carbon Metabolism: Implications in Human Health and Disease. Nutrients 2020, 12, 2867. [Google Scholar] [CrossRef] [PubMed]
- Ghergurovich, J.M.; Xu, X.; Wang, J.Z.; Yang, L.; Ryseck, R.P.; Wang, L.; Rabinowitz, J.D. Methionine Synthase Supports Tumour Tetrahydrofolate Pools. Nat. Metab. 2021, 3, 1512–1520. [Google Scholar] [CrossRef]
- Schleicher, E.; Didangelos, T.; Kotzakioulafi, E.; Cegan, A.; Peter, A.; Kantartzis, K. Clinical Pathobiochemistry of Vitamin B12 Deficiency: Improving Our Understanding by Exploring Novel Mechanisms with a Focus on Diabetic Neuropathy. Nutrients 2023, 15, 2597. [Google Scholar] [CrossRef]
- Liu, Y.; Geng, T.; Wan, Z.; Lu, Q.; Zhang, X.; Qiu, Z.; Li, L.; Zhu, K.; Liu, L.; Pan, A.; et al. Associations of Serum Folate and Vitamin B12 Levels with Cardiovascular Disease Mortality Among Patients with Type 2 Diabetes. JAMA Netw. Open 2022, 5, e2146124. [Google Scholar] [CrossRef]
- Mohan, A.; Kumar, R.; Kumar, V.; Yadav, M. Homocysteine, Vitamin B12 and Folate Level: Possible Risk Factors in the Progression of Chronic Heart and Kidney Disorders. Curr. Cardiol. Rev. 2023, 19, 66–83. [Google Scholar] [CrossRef] [PubMed]
- Denniss, R.J.; Barker, L.A. Brain Trauma and the Secondary Cascade in Humans: Review of the Potential Role of Vitamins in Reparative Processes and Functional Outcome. Behav. Sci. 2023, 13, 388. [Google Scholar] [CrossRef]
- Nawaz, A.; Khattak, N.N.; Khan, M.S.; Nangyal, H.; Sabri, S.; Shakir, M. Deficiency of Vitamin B12 and Its Relation with Neurological Disorders: A Critical Review. J. Basic Appl. Zool. 2020, 81, 10. [Google Scholar] [CrossRef]
- Cicero, A.F.; Minervino, A. Combined Action of Same, Folate, and Vitamin B12 in the Treatment of Mood Disorders: A Review. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 2443–2459. [Google Scholar] [CrossRef]
- Calderón-Ospina, C.A.; Nava-Mesa, M.O. B Vitamins in the Nervous System: Current Knowledge of the Biochemical Modes of Action and Synergies of Thiamine, Pyridoxine, and Cobalamin. CNS Neurosci. Ther. 2020, 26, 5–13. [Google Scholar] [CrossRef]
- O’Neill, E.K.; Mankad, K.; Bowman, R.; Thompson, D.A. Electrophysiological Assessment of Nutritional Optic Neuropathy: A Case Report. Doc. Ophthalmol. 2023, 146, 181–189. [Google Scholar] [CrossRef]
- Ata, F.; Bilal, A.B.I.; Javed, S.; Chaudhry, H.S.; Sharma, R.; Malik, R.F.; Choudry, H.; Kartha, A.B. Optic Neuropathy as a Presenting Feature of Vitamin B-12 Deficiency: A Systematic Review of Literature and a Case Report. Ann. Med. Surg. 2020, 60, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Ozen, S.; Ozer, M.A.; Akdemir, M.O. Vitamin B12 Deficiency Evaluation and Treatment in Severe Dry Eye Disease with Neuropathic Ocular Pain. Graefe’s Arch. Clin. Exp. Ophthalmol. 2017, 255, 1173–1177. [Google Scholar] [CrossRef]
- Parravano, M.; Scarinci, F.; Parisi, V.; Giorno, P.; Giannini, D.; Oddone, F.; Varano, M. Citicoline and Vitamin B12 Eye Drops in Type 1 Diabetes: Results of a 3-year Pilot Study Evaluating Morpho-Functional Retinal Changes. Adv. Ther. 2020, 37, 1646–1663. [Google Scholar] [CrossRef]
- Aaseth, J.O.; Alexander, J. Postoperative Osteoporosis in Subjects with Morbid Obesity Undergoing Bariatric Surgery with Gastric Bypass or Sleeve Gastrectomy. Nutrients 2023, 15, 1302. [Google Scholar] [CrossRef]
- Zhao, F.; Guo, L.; Wang, X.; Zhang, Y. Correlation of Oxidative Stress-related Biomarkers with Postmenopausal Osteoporosis: A Systematic Review and Meta-Analysis. Arch. Osteoporos. 2021, 16, 4. [Google Scholar] [CrossRef]
- He, J.; Jiang, D.; Cui, X.; Ji, C. Vitamin B12 Status and Folic Acid/Vitamin B12 Related to the Risk of Gestational Diabetes Mellitus in Pregnancy: A Systematic Review and Meta-Analysis of Observational Studies. BMC Pregnancy Childbirth 2022, 22, 587. [Google Scholar] [CrossRef]
- Offringa, A.K.; Bourgonje, A.R.; Schrier, M.S.; Deth, R.C.; van Goor, H. Clinical Implications of Vitamin B12 as Redox-Active Cofactor. Trends Mol. Med. 2021, 27, 931–934. [Google Scholar] [CrossRef]
- Aroda, V.R.; Edelstein, S.L.; Goldberg, R.B.; Knowler, W.C.; Marcovina, S.M.; Orchard, T.J.; Bray, G.A.; Schade, D.S.; Temprosa, M.G.; White, N.H.; et al. Long-term Metformin Use and Vitamin B12 Deficiency in the Diabetes Prevention Program Outcomes Study. J. Clin. Endocrinol. Metab. 2016, 101, 1754–1761. [Google Scholar] [CrossRef] [PubMed]
- Obeid, R. High Plasma Vitamin B12 and Cancer in Human Studies: A Scoping Review to Judge Causality and Alternative Explanations. Nutrients 2022, 14, 4476. [Google Scholar] [CrossRef] [PubMed]
- Luu, H.N.; Wang, R.; Jin, A.; Koh, W.P.; Yuan, J.M. The Association Between Dietary Vitamin B12 and Lung Cancer Risk: Findings from a Prospective Cohort Study. Eur. J. Cancer Prev. 2021, 30, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Brasky, T.M.; White, E.; Chen, C.L. Long-term, Supplemental, One-carbon Metabolism–related Vitamin B Use in Relation to Lung Cancer Risk in the Vitamins and Lifestyle (VITAL) Cohort. J. Clin. Oncol. 2017, 35, 3440–3448. [Google Scholar] [CrossRef] [PubMed]
- Ebbing, M.; Bønaa, K.H.; Nygård, O.; Arnesen, E.; Ueland, P.M.; Nordrehaug, J.E.; Vollset, S.E.; Rasmussen, K.; Njølstad, I.; Refsum, H.; et al. Cancer Incidence and Mortality after Treatment with Folic Acid and Vitamin B12. JAMA 2009, 302, 2119–2126. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; George, S.; Greiner, R.; Estevinho, B.N.; Frutos Fernandez, M.J.; McClements, D.J.; Roohinejad, S. New Trends in the Microencapsulation of Functional Fatty Acid-Rich Oils Using Transglutaminase Catalyzed Crosslinking. Compr. Rev. Food Sci. Food Saf. 2018, 17, 274–289. [Google Scholar] [CrossRef] [PubMed]
- Gharibzahedi, S.M.T.; Smith, B. Legume Proteins Are Smart Carriers to Encapsulate Hydrophilic and Hydrophobic Bioactive Compounds and Probiotic Bacteria: A Review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1250–1279. [Google Scholar] [CrossRef]
- Couto, A.F.; Favretto, M.; Paquis, R.; Estevinho, B.N. Co-Encapsulation of Epigallocatechin-3-Gallate and Vitamin B12 in Zein Microstructures by Electrospinning/Electrospraying Technique. Molecules 2023, 28, 2544. [Google Scholar] [CrossRef] [PubMed]
- Gumus, C.E.; Gharibzahedi, S.M.T. Yogurts Supplemented with Lipid Emulsions Rich in Omega-3 Fatty Acids: New Insights into the Fortification, Microencapsulation, Quality Properties, and Health-Promoting Effects. Trends Food Sci. Technol. 2021, 110, 267–279. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Razavi, S.H.; Mousavi, S.M. Psyllium Husk Gum: An Attractive Carbohydrate Biopolymer for The Production of Stable Canthaxanthin Emulsions. Carbohydr. Polym. 2013, 92, 2002–2011. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Razavi, S.H.; Mousavi, M. Characterizing the Natural Canthaxanthin/2-Hydroxypropyl-β-Cyclodextrin Inclusion Complex. Carbohydr. Polym. 2014, 101, 1147–1153. [Google Scholar] [CrossRef]
- Carlan, I.C.; Estevinho, B.N.; Rocha, F. Study of Different Encapsulating Agents for the Microencapsulation of Vitamin B12. Environ. Eng. Manag. J. 2019, 17, 855–864. [Google Scholar]
- Carlan, I.C.; Estevinho, B.N.; Rocha, F. Study of Microencapsulation and Controlled Release of Modified Chitosan Microparticles Containing Vitamin B12. Powder Technol. 2017, 318, 162–169. [Google Scholar] [CrossRef]
- Estevinho, B.N.; Mota, R.; Leite, J.P.; Tamagnini, P.; Gales, L.; Rocha, F. Application of A Cyanobacterial Extracellular Polymeric Substance in the Microencapsulation of Vitamin B12. Powder Technol. 2019, 343, 644–651. [Google Scholar] [CrossRef]
- Coelho, S.C.; Laget, S.; Benaut, P.; Rocha, F.; Estevinho, B.N. A New Approach to the Production of Zein Microstructures with Vitamin B12, by Electrospinning and Spray Drying Techniques. Powder Technol. 2021, 392, 47–57. [Google Scholar] [CrossRef]
- Youryon, P.; Kongchana, J.; Anjana, J.A.; Tepsorn, R.; Supapvanich, S. Liposome Containing Methyl Jasmonate Incorporated with Vitamin B12 Alleviates Chilling Injury of ‘Queen’ Pineapples. Sci. Hortic. 2023, 321, 112263. [Google Scholar] [CrossRef]
- Sugandhi, V.V.; Mahajan, H.S. Development of Vitamin B12 Containing Pullulan-Bovine Serum Albumin Microparticles Designed Dry Powder Inhaler: In-vitro and In-vivo Study. J. Drug Deliv. Sci. Technol. 2022, 70, 103212. [Google Scholar] [CrossRef]
- Bhattacharyya, S.K.; Nandi, S.; Dey, T.; Ray, S.K.; Mandal, M.; Das, N.C.; Banerjee, S. Fabrication of a Vitamin B12-Loaded Carbon Dot/Mixed-Ligand Metal Organic Framework Encapsulated within the Gelatin Microsphere for pH Sensing and In Vitro Wound Healing Assessment. ACS Appl. Bio Mater. 2022, 5, 5693–5705. [Google Scholar] [CrossRef]
- Mazzocato, M.C.; Thomazini, M.; Favaro-Trindade, C.S. Improving Stability of Vitamin B12 (Cyanocobalamin) Using Microencapsulation by Spray Chilling Technique. Food Res. Int. 2019, 126, 108663. [Google Scholar] [CrossRef]
- Matos, M.; Gutiérrez, G.; Iglesias, O.; Coca, J.; Pazos, C. Enhancing Encapsulation Efficiency of Food-Grade Double Emulsions Containing Resveratrol or Vitamin B12 by Membrane Emulsification. J. Food Eng. 2015, 166, 212–220. [Google Scholar] [CrossRef]
- Nollet, M.; Mercé, M.; Laurichesse, E.; Pezon, A.; Soubabère, O.; Besse, S.; Schmitt, V. Water Fluxes and Encapsulation Efficiency in Double Emulsions: Impact of Emulsification and Osmotic Pressure Unbalance. Soft Matter 2016, 12, 3412–3424. [Google Scholar] [CrossRef]
- Li, L.; He, M.; Yang, H.; Wang, N.; Kong, Y.; Li, Y.; Teng, F. Effect of Soybean Lipophilic Protein–Methyl Cellulose Complex on the Stability and Digestive Properties of Water–in–Oil–in–Water Emulsion Containing Vitamin B12. Colloids Surf. A Physicochem. Eng. Asp. 2021, 629, 127364. [Google Scholar] [CrossRef]
- Nath, J.; Chowdhury, A.; Ali, I.; Dolui, S.K. Development of a Gelatin-G-Poly (Acrylic Acid-Co-Acrylamide)–Montmorillonite Superabsorbent Hydrogels for In Vitro Controlled Release of Vitamin B12. J. Appl. Polym. Sci. 2019, 136, 47596. [Google Scholar] [CrossRef]
- Bajaj, S.R.; Marathe, S.J.; Singhal, R.S. Co-encapsulation of Vitamins B12 and D3 Using Spray Drying: Wall Material Optimization, Product Characterization, and Release Kinetics. Food Chem. 2021, 335, 127642. [Google Scholar] [CrossRef]
- Estevinho, B.N.; Carlan, I.; Blaga, A.; Rocha, F. Soluble Vitamins (Vitamin B12 and Vitamin C) Microencapsulated with Different Biopolymers by a Spray Drying Process. Powder Technol. 2016, 289, 71–78. [Google Scholar] [CrossRef]
- Roy, S.; Maiti, M.; Roy, A. A New Class of Boronic Acid-Derived Amphiphile-Based Gel Emulsions Capable of Entrapping and Releasing Vitamin B12 and Doxorubicin. ChemistrySelect 2017, 2, 6929–6939. [Google Scholar] [CrossRef]
- Guchhait, S.; Roy, A.; Das, S.; Khan, M.; Pradhan, A.; Choudhury, S.M.; Roy, S. Tripeptide Based Nontoxic Hydrogelators as Carrier of Vitamin B12 and Doxorubicin. Colloids Surf. A Physicochem. Eng. Asp. 2021, 618, 126483. [Google Scholar] [CrossRef]
- Keršienė, M.; Jasutienė, I.; Eisinaitė, V.; Venskutonis, P.R.; Leskauskaitė, D. Designing Multiple Bioactives Loaded Emulsions for the Formulations for Diets of Elderly. Food Funct. 2020, 11, 2195–2207. [Google Scholar] [CrossRef]
- Pattnaik, M.; Mishra, H.N. Effect of Ultrasonication and Wall Materials on the Stability, Rheology, and Encapsulation Efficiency of Vitamins in a Lipid-Based Double Emulsion Template. J. Food Process Eng. 2023, 46, e14201. [Google Scholar] [CrossRef]
- Marchianò, V.; Matos, M.; Serrano, E.; Álvarez, J.R.; Marcet, I.; Blanco-López, M.C.; Gutiérrez, G. Lyophilised Nanovesicles Loaded with Vitamin B12. J. Mol. Liq. 2022, 365, 120129. [Google Scholar] [CrossRef]
- Guillot, A.J.; Jornet-Mollá, E.; Landsberg, N.; Milián-Guimerá, C.; Montesinos, M.C.; Garrigues, T.M.; Melero, A. Cyanocobalamin Ultraflexible Lipid Vesicles: Characterization and In Vitro Evaluation of Drug-Skin Depth Profiles. Pharmaceutics 2021, 13, 418. [Google Scholar] [CrossRef] [PubMed]
- Guillot, A.J.; Merino-Gutierrez, P.; Bocchino, A.; O’Mahony, C.; Giner, R.M.; Recio, M.C.; Melero, A. Exploration of Microneedle-assisted Skin Delivery of Cyanocobalamin Formulated in Ultraflexible Lipid Vesicles. Eur. J. Pharm. Biopharm. 2022, 177, 184–198. [Google Scholar] [CrossRef]
- García-Manrique, P.; Machado, N.D.; Fernández, M.A.; Blanco-López, M.C.; Matos, M.; Gutiérrez, G. Effect of Drug Molecular Weight on Niosomes Size and Encapsulation Efficiency. Colloids Surf. B Biointerfaces 2020, 186, 110711. [Google Scholar] [CrossRef]
- Bochicchio, S.; Barba, A.A.; Grassi, G.; Lamberti, G. Vitamin Delivery: Carriers Based on Nanoliposomes Produced Via Ultrasonic Irradiation. LWT-Food Sci. Technol. 2016, 69, 9–16. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Jafari, S.M. Fabrication of nanoemulsions by ultrasonication. In Nanoemulsions: Formulation, Applications, and Characterization, 1st ed.; Jafari, S.M., McClements, D.J., Eds.; Elsevier UK: London, UK, 2018; pp. 233–285. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T. Ultrasound-mediated Nettle Oil Nanoemulsions Stabilized by Purified Jujube Polysaccharide: Process Optimization, Microbial Evaluation and Physicochemical Storage Stability. J. Mol. Liq. 2017, 234, 240–248. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Rostami, H.; Yousefi, S. Formulation Design and Physicochemical Stability Characterization of Nanoemulsions of Nettle (Urtica dioica) Essential Oil Using a Model-Based Methodology. J. Food Process. Preserv. 2015, 39, 2947–2958. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T. The Preparation, Stability, Functionality and Food Enrichment Ability of Cinnamon Oil-Loaded Nanoemulsion-Based Delivery Systems: A Review. Nutrafoods 2018, 17, 97–105. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Razavi, S.H.; Mousavi, M. Optimal Development of a New Stable Nutraceutical Nanoemulsion Based on the Inclusion Complex of 2-Hydroxypropyl-ß-Cyclodextrin with Canthaxanthin Accumulated by Dietzia natronolimnaea HS-1 Using Ultrasound-Assisted Emulsification. J. Dispers. Sci. Technol. 2015, 36, 614–625. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Mohammadnabi, S. Effect of Novel Bioactive Edible Coatings Based on Jujube Gum and Nettle Oil-Loaded Nanoemulsions on the Shelf-Life of Beluga Sturgeon Fillets. Int. J. Biol. Macromol. 2017, 95, 769–777. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Altintas, Z. Transglutaminase-Induced Free-Fat Yogurt Gels Supplemented with Tarragon Essential Oil-Loaded Nanoemulsions: Development, Optimization, Characterization, Bioactivity, and Storability. Gels 2022, 8, 551. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Mohammadnabi, S. Characterizing the Novel Surfactant-Stabilized Nanoemulsions of Stinging Nettle Essential Oil: Thermal Behaviour, Storage Stability, Antimicrobial Activity and Bioaccessibility. J. Mol. Liq. 2016, 224, 1332–1340. [Google Scholar] [CrossRef]
- Karbalaei-Saleh, S.; Yousefi, S.; Honarvar, M. Optimization of Vitamin B12 Nano-emulsification and Encapsulation Using Spontaneous Emulsification. Food Sci. Biotechnol. 2023, 1–17. [Google Scholar] [CrossRef]
- Zaghian, N.; Goli, M. Optimization of the Production Conditions of Primary (W1/O) and Double (W1/O/W2) Nano-Emulsions Containing Vitamin B12 in Skim Milk Using Ultrasound Wave by Response Surface Methodology. J. Food Meas. Charact. 2020, 14, 3216–3226. [Google Scholar] [CrossRef]
- Çoban, Ö.; Yıldırım, S.; Bakır, T. Alpha-lipoic Acid and Cyanocobalamin Co-Loaded Nanoemulsions: Development, Characterization, and Evaluation of Stability. J. Pharm. Innov. 2021, 17, 510–520. [Google Scholar] [CrossRef]
- Cheng, W.; Compton, R.G. Oxygen Reduction Mediated by Single Nanodroplets Containing Attomoles of Vitamin B12: Electrocatalytic Nano-Impacts Method. Angew. Chem. Int. Ed. Engl. 2015, 54, 7082–7085. [Google Scholar] [CrossRef] [PubMed]
- Gharibzahedi, S.M.T.; Jafari, S.M. The Importance of Minerals in Human Nutrition: Bioavailability, Food Fortification, Processing Effects and Nanoencapsulation. Trends Food Sci. Technol. 2017, 62, 119–132. [Google Scholar] [CrossRef]
- Zhang, J.; Field, C.J.; Vine, D.; Chen, L. Intestinal Uptake and Transport of Vitamin B12-Loaded Soy Protein Nanoparticles. Pharm. Res. 2015, 32, 1288–1303. [Google Scholar] [CrossRef]
- Liu, G.; Yang, J.; Wang, Y.; Liu, X.; Chen, L. Protein-lipid Composite Nanoparticles for the Oral Delivery of Vitamin B12: Impact of Protein Succinylation on Nanoparticle Physicochemical and Biological Properties. Food Hydrocoll. 2019, 92, 189–197. [Google Scholar] [CrossRef]
- Liu, G.; Huang, W.; Babii, O.; Gong, X.; Tian, Z.; Yang, J.; Wang, Y.; Jacobs, R.L.; Donna, V.; Lavasanifar, A.; et al. Novel Protein–Lipid Composite Nanoparticles with an Inner Aqueous Compartment as Delivery Systems of Hydrophilic Nutraceutical Compounds. Nanoscale 2018, 10, 10629–10640. [Google Scholar] [CrossRef]
- Ramalho, M.J.; Loureiro, J.A.; Pereira, M.C. Poly (lactic-co-glycolic acid) Nanoparticles for the Encapsulation and Gastrointestinal Release of Vitamin B9 and Vitamin B12. ACS Appl. Nano Mater. 2021, 4, 6881–6892. [Google Scholar] [CrossRef]
- Singh, A.; Yadagiri, G.; Javaid, A.; Sharma, K.K.; Verma, A.; Singh, O.P.; Sundar, S.; Mudavath, S.L. Hijacking the Intrinsic Vitamin B12 Pathway for the Oral Delivery of Nanoparticles, Resulting in Enhanced In Vivo Anti-Leishmanial Activity. Biomater. Sci. 2022, 10, 5669–5688. [Google Scholar] [CrossRef]
- Yariv, I.; Lipovsky, A.; Gedanken, A.; Lubart, R.; Fixler, D. Enhanced Pharmacological Activity of Vitamin B12 and Penicillin as Nanoparticles. Int. J. Nanomed. 2015, 10, 3593–3601. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Razavi, S.H.; Mousavi, S.M. Comparison of Antioxidant and Free Radical Scavenging Activities of Biocolorant Synthesized by Dietzia natronolimnaea HS-1 Cells Grown in Batch, Fed-Batch and Continuous Cultures. Ind. Crops Prod. 2013, 49, 10–16. [Google Scholar] [CrossRef]
- Verma, A.; Sharma, S.; Gupta, P.K.; Singh, A.; Teja, B.V.; Dwivedi, P.; Gupta, G.K.; Trivedi, R.; Mishra, P.R. Vitamin B12 Functionalized Layer by Layer Calcium Phosphate Nanoparticles: A Mucoadhesive and pH Responsive Carrier for Improved Oral Delivery of Insulin. Acta Biomater. 2016, 31, 288–300. [Google Scholar] [CrossRef]
- Seo, Y.; Lim, H.; Park, H.; Yu, J.; An, J.; Yoo, H.Y.; Lee, T. Recent Progress of Lipid Nanoparticles-Based Lipophilic Drug Delivery: Focus on Surface Modifications. Pharmaceutics 2023, 15, 772. [Google Scholar] [CrossRef] [PubMed]
- Safta, D.A.; Bogdan, C.; Moldovan, M.L. Vesicular Nanocarriers for Phytocompounds in Wound Care: Preparation and Characterization. Pharmaceutics 2022, 14, 991. [Google Scholar] [CrossRef] [PubMed]
- Gharibzahedi, S.M.T.; Smith, B.; Altintas, Z. Bioactive and Health-promoting Properties of Enzymatic Hydrolysates of Legume Proteins: A Review. Crit. Rev. Food Sci. Nutr. 2022. [Google Scholar] [CrossRef]
- Modupe, O.; Diosady, L.L. Quadruple Fortification of Salt for the Delivery of Iron, Iodine, Folic Acid, and Vitamin B12 to Vulnerable Populations. J. Food Eng. 2021, 300, 110525. [Google Scholar] [CrossRef]
- Bajaj, S.R.; Singhal, R.S. Enhancement of Stability of Vitamin B12 by Co-Crystallization: A Convenient and Palatable form of Fortification. J. Food Eng. 2021, 291, 110231. [Google Scholar] [CrossRef]
- Vora, R.M.; Alappattu, M.J.; Zarkar, A.D.; Soni, M.S.; Karmarkar, S.J.; Antony, A.C. Potential for Elimination of Folate and Vitamin B12 Deficiency in India Using Vitamin-Fortified Tea: A Preliminary Study. BMJ Nutr. Prev. Health 2021, 4, 293. [Google Scholar] [CrossRef]
- Bajaj, S.R.; Singhal, R.S. Fortification of Wheat Flour and Oil with Vitamins B12 and D3: Effect of Processing and Storage. J. Food Compos. Anal. 2021, 96, 103703. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, C.; Pulkkinen, M.; Edelmann, M.; Chamlagain, B.; Coda, R.; Sandell, M.; Piironen, V.; Maina, N.H.; Katina, K. In situ Production of Vitamin B12 and Dextran in Soya Flour and Rice Bran: A Tool to Improve Flavour and Texture of B12-Fortified Bread. LWT 2022, 161, 113407. [Google Scholar] [CrossRef]
- Xie, C.; Coda, R.; Chamlagain, B.; Edelmann, M.; Varmanen, P.; Piironen, V.; Katina, K. Fermentation of Cereal, Pseudo-Cereal and Legume Materials with Propionibacterium freudenreichii and Levilactobacillus brevis for Vitamin B12 Fortification. LWT 2021, 137, 110431. [Google Scholar] [CrossRef]
- Hemery, Y.M.; Fontan, L.; Laillou, A.; Jallier, V.; Moench-Pfanner, R.; Avallone, S.; Berger, J. Influence of Storage Conditions and Packaging of Fortified Wheat Flour on Microbial Load and Stability of Folate and Vitamin B12. Food Chem. X 2020, 5, 100076. [Google Scholar] [CrossRef] [PubMed]
- Melo, L.; Ng, C.; Tsang, R.; Singh, A.P.; Kitts, D.; Lamers, Y. Development of Novel Vitamin B12 Fortified Yogurts Using Isolated and Microencapsulated Vitamin B12. Proc. Nutr. Soc. 2020, 79, E264. [Google Scholar] [CrossRef]
- Giroux, H.J.; Constantineau, S.; Fustier, P.; Champagne, C.P.; St-Gelais, D.; Lacroix, M.; Britten, M. Cheese Fortification Using Water-in-Oil-in-Water Double Emulsions as Carrier for Water Soluble Nutrients. Int. Dairy J. 2013, 29, 107–114. [Google Scholar] [CrossRef]
- Jurado-Guerra, J.A.; Flores-Mancha, M.A.; Juárez-Moya, J.; Lechuga-Valles, R.; Rentería-Monterrubio, A.L.; Sánchez-Vega, R.; Tirado-Gallegos, J.M.; Chávez-Martínez, A. Physicochemical and Rheological Characteristics of Stirred Yogurt Fortified with Vitamin B12 and Melatonin. J. Food Process. Preserv. 2023, 2023, 9232447. [Google Scholar] [CrossRef]
- Pattnaik, M.; Mishra, H.N. Development and Quality Evaluation of Multivitamin Fortified Low-Fat Biscuits. Int. J. Food Sci. Technol. 2022, 57, 6531–6539. [Google Scholar] [CrossRef]
- Yamini, Y.; Tahmasebi, E.; Ranjbar, L. Magnetic Nanoparticle-based Solid-phase Extraction of Vitamin B12 from Pharmaceutical Formulations. Biol. Trace Elem. Res. 2012, 147, 378–385. [Google Scholar] [CrossRef]
- Moradi, M.; Zenouzi, S.; Ahmadi, K.; Aghakhani, A. Graphene Oxide-Based Solid Phase Extraction of Vitamin B12 From Pharmaceutical Formulations and Its Determination by X-ray Fluorescence. X-ray Spectrom. 2015, 44, 16–23. [Google Scholar] [CrossRef]
- Santos, A.J.M.; Khemiri, S.; Simões, S.; Prista, C.; Sousa, I.; Raymundo, A. The Importance, Prevalence and Determination of Vitamins B6 and B12 in Food Matrices: A Review. Food Chem. 2023, 426, 136606. [Google Scholar] [CrossRef]
- Van den Oever, S.P.; Mayer, H.K. Biologically Active or Just “Pseudo”-Vitamin B12 as Predominant Form in Algae-Based Nutritional Supplements? J. Food Compos. Anal. 2022, 109, 104464. [Google Scholar] [CrossRef]
- Rosa, M.T.M.; Alvarez, V.H.; Albarelli, J.Q.; Santos, D.T.; Meireles, M.A.A.; Saldana, M.D. Supercritical Anti-Solvent Process as an Alternative Technology for Vitamin Complex Encapsulation Using Zein as Wall Material: Technical-Economic Evaluation. J. Supercrit. Fluids 2020, 159, 104499. [Google Scholar] [CrossRef]
- Raghunath, S.; Budaraju, S.; Gharibzahedi, S.M.T.; Koubaa, M.; Roohinejad, S.; Mallikarjunan, K. Processing Technologies for the Extraction of Value-Added Bioactive Compounds from Tea. Food Eng. Rev. 2023, 15, 276–308. [Google Scholar] [CrossRef]
- Sobczyńska-Malefora, A.; Delvin, E.; McCaddon, A.; Ahmadi, K.R.; Harrington, D.J. Vitamin B12 Status in Health and Disease: A Critical Review. Diagnosis of Deficiency and Insufficiency–Clinical and Laboratory Pitfalls. Crit. Rev. Clin. Lab. Sci. 2021, 58, 399–429. [Google Scholar] [CrossRef]
- Kiamiloglou, D.; Girousi, S. Different Aspects of the Voltammetric Detection of Vitamins: A Review. Biosensors 2023, 13, 651. [Google Scholar] [CrossRef]
- Oh, H.E.; Eathorne, S.; Jones, M.A. Use of Biosensor Technology in Analysing Milk and Dairy Components: A Review. Int. J. Dairy Technol. 2022, 75, 738–748. [Google Scholar] [CrossRef]
- Kumari, A.; Vyas, V.; Kumar, S. Advances in Electrochemical and Optical Sensing Techniques for Vitamins Detection: A Review. ISSS J. Micro Smart Syst. 2022, 11, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Kumudha, A.; Sarada, R. Characterization of Vitamin B12 in Dunaliella salina. J. Food Sci. Technol. 2016, 53, 888–894. [Google Scholar] [CrossRef]
- Kong, D.; Liu, L.; Song, S.; Kuang, H.; Xu, C. Development of Sensitive, Rapid, and Effective Immunoassays for the Detection of Vitamin B12 in Fortified Food and Nutritional Supplements. Food Anal. Methods 2017, 10, 10–18. [Google Scholar] [CrossRef]
- Arshad, F.; Deliorman, M.; Sukumar, P.; Qasaimeh, M.A.; Olarve, J.S.; Santos, G.N.; Bansal, V.; Ahmed, M.U. Recent Developments and Applications of Nanomaterial-based Lab-on-a-chip Devices for Sustainable Agri-food Industries. Trends Food Sci. Technol. 2023, 136, 145–158. [Google Scholar] [CrossRef]
- Ding, L.; Yang, H.; Ge, S.; Yu, J. Fluorescent Carbon Dots Nanosensor for Label-Free Determination of Vitamin B12 Based on Inner Filter Effect. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 193, 305–309. [Google Scholar] [CrossRef]
- Jafari, M.; Mousavi, M.; Shirzad, K.; Hosseini, M.A.; Badiei, A.; Pourhakkak, P.; Ghasemi, J.B. A TiO2 Nanotube Array Decorated by Ag Nanoparticles for Highly Sensitive SERS Determination and Self-Cleaning of Vitamin B12. Microchem. J. 2022, 181, 107813. [Google Scholar] [CrossRef]
- Radu, A.I.; Kuellmer, M.; Giese, B.; Huebner, U.; Weber, K.; Cialla-May, D.; Popp, J. Surface-enhanced Raman Spectroscopy (SERS) in Food Analytics: Detection of Vitamins B2 and B12 in Cereals. Talanta 2016, 160, 289–297. [Google Scholar] [CrossRef]
- Mansuriya, B.D.; Altintas, Z. Carbon Dots: Classification, Properties, Synthesis, Characterization, and Applications in Health Care—An Updated Review (2018–2021). Nanomaterials 2021, 11, 2525. [Google Scholar] [CrossRef]
- Kalaiyarasan, G.; Joseph, J. Determination of Vitamin B12 Via pH-Dependent Quenching of the Fluorescence of Nitrogen Doped Carbon Quantum Dots. Microchim. Acta 2017, 184, 3883–3891. [Google Scholar] [CrossRef]
- Preethi, M.; Viswanathan, C.; Ponpandian, N. An Environment-Friendly Route to Explore the Carbon Quantum Dots Derived from Curry Berries (Murrayakoenigii L.) as a Fluorescent Biosensor for Detecting Vitamin B12. Mater. Lett. 2021, 303, 130521. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Z.; Huang, Y.; Zong, Y.; Yang, X.; Hu, Z.; Zeng, C. One-pot Room Temperature Synthesis of Orange-Emitting Carbon Dots for Highly-Sensitive Vitamin B12 Sensing. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 276, 121239. [Google Scholar] [CrossRef]
- Wang, D.; Mei, X.; Wang, S.; Li, J.; Dong, C. A One-Pot Synthesis of Fluorescent N, P-Codoped Carbon Dots for Vitamin B12 Determination and Bioimaging Application. New J. Chem. 2021, 45, 3508–3514. [Google Scholar] [CrossRef]
- Fan, P.; Liu, C.; Hu, C.; Li, F.; Lin, X.; Xiao, F.; Liang, H.; Li, L.; Yang, S. Orange-Emissive N, S-Co-Doped Carbon Dots for Label-Free and Sensitive Fluorescence Assay of Vitamin B12. New J. Chem. 2022, 46, 877–882. [Google Scholar] [CrossRef]
- Samari, F.; Hemmateenejad, B.; Rezaei, Z.; Shamsipur, M. A Novel Approach for Rapid Determination of Vitamin B12 in Pharmaceutical Preparations Using BSA-Modified Gold Nanoclusters. Anal. Methods 2012, 4, 4155–4160. [Google Scholar] [CrossRef]
- Yu, W.; Qin, Y.; Fan, Y.; Wang, Z.; Cheng, Z. A Fluorescent Probe Based on Polyethyleneimine Protected Copper Nanoclusters for the Assay of Tetracycline Hydrochloride and Vitamin B12. ChemistrySelect 2021, 6, 10889–10897. [Google Scholar] [CrossRef]
- Shanmugaraj, K.; Sasikumar, T.; Ilanchelian, M. Histidine-Stabilized Copper Nanoclusters as a Fluorescent Probe for Selective and Sensitive Determination of Vitamin B12. J. Anal. Test. 2018, 2, 168–174. [Google Scholar] [CrossRef]
- Qu, F.; Song, Q.; You, J. Rapid Determination of Vitamin B12 (Cobalamin) Based on Silver Nanoclusters Capped by polyethyleneimine with Different Molecular Weights and Terminal Groups. Anal. Methods 2016, 8, 4324–4327. [Google Scholar] [CrossRef]
- Sarkar, P.; Saha, M.; Nandi, N.; Sahu, D.K.; Sahu, K. Red-Emitting Silver Nanoclusters for Dual-Mode Detection of Cu2+ and Vitamin B12 in Living Cells. ACS Appl. Nano Mater. 2022, 5, 7670–7678. [Google Scholar] [CrossRef]
- Manivel, P.; Madasamy, K.; Suryanarayanan, V.; Nesakumar, N.; Kulandaisamy, A.J.; Kathiresan, M.; Lee, K.M. Cu (HBTC)(4, 4′-bipy)·3DMF Nanorods Supported on Platinum Electrode as an Electrochemical Sensing Platform for Efficient Vitamin B12 Detection. J. Taiwan Inst. Chem. Eng. 2019, 96, 1–10. [Google Scholar] [CrossRef]
- Sharma, A.; Arya, S.; Chauhan, D.; Solanki, P.R.; Khajuria, S.; Khosla, A. Synthesis of Au–SnO2 Nanoparticles for Electrochemical Determination of Vitamin B12. J. Mater. Res. Technol. 2020, 9, 14321–14337. [Google Scholar] [CrossRef]
- Guo, L.; Yang, Z. Electrochemical Sensors Based on Au-Ppy Nps@f-Cnts Nanocomposite Modified Glassy Carbon Electrode for Determination of Vitamin B12 as a Key Agent in Human Motion Coordination. Int. J. Electrochem. Sci. 2021, 16, 211029. [Google Scholar] [CrossRef]
- Akshaya, K.B.; Anitha, V.; Nidhin, M.; Sudhakar, Y.N.; Louis, G. Electrochemical Sensing of Vitamin B12 Deficiency Marker Methylmalonic Acid Using Pdau-Ppy Tailored Carbon Fiber Paper Electrode. Talanta 2020, 217, 121028. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Zhao, N.; Jiang, X.; Wan, D.; Xie, Y. Facile Detection of Vitamin B12 with Copper Oxide Nanocrystal Graphenic Composite Electrode. Water 2021, 13, 1790. [Google Scholar] [CrossRef]
- Pereira, D.F.; Santana, E.R.; Piovesan, J.V.; Spinelli, A. A Novel Electrochemical Strategy for Determination of Vitamin B12 by Co (I/II) Redox Pair Monitoring with Boron-Doped Diamond Electrode. Diam. Relat. Mater. 2020, 105, 107793. [Google Scholar] [CrossRef]
- Parvin, M.H.; Azizi, E.; Arjomandi, J.; Lee, J.Y. Highly Sensitive and Selective Electrochemical Sensor for Detection of Vitamin B12 Using an Au/PPy/FMNPs@ TD-modified Electrode. Sens. Actuators B Chem. 2018, 261, 335–344. [Google Scholar] [CrossRef]
- Kou, Y.; Lu, J.; Jiang, X.; Tian, B.; Xue, Y.; Wang, M.; Tan, L. Electrochemical Determination of Vitamin B12 Based on Cu2+-Involved Fenton-like Reaction. Electroanalysis 2019, 31, 1155–1163. [Google Scholar] [CrossRef]
- Rajeev, R.; Benny, L.; Roy, M.; Mathew, A.T.; Akshaya, K.B.; Varghese, A.; Hegde, G. A Facile and Economic Electrochemical Sensor for Methylmalonic Acid: A Potential Biomarker for Vitamin B12 Deficiency. New J. Chem. 2022, 46, 4114–4125. [Google Scholar] [CrossRef]
- Abd-Alazize, N.; Mohammedtayeb, A. Electrochemical Sensor Based on Poly (Methylene Blue) with Zinc Oxide Nanoparticles on Glassy Carbon Electrodes for Quantitative Determination of Vitamin B12. Egypt. J. Chem. 2023, 66, 375–384. [Google Scholar] [CrossRef]
- Singh, R.; Jaiswal, S.; Singh, K.; Fatma, S.; Prasad, B.B. Biomimetic Polymer-based Electrochemical Sensor Using Methyl Blue-Adsorbed Reduced Graphene Oxide and Functionalized Multiwalled Carbon Nanotubes for Trace Sensing of Cyanocobalamin. ACS Appl. Nano Mater. 2018, 1, 4652–4660. [Google Scholar] [CrossRef]
- Karastogianni, S.; Girousi, S. Square Wave Voltammetric (SWV) Determination of Cyanocobalamin (Vitamin B12) in Pharmaceuticals and Supplements on a Carbon Paste Electrode (CPE) Modified by a Manganese (II) Polymeric Film. Anal. Lett. 2022, 55, 399–410. [Google Scholar] [CrossRef]
Fat-Soluble Vitamin Type | Systematic Name | Food Source(s) | RDI (for Adults *) | Function(s) | Ref. |
---|---|---|---|---|---|
A | Retinol | Animal sources: liver, fish liver oils, eggs, and dairy products. Plant sources: beta-carotene (as precursor of vitamin A in orange, yellow, and green leafy vegetables, such as carrots, sweet potatoes, and spinach) | 750 μg (men), 650 μg (women) | Vision improvement, Corneal and conjunctiva development, Immune system functioning, Skin health, Cellular growth and differentiation, Bone and fetus development, Central nervous system formation | [1] |
D | Calciferol | Natural sources: fatty fish (salmon, mackerel, tuna), fish liver oils, and egg yolks. Fortified sources: fortified dairy products, orange juice, and cereals. | 15 μg (both genders) | Calcium absorption, Bone health and skeletal muscle function, Immune function, Antiviral activity, Reducing cytokine release and adipose tissue inflammation | [2,3] |
E | Tocopherol | Nuts and seeds: walnuts, almonds, sunflower seeds, and hazelnuts. Plant oils: wheat germ oil, palm and rice bran oils, sunflower oil, and safflower oil. Green vegetables: Spinach and broccoli. | 15 mg (both genders) | Antioxidant and anti-inflammatory effects, Immunity, Skin health, potent antioxidant characteristics, Platelet coagulation inhibition, Cellular signaling, Lowering cholesterol | [4,5] |
K | Phylloquinone | Leafy greens: kale, spinach, collard greens, and Swiss chard. Vegetables: Brussels sprouts, broccoli, and asparagus. Plant oils: olive, canola, and soybean. Fish: certain types of fish, such as mackerel and salmon. | 120 μg (men), 75–90 μg (women) | Blood clotting, Bone health, Cardiovascular health benefits | [6] |
Water-Soluble Vitamin Type | Systematic Name | Food Source(s) | RDI (for Adults *) | Function(s) | Ref. |
---|---|---|---|---|---|
C | Ascorbic acid | Citrus fruits, Berries, Kiwi, Tropical fruits, Guava, Star and jujube fruits, Black currant, Strawberry, Melons, Paprika, Tomatoes, Leafy greens, Broccoli, Potatoes, and Cauliflower. | 90 mg (men), 75 mg (women) | Antioxidant activity, Collagen formation, Immune system support, Iron absorption, Neurotransmitter production, Wound healing, Skin health, Cardiovascular health | [7,8] |
B1 | Thiamine | Whole grains, Legumes, nuts, Seeds, Pork, and Fortified cereals | 1.2 mg (men), 1.1 mg (women) | Energy metabolism, Nerve cells functioning, Muscle contraction | [9,10,11] |
B2 | Riboflavin | Dairy products, Lean meats, Green leafy vegetables, Yeast extract, Almonds, Enriched cereals, Eggs, and Mushrooms. | 1.3 mg (men), 1.1 mg (women) | Energy production via the electron transport chain, Antioxidant activity (in cellular respiration and the immune system), Maintaining healthy skin, eyes, and nerve functions | [9,11,12] |
B3 | Niacin | Poultry, Fish, Peanuts, Mushrooms, and Fortified Cereals | 16 mg (men), 14 mg (women) | Energy metabolism, Synthesis of fatty acids, Maintaining healthy skin, nerves, and digestive system | [9,11] |
B5 | Pantothenic acid | Meat, Whole Grains, Legumes, and Vegetables | 5 mg (both genders) | A component of coenzyme A, involving in various metabolic processes, such as the synthesis of fatty acids and the citric acid cycle (Krebs cycle) | [9,11] |
B6 | Pyridoxine | Chicken, Fish, Bananas, Potatoes, and Fortified Cereals | 1.0–1.7 mg (both genders) | Amino acid metabolism, Synthesis of neurotransmitters (e.g., serotonin and norepinephrine), Immune function, Formation of red blood cells | [9,13] |
B7 | Biotin | Egg Yolks, Nuts, Seeds, and Some Vegetables | 30 μg (both genders) | Involved in various metabolic reactions, including the breakdown of fatty acids and amino acids, Essential for healthy skin, hair, and nails | [9,14] |
B9 | Folate/folic acid | Leafy greens (e.g., spinach), Legumes, Citrus fruits, and Fortified grains | 400 μg (both genders) | DNA synthesis, Cell division, Formation of red blood cells, Preventing neural tube defects in the developing fetus | [9,13,14] |
B12 | Cobalamin | Animal-based Foods (such as Meat, Dairy Products, and Eggs) | 2.4 μg (both genders) | DNA synthesis, Formation of red blood cells, Nerve function, Maintaining the health of the nervous system | [9,13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gharibzahedi, S.M.T.; Moghadam, M.; Amft, J.; Tolun, A.; Hasabnis, G.; Altintas, Z. Recent Advances in Dietary Sources, Health Benefits, Emerging Encapsulation Methods, Food Fortification, and New Sensor-Based Monitoring of Vitamin B12: A Critical Review. Molecules 2023, 28, 7469. https://doi.org/10.3390/molecules28227469
Gharibzahedi SMT, Moghadam M, Amft J, Tolun A, Hasabnis G, Altintas Z. Recent Advances in Dietary Sources, Health Benefits, Emerging Encapsulation Methods, Food Fortification, and New Sensor-Based Monitoring of Vitamin B12: A Critical Review. Molecules. 2023; 28(22):7469. https://doi.org/10.3390/molecules28227469
Chicago/Turabian StyleGharibzahedi, Seyed Mohammad Taghi, Maryam Moghadam, Jonas Amft, Aysu Tolun, Gauri Hasabnis, and Zeynep Altintas. 2023. "Recent Advances in Dietary Sources, Health Benefits, Emerging Encapsulation Methods, Food Fortification, and New Sensor-Based Monitoring of Vitamin B12: A Critical Review" Molecules 28, no. 22: 7469. https://doi.org/10.3390/molecules28227469