Encapsulation of Vitamin B12 by Complex Coacervation of Whey Protein Concentrate–Pectin; Optimization and Characterization
<p>Effect of independent factors (pectin/WPC concentration and pH) on the encapsulation efficiency (EE) (<b>a</b>–<b>c</b>), stability (<b>d</b>–<b>f</b>), viscosity (<b>g</b>–<b>i</b>), particle size (<b>j</b>–<b>l</b>) and solubility (<b>m</b>–<b>o</b>) of vitamin B<sub>12</sub>–loaded complexes.</p> "> Figure 2
<p>Particle size distribution of complex carriers containing vitamin B<sub>12</sub> at (<b>a</b>) pH = 3, (<b>b</b>) pH = 6, and (<b>c</b>) pH = 9.</p> "> Figure 3
<p>FTIR spectra of pure pectin, WPC and WPC–pectin complex carriers containing vitamin B<sub>12</sub>.</p> "> Figure 4
<p>AFM images of complex carriers containing vitamin B<sub>12</sub> at (<b>a</b>) pH = 3, (<b>b</b>) pH = 6, and (<b>c</b>) pH = 9.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Statistical Analysis of the Responses and Fitted Models
2.2. The Effect of Independent Variables on the Responses
2.3. Optimization of Conditions for Loading VB12 into Pectin–WPC Complex Carriers
2.4. Color of Complex Carriers
2.5. Surface Charge of Complex Carriers
2.6. Water Activity and Porosity of Complex Carriers
2.7. Chemical Interactions and Topology of Complex Carriers
3. Materials and Methods
3.1. Materials
3.2. Optimization of WPC–Pectin Complexation
Factors | Coded Symbols | Levels | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Pectin concentration (% w/v) | A | 0.5 | 0.75 | 1 |
WPC concentration (% w/v) | B | 4 | 6 | 8 |
pH | C | 3 | 6 | 9 |
Run | Independent Variables | Measured Responses | ||||||
---|---|---|---|---|---|---|---|---|
Pectin (%) | WPC (%) | pH | EE (%) | Stability (%) | Viscosity (mPa·s) | Particle Size (µm) | Solubility (%) | |
1 | 0.5 | 4 | 3 | 99.2 | 60 | 35.1 | 63.23 | 61 |
2 | 1 | 4 | 3 | 85.3 | 65 | 42.7 | 79.19 | 37 |
3 | 0.5 | 8 | 3 | 97.8 | 68 | 34 | 63.57 | 41 |
4 | 1 | 8 | 3 | 99.5 | 64.5 | 36.2 | 99.5 | 55 |
5 | 0.5 | 4 | 9 | 49.5 | 75 | 34.3 | 2.6 | 45 |
6 | 1 | 4 | 9 | 44.2 | 79.5 | 41.5 | 9.84 | 74 |
7 | 0.5 | 8 | 9 | 39.5 | 72 | 35.5 | 1 | 55 |
8 | 1 | 8 | 9 | 40.7 | 79 | 40.5 | 15.2 | 78 |
9 | 0.5 | 6 | 6 | 75.4 | 88 | 30.5 | 2.64 | 53 |
10 | 1 | 6 | 6 | 98.8 | 80 | 40.8 | 6.51 | 63 |
11 | 0.75 | 4 | 6 | 80.8 | 80 | 40 | 7 | 49 |
12 | 0.75 | 8 | 6 | 88.4 | 98 | 39.5 | 25 | 43 |
13 | 0.75 | 6 | 3 | 98.9 | 60 | 30.4 | 72.1 | 47 |
14 | 0.75 | 6 | 9 | 52.8 | 75.5 | 33.3 | 2.24 | 75 |
15 | 0.75 | 6 | 6 | 80.1 | 82 | 37 | 4.3 | 51 |
16 | 0.75 | 6 | 6 | 80.2 | 82.5 | 36.7 | 3.4 | 51 |
17 | 0.75 | 6 | 6 | 87 | 87 | 37.8 | 8.41 | 47 |
3.2.1. Preparation of Biopolymer Stock Solutions
3.2.2. Preparation of WPC–Pectin Complex Carriers for Loading VB12
3.3. Encapsulation Efficiency of VB12
3.4. Stability Analysis of Complex Carrier Solutions
3.5. Viscosity Analysis of Complex Carrier Solutions
3.6. Particle Size Measurement of Complex Carrier Solution
3.7. Solubility Analysis of Encapsulated Powders
3.8. Analysis of Optimum Encapsulated Samples
3.8.1. Analysis Color of Complex Carrier Solution
3.8.2. Water Activity
3.8.3. Porosity and Density
3.8.4. Zeta Potential (ZP)
3.8.5. FTIR Spectroscopy
3.8.6. Morphology of Powders
3.9. Statistical Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Watanabe, F. Vitamin B12 sources and bioavailability. Exp. Biol. Med. 2007, 232, 1266–1274. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, F.; Takenaka, S.; Kittaka-Katsura, H.; Ebara, S.; Miyamoto, E. Characterization and bioavailability of vitamin B12-compounds from edible algae. J. Nutr. Sci. Vitaminol. 2002, 48, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Katouzian, I.; Jafari, S.M. Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends Food Sci. Technol. 2016, 53, 34–48. [Google Scholar] [CrossRef]
- Sanguansri, P.; Augustin, M.A. Nanoscale materials development—A food industry perspective. Trends Food Sci. Technol. 2006, 17, 547–556. [Google Scholar] [CrossRef]
- Siddiq, M.; Pascall, M.A. Peas, sweet corn, and green beans. In Handbook of Vegetables and Vegetable Processing; Wiley Online Library: Hoboken, NJ, USA, 2018; pp. 761–783. [Google Scholar]
- Schmitt, C.; Turgeon, S.L. Protein/polysaccharide complexes and coacervates in food systems. Adv. Colloid Interface Sci. 2011, 167, 63–70. [Google Scholar] [CrossRef]
- Ezhilarasi, P.; Karthik, P.; Chhanwal, N.; Anandharamakrishnan, C. Nanoencapsulation techniques for food bioactive components: A review. Food Bioprocess Technol. 2013, 6, 628–647. [Google Scholar] [CrossRef]
- Moschakis, T.; Biliaderis, C.G. Biopolymer-based coacervates: Structures, functionality and applications in food products. Curr. Opin. Colloid Interface Sci. 2017, 28, 96–109. [Google Scholar] [CrossRef]
- Amine, C.; Boire, A.; Kermarrec, A.; Renard, D. Associative properties of rapeseed napin and pectin: Competition between liquid-liquid and liquid-solid phase separation. Food Hydrocoll. 2019, 92, 94–103. [Google Scholar] [CrossRef]
- Choi, Y.-R.; Chang, Y.H. Microencapsulation of gallic acid through the complex of whey protein concentrate-pectic polysaccharide extracted from Ulmus davidiana. Food Hydrocoll. 2018, 85, 222–228. [Google Scholar] [CrossRef]
- Mohammadi, A.; Jafari, S.M.; Assadpour, E.; Esfanjani, A.F. Nano-encapsulation of olive leaf phenolic compounds through WPC–pectin complexes and evaluating their release rate. Int. J. Biol. Macromol. 2016, 82, 816–822. [Google Scholar] [CrossRef]
- Esfanjani, A.F.; Jafari, S.M.; Assadpour, E. Preparation of a multiple emulsion based on pectin-whey protein complex for encapsulation of saffron extract nanodroplets. Food Chem. 2017, 221, 1962–1969. [Google Scholar] [CrossRef] [PubMed]
- Veis, A. A review of the early development of the thermodynamics of the complex coacervation phase separation. Adv. Colloid Interface Sci. 2011, 167, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Heydari, M.K.; Assadpour, E.; Jafari, S.M.; Javadian, H. Encapsulation of rose essential oil using whey protein concentrate-pectin nanocomplexes: Optimization of the effective parameters. Food Chem. 2021, 356, 129731. [Google Scholar] [CrossRef] [PubMed]
- Albano, K.M.; Cavallieri, Â.L.F.; Nicoletti, V.R. Electrostatic interaction between proteins and polysaccharides: Physicochemical aspects and applications in emulsion stabilization. Food Rev. Int. 2019, 35, 54–89. [Google Scholar] [CrossRef]
- Dickinson, E. Interfacial structure and stability of food emulsions as affected by protein–polysaccharide interactions. Soft Matter 2008, 4, 932–942. [Google Scholar] [CrossRef]
- Asgari, K.; Labbafi, M.; Khodaiyan, F.; Kazemi, M.; Hosseini, S.S. Valorization of walnut processing waste as a novel resource: Production and characterization of pectin. J. Food Processing Preserv. 2020, 44, e14941. [Google Scholar] [CrossRef]
- Kazemi, M.; Amiri Samani, S.; Ezzati, S.; Khodaiyan, F.; Hosseini, S.S.; Jafari, M. High-quality pectin from cantaloupe waste: Eco-friendly extraction process, optimization, characterization and bioactivity measurements. J. Sci. Food Agric. 2021, 101, 6552–6562. [Google Scholar] [CrossRef]
- Lan, Y.; Ohm, J.-B.; Chen, B.; Rao, J. Phase behavior, thermodynamic and microstructure of concentrated pea protein isolate-pectin mixture: Effect of pH, biopolymer ratio and pectin charge density. Food Hydrocoll. 2020, 101, 105556. [Google Scholar] [CrossRef]
- Jain, A.; Thakur, D.; Ghoshal, G.; Katare, O.; Singh, B.; Shivhare, U. Formation and functional attributes of electrostatic complexes involving casein and anionic polysaccharides: An approach to enhance oral absorption of lycopene in rats in vivo. Int. J. Biol. Macromol. 2016, 93, 746–756. [Google Scholar] [CrossRef]
- Ye, A. Complexation between milk proteins and polysaccharides via electrostatic interaction: Principles and applications—A review. Int. J. Food Sci. Technol. 2008, 43, 406–415. [Google Scholar] [CrossRef]
- Pasandide, B.; Khodaiyan, F.; Mousavi, Z.; Hosseini, S.S. Pectin extraction from citron peel: Optimization by Box–Behnken response surface design. Food Sci. Biotechnol. 2018, 27, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Omar-Aziz, M.; Yarmand, M.S.; Khodaiyan, F.; Mousavi, M.; Gharaghani, M.; Kennedy, J.F.; Hosseini, S.S. Chemical modification of pullulan exopolysaccharide by octenyl succinic anhydride: Optimization, physicochemical, structural and functional properties. Int. J. Biol. Macromol. 2020, 164, 3485–3495. [Google Scholar] [CrossRef] [PubMed]
- Khoshmanzar, M.; Ghanbarzadeh, B.; Hamishekar, H.; Sowti, M.; Rezayi Mokarram, R. Investigation of effective parameters on particle size, zeta potential and steady rheological properties of colloidal system based on carrageenan-caseinate nanoparticles. Res. Innov. Food Sci. Technol. 2013, 1, 255–272. [Google Scholar]
- Maleki, O.; Khaledabad, M.A.; Amiri, S.; Asl, A.K.; Makouie, S. Microencapsulation of Lactobacillus rhamnosus ATCC 7469 in whey protein isolate-crystalline nanocellulose-inulin composite enhanced gastrointestinal survivability. LWT 2020, 126, 109224. [Google Scholar] [CrossRef]
- Ghasemi, S.; Jafari, S.M.; Assadpour, E.; Khomeiri, M. Nanoencapsulation of d-limonene within nanocarriers produced by pectin-whey protein complexes. Food Hydrocoll. 2018, 77, 152–162. [Google Scholar] [CrossRef]
- Lan, Y.; Xu, M.; Ohm, J.-B.; Chen, B.; Rao, J. Solid dispersion-based spray-drying improves solubility and mitigates beany flavour of pea protein isolate. Food Chem. 2019, 278, 665–673. [Google Scholar] [CrossRef]
- Pillai, P.K.; Stone, A.K.; Guo, Q.; Guo, Q.; Wang, Q.; Nickerson, M.T. Effect of alkaline de-esterified pectin on the complex coacervation with pea protein isolate under different mixing conditions. Food Chem. 2019, 284, 227–235. [Google Scholar] [CrossRef]
- Zeeb, B.; Yavuz-Düzgun, M.; Dreher, J.; Evert, J.; Stressler, T.; Fischer, L.; Özcelik, B.; Weiss, J. Modulation of the bitterness of pea and potato proteins by a complex coacervation method. Food Funct. 2018, 9, 2261–2269. [Google Scholar] [CrossRef]
- Doublier, J.-L.; Garnier, C.; Renard, D.; Sanchez, C. Protein–polysaccharide interactions. Curr. Opin. Colloid Interface Sci. 2000, 5, 202–214. [Google Scholar] [CrossRef]
- Lan, Y.; Chen, B.; Rao, J. Pea protein isolate–high methoxyl pectin soluble complexes for improving pea prtein functionality: Effect of pH, biopolymer ratio and concentrations. Food Hydrocoll. 2018, 80, 245–253. [Google Scholar] [CrossRef]
- Giancone, T.; Torrieri, E.; Masi, P.; Michon, C. Protein–polysaccharide interactions: Phase behaviour of pectin–soy flour mixture. Food Hydrocoll. 2009, 23, 1263–1269. [Google Scholar] [CrossRef]
- Gharehbeglou, P.; Jafari, S.M.; Hamishekar, H.; Homayouni, A.; Mirzaei, H. Pectin-whey protein complexes vs. small molecule surfactants for stabilization of double nano-emulsions as novel bioactive delivery systems. J. Food Eng. 2019, 245, 139–148. [Google Scholar] [CrossRef]
- Assadpour, E.; Maghsoudlou, Y.; Jafari, S.-M.; Ghorbani, M.; Aalami, M. Optimization of folic acid nano-emulsification and encapsulation by maltodextrin-whey protein double emulsions. Int. J. Biol. Macromol. 2016, 86, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Wan, Z.-L.; Yang, X.-Q.; Yin, S.-W. Associative interactions between chitosan and soy protein fractions: Effects of pH, mixing ratio, heat treatment and ionic strength. Food Res. Int. 2014, 55, 207–214. [Google Scholar] [CrossRef]
- Chen, B.; Li, H.; Ding, Y.; Suo, H. Formation and microstructural characterization of whey protein isolate/beet pectin coacervations by laccase catalyzed cross-linking. LWT-Food Sci. Technol. 2012, 47, 31–38. [Google Scholar] [CrossRef]
- Weinbreck, F.; Nieuwenhuijse, H.; Robijn, G.W.; de Kruif, C.G. Complex formation of whey proteins: Exocellular polysaccharide EPS B40. Langmuir 2003, 19, 9404–9410. [Google Scholar] [CrossRef]
- Azimi, S.Z.; Hosseini, S.S.; Khodaiyan, F. Continuous clarification of grape juice using a packed bed bioreactor including pectinase enzyme immobilized on glass beads. Food Biosci. 2021, 40, 100877. [Google Scholar] [CrossRef]
- Ghasemi, S.; Jafari, S.M.; Assadpour, E.; Khomeiri, M. Production of pectin-whey protein nano-complexes as carriers of orange peel oil. Carbohydr. Polym. 2017, 177, 369–377. [Google Scholar] [CrossRef]
- Rocha, G.A.; Fávaro-Trindade, C.S.; Grosso, C.R.F. Microencapsulation of lycopene by spray drying: Characterization, stability and application of microcapsules. Food Bioprod. Processing 2012, 90, 37–42. [Google Scholar] [CrossRef]
- Einhorn-Stoll, U.; Archut, A.; Eichhorn, M.; Kastner, H. Pectin-Plant protein systems and their application. Food Hydrocoll. 2021, 118, 106783. [Google Scholar] [CrossRef]
- Henry, C.; Minier, J.-P.; Pozorski, J.; Lefèvre, G.G. A new stochastic approach for the simulation of agglomeration between colloidal particles. Langmuir 2013, 29, 13694–13707. [Google Scholar] [CrossRef] [PubMed]
- Peinado, I.; Lesmes, U.; Andrés, A.; McClements, J.D. Fabrication and morphological characterization of biopolymer particles formed by electrostatic complexation of heat treated lactoferrin and anionic polysaccharides. Langmuir 2010, 26, 9827–9834. [Google Scholar] [CrossRef] [PubMed]
- Lutz, R.; Aserin, A.; Wicker, L.; Garti, N. Release of electrolytes from W/O/W double emulsions stabilized by a soluble complex of modified pectin and whey protein isolate. Colloids Surf. B Biointerfaces 2009, 74, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, M.; Rao, K.P. Pectin–gelatin and alginate–gelatin complex coacervation for controlled drug delivery: Influence of anionic polysaccharides and drugs being encapsulated on physicochemical properties of microcapsules. Carbohydr. Polym. 2010, 80, 808–816. [Google Scholar] [CrossRef]
- Singthong, J.; Cui, S.W.; Ningsanond, S.; Goff, H.D. Structural characterization, degree of esterification and some gelling properties of Krueo Ma Noy (Cissampelos pareira) pectin. Carbohydr. Polym. 2004, 58, 391–400. [Google Scholar] [CrossRef]
- Assadpour, E.; Jafari, S.-M.; Maghsoudlou, Y. Evaluation of folic acid release from spray dried powder particles of pectin-whey protein nano-capsules. Int. J. Biol. Macromol. 2017, 95, 238–247. [Google Scholar] [CrossRef]
- Chen, Q.; Zhong, F.; Wen, J.; McGillivray, D.; Quek, S.Y. Properties and stability of spray-dried and freeze-dried microcapsules co-encapsulated with fish oil, phytosterol esters, and limonene. Dry. Technol. 2013, 31, 707–716. [Google Scholar] [CrossRef]
- Moradi, S.; Khodaiyan, F.; Razavi, S.H. Green construction of recyclable amino-tannic acid modified magnetic nanoparticles: Application for β-glucosidase immobilization. Int. J. Biol. Macromol. 2020, 154, 1366–1374. [Google Scholar] [CrossRef]
- Zimet, P.; Rosenberg, D.; Livney, Y.D. Re-assembled casein micelles and casein nanoparticles as nano-vehicles for ω-3 polyunsaturated fatty acids. Food Hydrocoll. 2011, 25, 1270–1276. [Google Scholar] [CrossRef]
Source | EE | Stability | Viscosity | Particle Size | Solubility | |||||
---|---|---|---|---|---|---|---|---|---|---|
F-Value | p-Value | F-Value | p-Value | F-Value | p-Value | F-Value | p-Value | F-Value | p-Value | |
Model | 13.1 | 0.001 | 5.81 | 0.015 | 7.49 | 0.007 | 74.06 | 0.000 | 3.89 | 0.043 |
A-pectin | 0.08 | 0.785 | 0.09 | 0.778 | 35.77 | 0.000 | 22.53 | 0.002 | 4.84 | 0.063 |
B-WPC | 0.08 | 0.791 | 1.66 | 0.238 | 2.14 | 0.187 | 6.80 | 0.035 | 0.06 | 0.807 |
C-pH | 102.5 | 0.000 | 13.8 | 0.007 | 1.54 | 0.254 | 454.5 | 0.000 | 13.23 | 0.008 |
AB | 0.97 | 0.357 | 0.15 | 0.706 | 2.48 | 0.159 | 3.43 | 0.106 | 2.29 | 0.174 |
AC | 0.13 | 0.729 | 0.43 | 0.533 | 0.25 | 0.634 | 4.38 | 0.074 | 8.60 | 0.022 |
BC | 1.37 | 0.280 | 0.52 | 0.494 | 2.61 | 0.150 | 1.35 | 0.283 | 0.57 | 0.474 |
A2 | 0.01 | 0.913 | 0.08 | 0.792 | 0.007 | 0.795 | 0.83 | 0.392 | 0.94 | 0.365 |
B2 | 0.4 | 0.549 | 1.55 | 0.253 | 17.63 | 0.004 | 7.43 | 0.029 | 2.75 | 0.141 |
C2 | 5.92 | 0.045 | 27.06 | 0.001 | 11.38 | 0.011 | 89.55 | 0.000 | 2.64 | 0.148 |
Residual | ||||||||||
Lack-of-Fit | 5.23 | 0.168 | 4.98 | 0.176 | 12.23 | 0.077 | 4.79 | 0.182 | 14.27 | 0.067 |
R2 | 0.9439 | 0.8819 | 0.9060 | 0.9896 | 0.8334 | |||||
Adj R2 | 0.8718 | 0.7300 | 0.7850 | 0.9762 | 0.6191 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akbari, N.; Assadpour, E.; Kharazmi, M.S.; Jafari, S.M. Encapsulation of Vitamin B12 by Complex Coacervation of Whey Protein Concentrate–Pectin; Optimization and Characterization. Molecules 2022, 27, 6130. https://doi.org/10.3390/molecules27186130
Akbari N, Assadpour E, Kharazmi MS, Jafari SM. Encapsulation of Vitamin B12 by Complex Coacervation of Whey Protein Concentrate–Pectin; Optimization and Characterization. Molecules. 2022; 27(18):6130. https://doi.org/10.3390/molecules27186130
Chicago/Turabian StyleAkbari, Neda, Elham Assadpour, Mohammad Saeed Kharazmi, and Seid Mahdi Jafari. 2022. "Encapsulation of Vitamin B12 by Complex Coacervation of Whey Protein Concentrate–Pectin; Optimization and Characterization" Molecules 27, no. 18: 6130. https://doi.org/10.3390/molecules27186130