Abstract
Vitamin B12 (Vit B12) is one of the essential vitamins which play a prominent contribution in the functioning of neurological systems and the production of blood cells. Vit B12 is found in very low concentrations of the picomolar level in blood serum. The deficiency and surplus concentrations of Vit B12 in the blood may cause serious health disorders. The main sources of Vit B12 are meat, egg, dairy products, etc., and therefore, vegetarians are highly susceptible to Vit B12 deficiency. The insufficiency of Vit B12 in blood serum can be treated by giving proper Vit B12 supplements. Thus, selective, and sensitive point-of-care devices for the monitoring of Vit B12 from biological, pharmaceutical, and food samples are highly essential. A lot of analytical techniques are in practice for the quantification of Vit B12. Nevertheless, electrochemical methods possessed some advantages over other techniques because of their simplicity, cost-effectiveness, and fast response time. Vit B12 is an electroactive compound and is widely exploited in electroanalytical studies. There have been several reports for the electrochemical detection of Vit B12 using carbon-based electrodes, metal electrodes, paper electrodes, screen printed electrodes (SPE), bismuth film electrodes (BFE), indium tin-oxide (ITO) electrodes, dropping mercury electrodes (DME), etc., and to our knowledge, the picomolar level detection of Vit B12 was achieved only via ITO electrode. This review brings an exhaustive study of the electrochemical sensors and their analytical characteristics for Vit B12 for the first time by considering the advantages of the electrochemical techniques over other analytical methods. We have also compared the advantages and disadvantages of the existing electrochemical sensors for Vit B12. The review aims to explore the area of electrochemical sensing in the analysis of Vit B12 for further research by overcoming all challenges in the future.
Graphic abstract
Similar content being viewed by others
References
Akanda MR et al (2016) Recent advances in nanomaterial-modified pencil graphite electrodes for electroanalysis. Electroanalysis 28(3):408–424. https://doi.org/10.1002/elan.201500374
Akinlade KS et al (2015) Vitamin B12 levels in patients With type 2 diabetes mellitus on metformin. Ann Ibadan Postgrad Med 13(2):79–83
Akshaya KB et al (2020) Electrochemical sensing of vitamin B12 deficiency marker methylmalonic acid using PdAu-PPy tailored carbon fiber paper electrode. Talanta 217(April):121028. https://doi.org/10.1016/j.talanta.2020.121028
Amini R, Asadpour-Zeynali K (2020) Cauliflower-like NiCo2O4−Zn/Al layered double hydroxide nanocomposite as an efficient electrochemical sensing platform for selective pyridoxine detection. Electroanalysis 32(6):1160–1169. https://doi.org/10.1002/elan.201900600
Asadian E, Ghalkhani M, Shahrokhian S (2019) Electrochemical sensing based on carbon nanoparticles: a review. Sens Actuat B Chem 293(April):183–209. https://doi.org/10.1016/j.snb.2019.04.075
Bizzaro N, Antico A (2014) Diagnosis and classification of pernicious anemia. Autoimmun Rev 13(4–5):565–568. https://doi.org/10.1016/j.autrev.2014.01.042
Briani C et al (2013) Cobalamin deficiency: Clinical picture and radiological findings. Nutrients 5(11):4521–4539. https://doi.org/10.3390/nu5114521
Calderón-Ospina CA, Nava-Mesa MO (2020) B Vitamins in the nervous system: current knowledge of the biochemical modes of action and synergies of thiamine, pyridoxine, and cobalamin. CNS Neurosci Ther 26(1):5–13. https://doi.org/10.1111/cns.13207
Cernat A et al (2015) Electrochemical sensors based on carbon nanomaterials for acetaminophen detection: a review. Anal Chim Acta 886:16–28. https://doi.org/10.1016/j.aca.2015.05.044
Chen YT, Ling YC (2002) Detection of water-soluble vitamins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using porphyrin matrices. J Mass Spectrom 37(7):716–730. https://doi.org/10.1002/jms.332
Cheraghi S, Taher MA, Karimi-Maleh H (2017) Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples. J Food Compos Anal 62:254–259. https://doi.org/10.1016/j.jfca.2017.06.006
David IG et al (2015) Voltammetric determination of B1 and B6 vitamins using a pencil graphite electrode. Chem Pap 69(7):901–910. https://doi.org/10.1515/chempap-2015-0096
David IG, Popa DE, Buleandra M (2017) Pencil graphite electrodes: a versatile tool in electroanalysis. J Analyt Methods Chem 2017(Cv). https://doi.org/10.1155/2017/1905968.
Dimitropoulou G, Karastogianni S, Girousi S (2017) Development of an electrochemical DNA biosensor for the detection of vitamin B12 (cyanocobalamin) at a carbon paste modified electrode with a manganese(II) complex. J Appl Bioanal 3(4):70–80. https://doi.org/10.17145/jab.17.011
Economou A (2005) Bismuth-film electrodes: recent developments and potentialities for electroanalysis. TrAC - Trends in Analytical Chemistry 24(4):334–340. https://doi.org/10.1016/j.trac.2004.11.006
Ermens AAM, Vlasveld LT, Lindemans J (2003) Significance of elevated cobalamin (vitamin B12) levels in blood. Clin Biochem 36(8):585–590. https://doi.org/10.1016/j.clinbiochem.2003.08.004
Fallah M et al (2019) An electrochemical sensor based on a carbon paste electrode for the determination of buserelin. Anal Methods 12(1):33–38. https://doi.org/10.1039/c9ay01760g
de Fatima Ulbrich, K. et al. (2020) Mechanochemical synthesis of a Ni3-xTe2 nanocrystalline composite and its application for simultaneous electrochemical detection of dopamine and adrenaline’ Compos Part B Eng, 183(November 2019). https://doi.org/10.1016/j.compositesb.2019.107649.
Filik H, Avan AA, Aydar S (2016) Electrochemical Determination of Vitamin B-12 in Food Samples by Poly(2,2′-(1,4-phenylenedivinylene) Bis-8 hydroxyquinaldine)/Multi-Walled Carbon Nanotube-Modified Glassy Carbon Electrode. Food Anal Methods 9(8):2251–2260. https://doi.org/10.1007/s12161-016-0420-y
Gajdar J et al (2016) Recent Applications of Mercury Electrodes for Monitoring of Pesticides: A Critical Review. Electroanalysis 28(11):2659–2671. https://doi.org/10.1002/elan.201600239
Gerald F, Combs J (ed.) (2008) The Vitamins Fundamental Aspects in Nutrition and Health. 3rd editio, Elsevier Academic Press. 3rd editio. Elsevier Academic Press.
Gholivand MB, Solgi M (2017) Adsorptive anodic stripping differential pulse voltammetric determination of Cell Cept at Fe3O4 nanoparticles decorated multi-walled carbon nanotubes modified glassy carbon electrode. Anal Biochem 520:1–8. https://doi.org/10.1016/j.ab.2016.12.019
Goel A et al (2013) Use of serum vitamin B12 level as a marker to differentiate idiopathic noncirrhotic intrahepatic portal hypertension from cryptogenic cirrhosis. Dig Dis Sci 58(1):179–187. https://doi.org/10.1007/s10620-012-2361-7
Gräsbeck R (2006) Imerslund-Gräsbeck syndrome (selective vitamin B12 malabsorption with proteinuria). Orphanet J Rare Dis 1(1):1–6. https://doi.org/10.1186/1750-1172-1-17
Gröber U, Kisters K, Schmidt J (2013) Neuroenhancement with Vitamin B12-underestimated neurological significance. Nutrients 5(12):5031–5045. https://doi.org/10.3390/nu5125031
Guo J (2016) Uric acid monitoring with a smartphone as the electrochemical analyzer. Anal Chem 88(24):11986–11989. https://doi.org/10.1021/acs.analchem.6b04345
Guo J (2017) Smartphone-Powered Electrochemical Dongle for Point-of-Care Monitoring of Blood β-Ketone. Anal Chem 89(17):8609–8613. https://doi.org/10.1021/acs.analchem.7b02531
Guo J (2018) Smartphone-Powered Electrochemical Biosensing Dongle for Emerging Medical IoTs Application. IEEE Trans Industr Inf 14(6):2592–2597. https://doi.org/10.1109/TII.2017.2777145
Hadi Beitollahi and Fariba Garkani Nejad (2019) A Carbon Paste Electrode Modified by Graphene Oxide/Fe3O4@SiO2/Ionic Liquid Nanocomposite for Voltammetric Determination of Acetaminophen in the Presence of Tyrosine. Russ J Electrochem 55(12):1162–1170. https://doi.org/10.1134/S1023193519120024
Hampel D et al (2014) Competitive chemiluminescent enzyme immunoassay for vitamin B12 analysis in human milk. Food Chem 153:60–65. https://doi.org/10.1016/j.foodchem.2013.12.033
Heydarzadeh S et al (2020) Modeling of ultrasensitive DNA hybridization detection based on gold nanoparticles/carbon-nanotubes/chitosan-modified electrodes. Colloids Surf, A 587:124219. https://doi.org/10.1016/j.colsurfa.2019.124219
Hossain MF, Slaughter G (2020) PtNPs decorated chemically derived graphene and carbon nanotubes for sensitive and selective glucose biosensing. J Electroanal Chem 861:113990. https://doi.org/10.1016/j.jelechem.2020.113990
Hosseini F, Ebrahimi M, Karimi-Maleh H (2018) Electrochemical Determination of Mycophenolate Mofetil in Drug Samples Using Carbon Paste Electrode Modified with 1-methyl-3-butylimidazolium Bromide and NiO/SWCNTs Nanocomposite. Curr Anal Chem 15(2):177–182. https://doi.org/10.2174/1573411014666180326114345
Huang L et al (August 2020) (2021) ‘Electrochemical vitamin sensors: A critical review.’ Talanta 222:121645. https://doi.org/10.1016/j.talanta.2020.121645
Hultdin J et al (2005) Plasma folate, vitamin B12, and homocysteine and prostate cancer risk: A prospective study. Int J Cancer 113(5):819–824. https://doi.org/10.1002/ijc.20646
Hutton EA et al (2001) An introduction to bismuth film electrode for use in cathodic electrochemical detection. Electrochem Commun 3(12):707–711. https://doi.org/10.1016/S1388-2481(01)00240-5
Jiang X, Lin X (2005) Overoxidized polypyrrole film directed DNA immobilization for construction of electrochemical micro-biosensors and simultaneous determination of serotonin and dopamine. Anal Chim Acta 537(1–2):145–151. https://doi.org/10.1016/j.aca.2005.01.049
Kaumal M (2017) ‘Development of a low-cost portable paper-based microfluidic device for the detection and quantification of vitamin B12’, (June), pp. 3–8.
Kempahanumakkagari S et al (2018) Metal–organic framework composites as electrocatalysts for electrochemical sensing applications. Coord Chem Rev 357:105–129. https://doi.org/10.1016/j.ccr.2017.11.028
Kou Y et al (2019) Electrochemical Determination of Vitamin B12 Based on Cu2+-Involved Fenton-like Reaction. Electroanalysis 31(6):1155–1163. https://doi.org/10.1002/elan.201900019
Kreft GL, De Braga OC, Spinelli A (2012) Analytical electrochemistry of vitamin B 12 on a bismuth-film electrode surface. Electrochim Acta 83:125–132. https://doi.org/10.1016/j.electacta.2012.07.132
Krishnan RG et al (2019) Morphological studies of disposable graphite and its effective utilization for vitamin b12 analysis in pharmaceutical formulations. Materials Today: Proceedings 18:3314–3320. https://doi.org/10.1016/j.matpr.2019.07.252
Krishnan RG, Saraswathyamma B (2021) ‘Disposable electrochemical sensor for coumarin induced milk toxicity in raw milk samples’, Measurement: Journal of the International Measurement Confederation, 170(November), p. 108709. https://doi.org/10.1016/j.measurement.2020.108709.
Królicka A, Bobrowski A (2004) Bismuth film electrode for adsorptive stripping voltammetry - Electrochemical and microscopic study. Electrochem Commun 6(2):99–104. https://doi.org/10.1016/j.elecom.2003.10.025
Kuralay F et al (2011) Carbon nanotube-chitosan modified disposable pencil graphite electrode for Vitamin B 12 analysis. Colloids Surf, B 87(1):18–22. https://doi.org/10.1016/j.colsurfb.2011.03.030
Kuzmanović D et al (2016) Determination of pyridoxine (Vitamin B6) in pharmaceuticals and urine samples using unmodified boron-doped diamond electrode. Diam Relat Mater 64:184–189. https://doi.org/10.1016/j.diamond.2016.02.018
Lambert D et al (1992) Identification of vitamin B12 and analogues by high- performance capillary electrophoresis and comparison with high-performance liquid chromatography. J Chromatogr A 608(1–2):311–315. https://doi.org/10.1016/0021-9673(92)87137-W
Lederle FA (1998) Oral cobalamin for pernicious anemia: Back from the verge of extinction. J Am Geriatr Soc 46(9):1125–1127. https://doi.org/10.1111/j.1532-5415.1998.tb06651.x
Lexa D, Saveant JM (1983) The Electrochemistry of Vitamin B12. Acc Chem Res 16(7):235–243. https://doi.org/10.1021/ar00091a001
Li HB, Chen F (2000) Determination of vitamin B12 in pharmaceutical preparations by a highly sensitive fluorimetric method. Fresenius’ Journal of Analytical Chemistry 368(8):836–838. https://doi.org/10.1007/s002160000595
Liu G, Wang YM, Sun DM (2015) Simultaneous Determination of Vitamins B 2, B 6 and C Using Silver-Doped Poly(L-Arginine)-Modified Glassy Carbon Electrode. Жypнaл Aнaлитичecкoй Xимии 71(1):105–112. https://doi.org/10.7868/s0044450215120117
Mahmood L (2014) The metabolic processes of folic acid and Vitamin B12 deficiency. Journal of Health Research and Reviews 1(1):5. https://doi.org/10.4103/2394-2010.143318
Manivel P et al (2019) ‘Cu(HBTC)(4,4′-bipy)·3DMF nanorods supported on platinum electrode as an electrochemical sensing platform for efficient vitamin B 12 detection. J Taiwan Inst Chem Eng, 96(xxxx), pp. 1–10. https://doi.org/10.1016/j.jtice.2018.10.024.
Michopoulos A, Florou AB, Prodromidis MI (2015) Ultrasensitive Determination of Vitamin B12 Using Disposable Graphite Screen-Printed Electrodes and Anodic Adsorptive Voltammetry. Electroanalysis 27(8):1876–1882. https://doi.org/10.1002/elan.201500061
Mohamed GG et al (2020) Simultaneous determination of some antidepressant drugs and vitamin B12 in pharmaceutical products and urine sample using HPLC method. J Chromatogr, B: Anal Technol Biomed Life Sci 1150(April):122178. https://doi.org/10.1016/j.jchromb.2020.122178
Negut Cioates C (2020) Review—Electrochemical Sensors Used in the Determination of Riboflavin. J Electrochem Soc 167(3):037558. https://doi.org/10.1149/1945-7111/ab6e5e
Nie Z et al (2010) Electrochemical sensing in paper-based microfluidic devices. Lab Chip 10(4):477–483. https://doi.org/10.1039/b917150a
O’Leary F, Samman S (2010) Vitamin B12 in health and disease. Nutrients 2(3):299–316. https://doi.org/10.3390/nu2030299
Oberlin BS et al (2013) Vitamin B12 deficiency in relation to functional disabilities. Nutrients 5(11):4462–4475. https://doi.org/10.3390/nu5114462
Pala BB et al (2014) Disposable pencil graphite electrode modified with peptide nanotubes for Vitamin B 12 analysis. Appl Surf Sci 303:37–45. https://doi.org/10.1016/j.apsusc.2014.02.039
Palaska P, Aritzoglou E, Girousi S (2007) Sensitive detection of cyclophosphamide using DNA-modified carbon paste, pencil graphite and hanging mercury drop electrodes. Talanta 72(3):1199–1206. https://doi.org/10.1016/j.talanta.2007.01.013
Parham H, Rahbar N (2010) Square wave voltammetric determination of methyl parathion using ZrO2-nanoparticles modified carbon paste electrode. J Hazard Mater 177(1–3):1077–1084. https://doi.org/10.1016/j.jhazmat.2010.01.031
Parvin MH et al (2018) Highly sensitive and selective electrochemical sensor for detection of vitamin B12 using an Au/PPy/FMNPs@TD-modified electrode. Sensors and Actuators, B: Chemical 261:335–344. https://doi.org/10.1016/j.snb.2018.01.168
Pereira DF et al (November 2019) (2020) ‘A novel electrochemical strategy for determination of vitamin B12 by Co(I/II) redox pair monitoring with boron-doped diamond electrode.’ Diam Relat Mater 105:107793. https://doi.org/10.1016/j.diamond.2020.107793
Plausinaitis D et al (2020) Evaluation of electrochemical quartz crystal microbalance based sensor modified by uric acid-imprinted polypyrrole. Talanta 220(July):121414. https://doi.org/10.1016/j.talanta.2020.121414
Qu N, Guo LH, Zhu BZ (2011) An electrochemical biosensor for the detection of tyrosine oxidation induced by Fenton reaction. Biosens Bioelectron 26(5):2292–2296. https://doi.org/10.1016/j.bios.2010.09.054
Rajamani AR et al (2015) Electrochemical sensing of dopamine, uric acid and ascorbic acid using tRGO-TiO2 nanocomposites. J Nanosci Nanotechnol 15(7):5042–5047. https://doi.org/10.1166/jnn.2015.9876
Ralapanawa DMPUK et al (2015) B12 deficiency with neurological manifestations in the absence of anaemia Case reports. BMC Research Notes 8(1):10–13. https://doi.org/10.1186/s13104-015-1437-9
Ramakrishnan S et al (2015) One-step synthesis of Pt-decorated graphene-carbon nanotubes for the electrochemical sensing of dopamine, uric acid and ascorbic acid. Anal Methods 7(2):779–786. https://doi.org/10.1039/c4ay02487g
Ramanavicius S, Ramanavicius A (2021) Conducting polymers in the design of biosensors and biofuel cells. Polymers 13(1):1–19. https://doi.org/10.3390/polym13010049
Randaccio L et al (2010) Vitamin B12: Unique metalorganic compounds and the most complex vitamins. Molecules 15(5):3228–3259. https://doi.org/10.3390/molecules15053228
Regasa MB et al (December 2019) (2020) ‘Novel multifunctional molecular recognition elements based on molecularly imprinted poly (aniline-co-itaconic acid) composite thin film for melamine electrochemical detection.’ Sensing and Bio-Sensing Research 27:100318. https://doi.org/10.1016/j.sbsr.2019.100318
Santhy A, Beena S, Krishnan Rajasree G, et al. (2020) ‘A commercially viable electrochemical sensor for the immunosuppressant drug mycophenolate mofetil utilizing pencil graphite electrode’, IOP Conference Series: Materials Science and Engineering, 872(1). https://doi.org/10.1088/1757-899X/872/1/012127.
Santhy A., Beena S, Veena et al. (2020) ‘Electrochemical quantification of vitamin B9 on poly tyrosine modified pencil graphite electrode’, IOP Conference Series: Materials Science and Engineering, 872(1). https://doi.org/10.1088/1757-899X/872/1/012128.
Sawamoto H (1985) Cathodic adsorption stripping analysis of vitamin B12. J Electroanal Chem 195(2):395–404. https://doi.org/10.1016/0022-0728(85)80058-9
Shadjou N, Hasanzadeh M, Omari A (2017) Electrochemical quantification of some water soluble vitamins in commercial multi-vitamin using poly-amino acid caped by graphene quantum dots nanocomposite as dual signal amplification elements. Anal Biochem 539:70–80. https://doi.org/10.1016/j.ab.2017.10.011
Sharma A et al (2020) Synthesis of Au–SnO2 nanoparticles for electrochemical determination of vitamin B12. Journal of Materials Research and Technology 9(6):14321–14337. https://doi.org/10.1016/j.jmrt.2020.10.024
Sharma A, Arya S (2019) Economical and Efficient Electrochemical Sensing of Folic Acid using a Platinum Electrode Modified with Hydrothermally Synthesized Pd and Ag Co-Doped SnO 2 Nanoparticles. J Electrochem Soc 166(13):B1107–B1115. https://doi.org/10.1149/2.0261913jes
Shieh YT, Yang YF (2006) Significant improvements in mechanical property and water stability of chitosan by carbon nanotubes. Eur Polymer J 42(12):3162–3170. https://doi.org/10.1016/j.eurpolymj.2006.09.006
Shishehbore MR (2013) ‘Simultaneous voltammetric determination of vitamine B9 and B12 using a hydroquinone derivative multi-wall carbon nanotubes paste electrode’, Oriental Journal of Chemistry, pp. 597–602. https://doi.org/10.13005/ojc/290229.
Sreekumar A et al (2020) A graphite pencil electrode with electrodeposited Pt-CuO for nonenzymatic amperometric sensing of glucose over a wide linear response range. Microchim Acta 187(2):3–10. https://doi.org/10.1007/s00604-019-4077-2
Stanković DM et al (2016) Electroanalytical Approach for Vitamin B 12 Quantification Based on Its Oxidation at Boron Doped Diamond Electrode. J Electrochem Soc 163(7):B348–B351. https://doi.org/10.1149/2.1041607jes
Švancara I et al (2009) Carbon paste electrodes in facts, numbers, and notes: A review on the occasion of the 50-years jubilee of carbon paste in electrochemistry and electroanalysis. Electroanalysis 21(1):7–28. https://doi.org/10.1002/elan.200804340
Taleat Z, Khoshroo A, Mazloum-Ardakani M (2014) Screen-printed electrodes for biosensing: A review (2008–2013). Microchim Acta 181(9–10):865–891. https://doi.org/10.1007/s00604-014-1181-1
Tang J et al. (2018) ‘Nonenzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with graphene oxide, a polyamidoamine dendrimer, and with polyaniline deposited by the Fenton reaction’, Microchimica Acta, 185(12). https://doi.org/10.1007/s00604-018-3089-7.
Tavakolian-Ardakani Z et al. (2019) ‘Latest trends in electrochemical sensors for neurotransmitters: A review’, Sensors (Switzerland), 19(9). https://doi.org/10.3390/s19092037.
Tekin Z et al (July 2018) (2019) ‘Determination of Vitamin B12 and cobalt in egg yolk using vortex assisted switchable solvent based liquid phase microextraction prior to slotted quartz tube flame atomic absorption spectrometry.’ Food Chem 286:500–505. https://doi.org/10.1016/j.foodchem.2019.02.036
Thiyagarajan N et al (2014) Disposable electrochemical sensors: A mini review. Electrochem Commun 38:86–90. https://doi.org/10.1016/j.elecom.2013.11.016
Tomčik P et al (2004) A Self-Catalytic Carbon Paste Electrode for the Detection of Vitamin B 12. Anal Chem 76(1):161–165. https://doi.org/10.1021/ac030308j
Tortorich, R. P., Shamkhalichenar, H. and Choi, J. W. (2018) ‘Inkjet-printed and paper-based electrochemical sensors’, Applied Sciences (Switzerland), 8(2). https://doi.org/10.3390/app8020288.
Vadivaambigai A et al (2015) Graphene-oxide-based electrochemical sensor for salicylic acid. Nanoscience and Nanotechnology Letters 7(2):140–146. https://doi.org/10.1166/nnl.2015.1909
Vericat C et al (2010) Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chem Soc Rev 39(5):1805–1834. https://doi.org/10.1039/b907301a
Wang G et al (2013) Non-enzymatic electrochemical sensing of glucose. Microchim Acta 180(3–4):161–186. https://doi.org/10.1007/s00604-012-0923-1
Wang H et al (2019) Stability of vitamin B12 with the protection of whey proteins and their effects on the gut microbiome. Food Chem 276:298–306. https://doi.org/10.1016/j.foodchem.2018.10.033
Wolffenbuttel BHR et al (2019) The Many Faces of Cobalamin (Vitamin B12) Deficiency. Mayo Clinic Proceedings: Innovations, Quality & Outcomes 3(2):200–214. https://doi.org/10.1016/j.mayocpiqo.2019.03.002
Van Wyk J, Britz TJ (2010) A rapid HPLC method for the extraction and quantification of vitamin B 12 in dairy products and cultures of Propionibacterium freudenreichii. Dairy Science and Technology 90(5):509–520. https://doi.org/10.1051/dst/2009055
Xia N et al (2013) Comparing the performances of electrochemical sensors usingp-aminophenol redox cycling by different reductants on goldelectrodes modified with self-assembled monolayers. Electrochim Acta 109:348–354. https://doi.org/10.1016/j.electacta.2013.07.118
Yan, H. et al. (2015) ‘Simultaneous electroanalysis of isoniazid and uric acid at poly(sulfosalicylic acid)/electroreduced carboxylated graphene modified glassy carbon electrode’, Sensors and Actuators, B: Chemical, 207(Part A), pp. 167–176. https://doi.org/10.1016/j.snb.2014.10.002.
Yang C et al (2015) Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review. Anal Chim Acta 887:17–37. https://doi.org/10.1016/j.aca.2015.05.049
Yang N, Wan Q, Wang X (2005) Voltammetry of Vitamin B 12 on a thin self-assembled monolayer modified electrode. Electrochim Acta 50(11):2175–2180. https://doi.org/10.1016/j.electacta.2004.09.026
Yemini M et al (2005) Peptide nanotube-modified electrodes for enzyme-biosensor applications. Anal Chem 77(16):5155–5159. https://doi.org/10.1021/ac050414g
Zhang J et al (2017) Electrochemical preparation of two nanostructured poly(sulfosalicylic acid) films with different morphologies and properties for selective sensing of dopamineComparative study. Mater Sci Eng, C 77:151–158. https://doi.org/10.1016/j.msec.2017.03.237
Acknowledgements
The authors thankfully acknowledge Amrita Vishwa Vidyapeetham, Amritapuri Campus for the entire support for this research work.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author declares that there are no potential conflicts of interest regarding the publication of this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Antherjanam, S., Saraswathyamma, B., Krishnan, R.G. et al. Electrochemical sensors as a versatile tool for the quantitative analysis of Vitamin B12. Chem. Pap. 75, 2981–2995 (2021). https://doi.org/10.1007/s11696-021-01574-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11696-021-01574-2