Experimental and Theoretical Mechanistic Study on the Thermal Decomposition of 3,3-diphenyl-4-(trichloromethyl)-5-nitropyrazoline
<p>ELF atracttor positions for the points of the IRC defining Phases I-VI along the dehydrochlorination of <b>3</b> into <b>4</b>.</p> "> Figure 2
<p>B3LYP(PCM)/6-31G(d) IRC profile including the ELF attractor positions for the most relevant points of the dehydrochlorination of <b>3</b> and relative electronic energies.</p> "> Figure 3
<p>The course of decomposition of 3,3-diphenyl-4-(trichloromethyl)-5-nitropyrazoline <b>3</b> during heating in the range of 20–300 °C.</p> "> Scheme 1
<p>General scheme of reaction between diphenyldiazomethane (<b>1</b>) and (<span class="html-italic">E</span>)-3,3,3-trichloro-1-nitroprop-1-ene (<b>2</b>).</p> "> Scheme 2
<p>Theoretically possible mechanisms of the HCl extrusion process from organic molecules.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Instrumentation
3.2. Materials
3.2.1. Synthesis of 3,3-Diphenyl-4-(trichloromethyl)-5-nitropyrazoline 3
3.2.2. Dehydrochlorination of 3,3-Diphenyl-4-(trichloromethyl)-5-nitropyrazoline 3 –General Procedure
3.3. DFT Computational Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kula, K.; Dobosz, J.; Jasiński, R.; Kącka-Zych, A.; Łapczuk-Krygier, A.; Mirosław, B.; Demchuk, O.M. [3 + 2] Cycloaddition of diaryldiazomethanes with (E)-3,3,3-trichloro-1-nitroprop-1-ene: An experimental, theoretical and structural study. J. Mol. Struct. 2020, 1203, 127473. [Google Scholar] [CrossRef]
- Jasiński, R. Understanding of the molecular mechanism of the phenylsulfenic acid elimination from nitroalkyl systems. J. Mol. Graph. Model. 2019, 89, 109–113. [Google Scholar] [CrossRef]
- Łapczuk-Krygier, A.; Jaśkowska, J.; Jasiński, R. The influence of Lewis acid catalyst on the kinetic and molecular mechanism of nitrous acid extrusion from 3-phenyl-5-nitro-2-isoxazoline: DFT computational study. Chem. Heterocycl. Compd. 2018, 54, 1172–1174. [Google Scholar] [CrossRef]
- Kącka-Zych, A.; Domingo, L.R.; Jasiński, R. Does a fluorinated Lewis acid catalyst change the molecular mechanism of the decomposition process of nitroethyl carboxylates? Res. Chem. Intermed. 2018, 44, 325–337. [Google Scholar] [CrossRef]
- Jasiński, R. Molecular mechanism of thermal decomposition of fluoronitroazoxy compounds: DFT computational study. J. Fluor. Chem. 2014, 160, 29–33. [Google Scholar] [CrossRef]
- Woliński, P.; Kącka-Zych, A.; Demchuk, O.M.; Łapczuk-Krygier, A.; Mirosław, B.; Jasiński, R. Clean and molecularly programmable protocol for preparation of bis-heterobiarylic systems via a domino pseudocyclic reaction as a valuable alternative for TM-catalyzed cross-couplings. J. Clean. Prod. 2020, 275, 122086. [Google Scholar] [CrossRef]
- Jasinski, R.; Dresler, E. On the Question of Zwitterionic Intermediates in the [3 + 2] Cycloaddition Reactions: A Critical Review. Organics 2020, 1, 5. [Google Scholar] [CrossRef]
- Łapczuk-Krygier, A.; Kącka-Zych, A.; Kula, K. Recent progress in the field of cycloaddition reactions involving conjugated nitroalkenes. Curr. Chem. Lett. 2019, 8, 13–38. [Google Scholar] [CrossRef]
- Jasiński, R.; Mróz, K.; Kącka-Zych, A. Experimental and theoretical DFT study on synthesis of sterically crowded 2,3,3,(4)5-tetrasubstituted-4-nitroisoxazolidines via 1,3-dipolar cycloaddition reactions between ketonitrones and conjugated nitroalkenes. J. Heterocycl. Chem. 2016, 53, 1424–1429. [Google Scholar]
- Jasiński, R.; Mróz, K. Kinetic aspects of [3 + 2] cycloaddition reactions between (E)-3,3,3-trichloro-1-nitroprop-1-ene and ketonitrones. React. Kinet. Mech. Catal. 2015, 116, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Jasiński, R. The question of the regiodirection of the [2 + 3] cycloaddition reaction of triphenylnitrone to nitroethene. Chem. Heterocycl. Compd. 2009, 45, 748–749. [Google Scholar] [CrossRef]
- Autonov, D.M.; Belen’kii, L.I.; Dudinov, A.A.; Krayushkin, M.M. Synthesis of heterocycles using the products of the addition of polyhaloalkanes to unsaturated systems. 6.* Transformation of the gem-trichloroethyl group in 2-methyl-3-(2,2,2-trichloroethyl) 4-r-aminofuro[2,3-d]pyrimidines, isomeric structures and severa. Chem. Heterocycl. Compd. 1994, 30, 393–398. [Google Scholar] [CrossRef]
- Zadorozhnii, P.V.; Pokotylo, I.O.; Kiselev, V.V.; Kharchenko, A.V. New 2,2-Dichloroacetamidines with Heterocyclic Fragments. Chem. Sci. Trans. 2016, 5, 1056–1062. [Google Scholar]
- McLennan, D.J. The Carbanion Mechanism of Olefin-forming Elimination. Q. Rev. Chem. Soc. 1967, 21, 490–506. [Google Scholar] [CrossRef]
- McLennan, D.J. The Carbanion Mechanism of Olefin-forming Elimination. Part VII. The isotope effect maximum in the dehydrochlorination of 2,2,2-trichloro-1,1-bis-(p-chlorophenyl)ethane by various bases in alcholic solvents. J. Chem. Soc. Perkin Trans. 1976, 8, 932–935. [Google Scholar] [CrossRef]
- Paciorek, K.J.L.; Kratzer, R.H.; Nakahara, J.H.; Lin, W.; Johri, K.K. Chlorotrifluoroethylene-derived fluids. I. Model compound synthesis. J. Fluor. Chem. 1991, 55, 271–282. [Google Scholar] [CrossRef]
- Nome, F.; Rubira, A.F.; Franco, C.; Ioneocu, L.G. Limitations of the pseudophase model of micellar catalysls. The dehydrochlorination of 1,1,1-trlchloro-2,2-bis(p-chlorophenyl)ethane and some of its derivatives. J. Phys. Chem. 1982, 86, 1881–1885. [Google Scholar] [CrossRef]
- Cleveland, W.K.S.; Webb, J.L.; Orlando, C.M. Method for Dehydrochlorinating 1,1,1-trichloro-22-bis(4-hydroxy. phenyl)ethane and Products Obtaned Therefrom. U.S. Patent 4,117,018, 26 September 1978. [Google Scholar]
- Porejko, S.; Brzozowski, Z.K.; Mączyński, C.; Wielgosz, Z. Sposób Wytwarzania Samogasnących Termoplastów. Polish Patent PL48893; Submitted: 15.08.1963 published: 9.12.1964,
- MacLaury, M.R.; Chan, A.D.; Colley, A.M.; Saracino, A.; Toothaker, A.M. Synthesis of 1,1-dichloro-2,2-bis(4-hydroxyphenyl)-ethylene via ammonia or methylamine dehydrochlorination. A bisphenol for the preparation of highly flame-resistant polycarbonates. J. Polym. Sci. Polym. Chem. Ed. 1980, 18, 2501–2511. [Google Scholar] [CrossRef]
- Blicke, F.F.; Zambito, A.J.; Stenseth, R.E. Reaction of Basic Nitriles with Hydrogen Chloride. J. Org. Chem. 1961, 26, 1826–1831. [Google Scholar] [CrossRef]
- Ivanova, O.A.; Budynina, E.M.; Averina, E.B.; Kuznetsova, T.S.; Grishin, Y.K.; Zefirov, N.S. [3 + 2] Cycloaddition of Diazocarbonyl Compounds to 1,1-Dinitroethenes: Synthesis of Functionalized gem-Dinitrocyclopropanes. Synthesis 2007, 13, 2009–2013. [Google Scholar] [CrossRef]
- Parham, W.E.; Hasek, W.R. Reactions of Diazo Compounds with Nitroölefins. III. Group Migrations in the Decomposition of Nitropyrazolines. J. Am. Chem. Soc. 1954, 76, 799–801. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Liu, L.; Peng, X. Theoretical study on the thermal dehydrochlorination of model compounds for poly(vinyl chloride). J. Mol. Struct. Theochem. 2009, 896, 34–37. [Google Scholar] [CrossRef]
- Marquez, E.; Mora, J.R.; Cordova, T.; Chuchani, G. Theoretical study of the mechanism for the gas-phase pyrolysis kinetics of 2-methylbenzyl chloride. Int. J. Chem. Kinet. 2011, 43, 537–546. [Google Scholar] [CrossRef]
- Benson, S.W.; Bose, A.N. Structural Aspects of the Kinetics of Four-Center Reactions in the Vapor Phase. J. Chem. Phys. 1963, 39, 3463–3473. [Google Scholar] [CrossRef]
- Brown, T.M.; Nestler, M.J.; Rossabi, S.M.; Heard, G.L.; Setser, D.W.; Holmes, B.E. Characterization of the 1,1-HCl Elimination Reaction of Vibrationally Excited CD3CHFCl Molecules and Assignment of Threshold Energies for 1,1-HCl and 1,2-DCl plus 1,1-HF and 1,2-DF Elimination Reactions. J. Phys. Chem. A 2015, 119, 9441–9451. [Google Scholar] [CrossRef]
- Iogansen, A.V.; Litovchenko, G.D. The characteristic bands of the stretching vibrations of the nitro group in infrared absorption. J. Appl. Spectrosc. 1965, 3, 404–411. [Google Scholar] [CrossRef]
- Ioffe, B.V. Characteristic frequencies in the infrared spectra of pyrazolines. Chem. Heterocycl. Compd. 1968, 4, 791–793. [Google Scholar] [CrossRef]
- Krokidis, X.; Noury, S.; Silvi, B. Characterization of Elementary Chemical Processes by Catastrophe Theory. J. Phys. Chem. A 1997, 101, 7277–7282. [Google Scholar] [CrossRef]
- Nicolle, S.M.; Moody, C.J. Potassium N-Iodo p-Toluenesulfonamide (TsNIK, Iodamine-T): A New Reagent for the Oxidation of Hydrazones to Diazo Compounds. Chem. Eur. J. 2014, 20, 4420–4425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Compton, M.; Higgins, H.; MacBeth, L.; Osborn, J.; Burkett, H. Trichloroaminoalcohols. I. 1,1,1-Trichloro-3-aminopropanol-2 and Derivatives. J. Am. Chem. Soc. 1949, 71, 3229–3231. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A.; Vreven, T.J.; Kudin, K.N.; Burant, J.C.; et al. Gaussian 16 Rev A.1; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, A.D. Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.Y.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Truhlar, G.D. Hybrid Meta Density Functional Theory Methods for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions: The MPW1B95 and MPWB1K Models and Comparative Assessments for Hydrogen Bonding and van der Waals Interactions. J. Phys. Chem. A 2004, 108, 6908–6918. [Google Scholar] [CrossRef]
- Tapia, O. Solvent effect theories: Quantum and classical formalism and their applications in chemistry and biochemistry. J. Math. Chem. 1992, 10, 131–181. [Google Scholar] [CrossRef]
- Tomasi, J.; Perisco, M. Molecular interactions in solution: An overview of methods based on continuous distributions of the solvent. Chem. Rev. 1994, 94, 2027–2094. [Google Scholar] [CrossRef]
- Simkin, Y.; Sheikhet, I. Quantum Chemical and Statistical Theory of Solutions: A Computational Approach; Ellis Horwood: London, UK, 1995. [Google Scholar]
- Cances, E. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. [Google Scholar] [CrossRef]
- Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Ab initio study of solvated molecules: A new implementation of the polarizable continuum model. Chem. Phys. Chem. 1996, 225, 327–335. [Google Scholar] [CrossRef]
- Woliński, P.; Kącka-Zych, A.; Dziuk, B.; Ejsmont, K.; Łapczuk-Krygier, A.; Dresler, E. The structural aspects of the transformation of 3-nitroisoxazoline-2-oxide to 1-aza-2,8-dioxabicyclo[3.3.0]octane derivatives: Experimental and MEDT theoretical study. J. Mol. Struct. 2019, 1192, 27–34. [Google Scholar] [CrossRef]
- Kącka-Zych, A.; Ríos-Gutiérrez, M.; Domingo, L. A molecular electron density theory study of the Lewis acid–catalyzed decomposition reaction of nitroethyl benzoate using aluminum derivatives. J. Phys. Org. Chem. 2019, 32, e3938. [Google Scholar] [CrossRef]
- Kącka-Zych, A.; Jasiński, R. Unexpected molecular mechanism of trimethylsilyl bromide elimination from 2-(trimethylsilyloxy)-3-bromo-3-methyl-isoxazolidines. Theor. Chem. Acc. 2019, 138, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Kącka-Zych, A. Understanding the molecular mechanism of the rearrangement of internal nitronic ester into nitronorbornene in light of the MEDT study. Molecules 2019, 24, 462. [Google Scholar] [CrossRef] [Green Version]
- Kącka-Zych, A. Participation of Phosphorylated Analogues of Nitroethene in Diels–Alder Reactions with Anthracene: A Molecular Electron Density Theory Study and Mechanistic Aspect. Organics 2020, 1, 4. [Google Scholar] [CrossRef]
- Silvi, B.; Savin, A. Classification of chemical bonds based on topological analysis of electron localization functions. Nature 1994, 371, 683–686. [Google Scholar] [CrossRef]
- Savin, A.; Silvi, B.; Colonna, F. Topological Analysis of the Electron Localization Function Applied to Delocalized Bonds. Can. J. Chem. 1996, 74, 1088–1096. [Google Scholar] [CrossRef]
- Becke, A.D.; Edgecombe, K.E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 1990, 92, 5397–5403. [Google Scholar] [CrossRef]
- Noury, S.; Krokidis, X.; Fuster, F.; Silvi, B. Computational tools for the electron localization function topological analysis. Comput. Chem. 1999, 23, 597–604. [Google Scholar] [CrossRef]
Structures | 3 | P1 | P2 | TS | P3 | P4 | P5 | 4 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Phases | I | II | III | IV | V | VI | ||||||||
d(C4-H6) | 2.126 | 2.125 | 2.145 | 2.169 | 2.777 | 2.994 | 3.472 | 6.576 | ||||||
d(C4-C7) | 2.919 | 2.951 | 2.931 | 2.771 | 2.649 | 2.633 | 2.576 | 2.525 | ||||||
d(C7-Cl8) | 3.445 | 3.449 | 3.889 | 5.791 | 6.051 | 6.040 | 6.012 | 6.483 | ||||||
d(H6-Cl8) | 5.232 | 4.649 | 4.562 | 4.150 | 3.128 | 2.914 | 2.551 | 2.503 | ||||||
ΔE a | 0.0 | 9.2 | 36.9 | 28.0 | 13.2 | 3.4 | −2.3 | |||||||
V(C4,H6) | 2.03 | 2.02 | 2.01 | 1.95 | ||||||||||
V(C4) | 0.86 | 0.79 | ||||||||||||
V(H6) | 0.79 | |||||||||||||
V(C4,C7) | 2.07 | 2.09 | 2.10 | 2.42 | 2.95 | 3.12 | 2.05 | 2.00 | ||||||
V′(C4,C7) | 1.95 | 1.99 | ||||||||||||
V(C7) | 0.78 | |||||||||||||
V(C7,Cl8) | 1.44 | 1.48 | ||||||||||||
V(Cl8) | 2.36 | 2.51 | 3.05 | 3.75 | 6.99 | 6.85 | 6.39 | 6.28 | ||||||
V′(Cl8) | 1.89 | 1.83 | 1.95 | 3.83 | 0.46 | |||||||||
V″(Cl8) | 2.21 | 2.10 | 1.98 | |||||||||||
V(H6,Cl8) | 1.33 | 1.68 | 1.69 |
Group | Phases | d1(C4-H6) d2(C4-C7) d3(C7-Cl8) d4(H6-Cl8) | ∆E | Topological Characterization | Chemical Process |
---|---|---|---|---|---|
A | I-II | 2.13 ≤ d1 < 2.15 2.95 ≥ d2 > 2.93 3.45 ≤ d3 < 3.89 4.65 ≥ d4 > 4.56 | 9.2 | Disappearance of V(C7,Cl8) disynaptic basin and formation of V (C7) monosynaptic basin | Rupture of the C7-Cl8 bond and formation of C7 pseudoradical centre |
B | III-IV | 2.15 ≤ d1 < 2.99 2.93 ≥ d2 > 2.63 3.89 ≤ d3 < 6.04 4.56 ≥ d4 > 2.91 | 28.0 | Disappearance of V(C4,H6) disynaptic and V(C7) monosynaptic basins and formation of V(C4) and V(H6) monosynaptic basins | Rupture of the C4-H6 bond and formation of C4 pseudoradical centre |
C | V | 2.99 ≤ d1 < 3.47 2.63 ≥ d2 > 2.58 6.04 ≤ d3 < 6.01 2.91 ≥ d4 > 2.55 | 13.2 | Formation of V(H6,Cl8) disynaptic basin and disappearance of V(H6) monosynaptic basin | Formation of the H6-Cl8 bond |
D | VI | 3.47 ≤ d1 < 6.58 2.58 ≥ d2 > 2.53 6.01 ≤ d3 < 6.48 2.55 ≥ d4 > 2.50 | −2.3 | Formation of V(C4,C7) disynaptic basin and disappearance of V(C4) monosynaptic basin | Formation of the C4=C7 double bond |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kula, K.; Kącka-Zych, A.; Łapczuk-Krygier, A.; Wzorek, Z.; Nowak, A.K.; Jasiński, R. Experimental and Theoretical Mechanistic Study on the Thermal Decomposition of 3,3-diphenyl-4-(trichloromethyl)-5-nitropyrazoline. Molecules 2021, 26, 1364. https://doi.org/10.3390/molecules26051364
Kula K, Kącka-Zych A, Łapczuk-Krygier A, Wzorek Z, Nowak AK, Jasiński R. Experimental and Theoretical Mechanistic Study on the Thermal Decomposition of 3,3-diphenyl-4-(trichloromethyl)-5-nitropyrazoline. Molecules. 2021; 26(5):1364. https://doi.org/10.3390/molecules26051364
Chicago/Turabian StyleKula, Karolina, Agnieszka Kącka-Zych, Agnieszka Łapczuk-Krygier, Zbigniew Wzorek, Anna K. Nowak, and Radomir Jasiński. 2021. "Experimental and Theoretical Mechanistic Study on the Thermal Decomposition of 3,3-diphenyl-4-(trichloromethyl)-5-nitropyrazoline" Molecules 26, no. 5: 1364. https://doi.org/10.3390/molecules26051364