On the Question of Zwitterionic Intermediates in the [3+2] Cycloaddition Reactions: A Critical Review
"> Figure 1
<p>Theoretically possible cycloaddition mechanism in the light of degree bonds development.</p> "> Scheme 1
<p>The first historical example of 32CA reaction between carboethoxydiazomethane and dietyl fumarate.</p> "> Scheme 2
<p>Concerted mechanism of 32CA proposed by Huisgen.</p> "> Scheme 3
<p>Stepwise, biradical mechanism of 32CA proposed by Firestone.</p> "> Scheme 4
<p>Mechanism of 32CA of sterically crowded thiocarbonyloylides with 1,2-dicyanofumarate and dimethyl 1,2-dicyanomaleate.</p> "> Scheme 5
<p>Mechanism of 32CA of 2,2,4,4-tetramethyl-3-thiocyclobutanone S-methylide with tetracyanoethene.</p> "> Scheme 6
<p>Mechanism of 32CA of 2,2,4,4-tetramethyl-3-thiocyclobutanone S-methylide with nitroethene.</p> "> Scheme 7
<p>Mechanism of 32CA of (Z)-C,N-diphenylnitrone with 2,3-dialkylsubstituted conjugated 1,3-dienes.</p> "> Scheme 8
<p>Mechanism of 32CA of C-arylonitrone with perfluorinated hexene.</p> "> Scheme 9
<p>Mechanism of 32CA of <span class="html-italic">N</span>-methylnitrone with (<span class="html-italic">E</span>)- and (<span class="html-italic">Z</span>)-1,1,1,2,3-pentafluoro-3-phenylethenes.</p> "> Scheme 10
<p>Mechanism of 32CA of 1-benzyl-4,5-diphenylimidazole N-oxide with 1,1-dicyano-2,2-di(trifluromethyl)ethene.</p> "> Scheme 11
<p>Mechanism of 32CA of (<span class="html-italic">Z</span>)-C-(9-anthracene)-<span class="html-italic">N</span>-arylonitrones with (<span class="html-italic">E</span>)-3,3,3-trichloro-1-nitroprop-1-ene.</p> "> Scheme 12
<p>Mechanism of 32CA of (<span class="html-italic">Z</span>)-C-(3,4,5-trimethoxyphenyl)-<span class="html-italic">N</span>-methylnitrone with (<span class="html-italic">Z</span>)-3,3,3-trichloro-1-1-bromo-1-nitroprop-1-ene.</p> "> Scheme 13
<p>Mechanism of 32CA of (<span class="html-italic">Z</span>)-C-(3,4,5-trimethoxyphenyl)-<span class="html-italic">N</span>-methylnitrone with (<span class="html-italic">E</span>)-2-R-1-nitroethenes.</p> "> Scheme 14
<p>Mechanism of 32CA of (<span class="html-italic">Z</span>)-C,N-diphenylnitrone and its seleno analogue with nitroethene.</p> "> Scheme 15
<p>Mechanism of 32CA of (<span class="html-italic">Z</span>)-C-phenyl-<span class="html-italic">N</span>-arylonitrones with 1-chloronitroethene under thermal conditions and in the presence of dialkylimidazolium cations of ionic liquids.</p> "> Scheme 16
<p>Mechanism of 32CA of (<span class="html-italic">Z</span>)-<span class="html-italic">C</span>,<span class="html-italic">N</span>-diphenylnitrone with 1,1-dinitroethene in the gas phase and in solution.</p> "> Scheme 17
<p>Mechanism of 32CA of <span class="html-italic">N</span>-methoxy-C,C-dicarbomethoxy imine N-oxide with nitroethene.</p> "> Scheme 18
<p>Mechanism of 32CAof pyridine N-oxide with isocyanates.</p> "> Scheme 19
<p>Mechanism of 32CA of π-deficient cyclic ylides with dimethylaminopropyne.</p> "> Scheme 20
<p>Mechanism of 32CA of 1,3-diphenyl-N-methyl-azomethine ylide with 1,2-dicyanofumarate and dimethyl 1,2-dicyanomaleate.</p> "> Scheme 21
<p>Mechanism of 32CA of N-methyl-azomethine ylide with (<span class="html-italic">E</span>)-2-aryl-1-cyano-1-nitroethenes.</p> "> Scheme 22
<p>Mechanism of 32CA of 3,5-dichloro-2,4,6-trimethylbenzonitrile N-oxide with arylacetylenes.</p> "> Scheme 23
<p>Mechanism of 32CA of benzonitrile N-oxide with 1,1,2,2,3,3-hexamethyl-4,5-dimethylenecyclopentane.</p> "> Scheme 24
<p>Mechanism of hypothetical 32CA of benzonitrile N-oxide and phenyl azide with nitroacetylene.</p> "> Scheme 25
<p>Mechanism of hypothetical 32CA of acetonitrile N-oxide with tetraaminoethene.</p> "> Scheme 26
<p>Mechanism of 32CA of π-deficient azides with 5-alkylidenedihydrotetrazole.</p> "> Scheme 27
<p>Mechanism of 32CA of diaryldiazomethanes with hexafluoroacetone.</p> "> Scheme 28
<p>Mechanism of 32CA of diazafluorene with EWG -functionalized nitroethenes.</p> "> Scheme 29
<p>Mechanism of 32CA of diazafluorene with dimethyl 1,2-dicyanofumarate and dimethyl 1,2-dicyanomaleate.</p> "> Scheme 30
<p>Mechanism of 32CA of diphenyldiazomethane with diarylthioketones.</p> ">
Abstract
:1. Introduction
2. TACs as Components of Stepwise 32CA Reactions
2.1. Thiocarbonyl Ylides
2.2. Nitrones and Their Derivatives
2.3. Azomethine Ylides
2.4. Nitrile N-Oxides and Azides
2.5. Diazocompounds
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Buchner, E. Einwirkung von Diazoessigäther auf die Aether ungesättigter Säuren. Chem. Ber. 1888, 21, 2637–2647. [Google Scholar] [CrossRef]
- Huisgen, R. Kinetics and Mechanism of 1,3-Dipolar Cycloadditions. Angew. Chem. Int. Ed. 1963, 2, 633–696. [Google Scholar] [CrossRef]
- Huisgen, R. 1,3-Dipolar cycloadditions. 76. Concerted nature of 1,3-dipolar cycloadditions and the question of diradical intermediates. J. Org. Chem. 1976, 41, 403–419. [Google Scholar] [CrossRef]
- Hoffman, R.V. Organic Chemistry, 2nd ed.; Wiley: New Jersey, NJ, USA, 2004; pp. 312–324. [Google Scholar]
- Carey, F.A.; Sundberg, R.J. Advanced Organic Chemistry. Part A: Structure and Mechanisms, 5th ed.; Springer: New York, NY, USA, 2007; pp. 834–892. [Google Scholar]
- Huisgen, R. Cycloadditions—Definition, Classification, and Characterization. Angew. Chem. Int. Ed. 1968, 7, 321–328. [Google Scholar] [CrossRef]
- Huisgen, R. Cycloaddition mechanism and the solvent dependence of rate. Pure Appl. Chem. 1980, 52, 2283–2302. [Google Scholar] [CrossRef]
- Firestone, R.A. Mechanism of 1,3-dipolar cycloadditions. J. Org. Chem. 1968, 33, 2285–2290. [Google Scholar] [CrossRef]
- Firestone, R.A. Applications of the Linnett electronic theory to organic chemistry. Part III. Linnett structures for 1,3-dipoles and for the diradical intermediates in 1,3-dipolar cycloadditions. J. Chem. Soc. A. 1970, 1570–1575. [Google Scholar] [CrossRef]
- Firestone, R.A. Application of the Linnett electronic theory to organic chemistry. V. Orientation in 1,3-dipolar cycloadditions according to the diradical mechanism. Partial formal charges in the Linnett structures of the diradical intermediate. J. Org. Chem. 1972, 37, 2181–2191. [Google Scholar] [CrossRef]
- Huisgen, R.; Mloston, G.; Langhals, E. The first two-step 1,3-dipolar cycloadditions: Interception of intermediate. J. Org. Chem. 1986, 51, 4085–4087. [Google Scholar] [CrossRef]
- Huisgen, R.; Mloston, G.; Langhals, E. The first two-step 1,3-dipolar cycloadditions: Non-stereospecificity. J. Am. Chem. Soc. 1986, 108, 6401–6402. [Google Scholar] [CrossRef]
- Domingo, L.R. Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry. Molecules 2016, 21, 1319. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Gutiérrez, M.; Domingo, L.R. Unravelling the Mysteries of the 32CAReactions. Eur. J. Org. Chem. 2019, 2019, 267–282. [Google Scholar] [CrossRef]
- Domingo, L.R.; Sáez, J.A. Understanding the mechanism of polar Diels—Alder reactions. Org. Biomol. Chem. 2009, 7, 3576–3583. [Google Scholar] [CrossRef]
- Fialkov, Y.Y. Rastvoritel’ kak Sredstvo Upravlenia Khimicheskim Processom; Khimya: Saint Petersburg, Russia, 1990; pp. 100–220. [Google Scholar]
- Schwetlick, K. Kinetische Metoden zur Untersuchung von Reaktionsmechanismen; VEB Deutscher Verlag der Wissenschaften: Berlin, Germany, 1971; pp. 10–78. [Google Scholar]
- Lan, Y.; Houk, K.N. Mechanism and Stereoselectivity of the Stepwise 1,3-Dipolar Cycloadditions between a Thiocarbonyl Ylide and Electron-Deficient Dipolarophiles: A Computational Investigation. J. Am. Chem. Soc. 2010, 132, 17921–17927. [Google Scholar] [CrossRef]
- Domingo, L.R.; Picher, M.T. A DFT study of the Huisgen 1,3-dipolar cycloaddition between hindered thiocarbonyl ylides and tetracyanoethylene. Tetrahedron 2004, 60, 5053–5058. [Google Scholar] [CrossRef]
- Huisgen, R.; Giera, H.; Polborn, K. 2,2,6,6-Tetramethylcyclohexanethione S-methylide, a highly hindered thiocarbonyl ylide: Two-step cycloadditions. Tetrahedron 2005, 61, 6143–6153. [Google Scholar] [CrossRef]
- Huisgen, R.; Mloston, G.; Giera, H.; Langhals, E. Cycloadditions of two thiocarbonyl ylides with α,β-unsaturated esters and nitriles: Steric course and mechanism. Tetrahedron 2002, 58, 507–519. [Google Scholar] [CrossRef]
- Mloston, G.; Huisgen, R.; Giera, H. Reactions of a sterically hindered tetrasubstituted thiocarbonyl ylide with acceptor-substituted ethylenes; regioselectivity and stereochemistry. Tetrahedron 2002, 58, 4185–4193. [Google Scholar] [CrossRef]
- Huisgen, R.; Mloston, G.; Langhals, E.; Oshima, T. 1,3-dipolar cycloadditions, part 126. Reactions of sterically hindered ’thiocarbonyl ylides’ with 1,2-bis(trifluoromethyl)ethene-1,2-dicarbonitrile: Isolation of a cyclic seven-membered ketene imine. Helvetica Chimica Acta 2002, 85, 2668–2685. [Google Scholar] [CrossRef]
- Huisgen, R.; Mloston, G.; Langhals, E. Cycloadditions of ’thiocarbonyl ylides’ with tetracyanoethylene (=ethenetetracarbonitrile): Interception of intermediates. Helv. Chim. Acta 2001, 84, 1805–1820. [Google Scholar] [CrossRef]
- Mloston, G.; Langhals, E.; Huisgen, R. 1,3-cycloadditions of aliphatic thione S-methylides to dimethyl 2,3-dicyanofumarate and 2,3-dicyanomaleate; a test case for steric course and mechanism. Tetrahedron Lett. 1989, 30, 5373–5376. [Google Scholar] [CrossRef]
- Huisgen, R.; Penelle, J.; Mloston, G.; Buyle Padias, A.; Hall, H.K., Jr. Can polymerization trap intermediates in 1,3-dipolar cycloadditions? J. Am. Chem. Soc. 1992, 114, 266–274. [Google Scholar] [CrossRef]
- Jasiński, R. In the searching for zwitterionic intermediates on reaction paths of 32CAreactions between 2,2,4,4-tetramethyl-3-thiocyclobutanone S-methylide and polymerizable olefins. RSC Adv. 2015, 5, 101045–101048. [Google Scholar] [CrossRef]
- Kącka-Zych, A.; Jasiński, R. A DFT study on the molecular mechanism of the conjugated nitroalkenes polymerization process initiated by selected unsaturated nucleophiles. Theor. Chem. Acc. 2020, 139, 119. [Google Scholar] [CrossRef]
- Baran, J.; Mayr, H. First [4+3]-cycloaddition of a 1,3-dipole with a 1,3-diene. J. Am. Chem. Soc. 1987, 109, 6519–6521. [Google Scholar] [CrossRef] [Green Version]
- Baran, J.; Mayr, H. Competing [2+3] and [4+3] cycloadditions of C,N-diphenylnitrone with 1,3-dienes. Evidence for thermally nonequilibrated intermediates. J. Org. Chem. 1989, 54, 5774–5783. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; He, Y.; Chiu, P. Application of (4+3) cycloaddition strategies in the synthesis of natural products. Chem. Soc. Rev. 2018, 47, 8881–8924. [Google Scholar] [CrossRef]
- Jasiński, R. A new insight on the molecular mechanism of the reaction between (Z)-C,N-diphenylnitrone and 1,2-bismethylene-3,3,4,4,5,5-hexamethylcyclopentane. J. Mol. Graph. Model. 2020, 94, 107461. [Google Scholar] [CrossRef]
- Wójtowicz-Rajchel, H.; Koroniak, H. Synthesis of 5-fluorovinyl derivatives of pyrimidines via Suzuki–Miyaura coupling and their 1,3-dipolar cycloaddition reactions with nitrones. J. Fluor. Chem. 2012, 135, 225–230. [Google Scholar] [CrossRef]
- Mlostoń, G.; Jasiński, M.; Linden, A.; Heimgartner, H. Reactions of 2-Unsubstituted 1H-Imidazole 3-Oxides with 2,2-Bis(trifluoromethyl)ethene-1,1-dicarbonitrile: A Stepwise 1,3-Dipolar Cycloaddition. Helvetica Chimica Acta 2006, 89, 1304–1316. [Google Scholar] [CrossRef] [Green Version]
- Jasiński, R. β-Trifluoromethylated nitroethenes in Diels-Alder reaction with cyclopentadiene: A DFT computational study. J. Fluor. Chem. 2018, 206, 1–7. [Google Scholar] [CrossRef]
- Jasiński, R. Competition between one-step and two-step mechanism in polar [3+2] cycloadditions of (Z)-C-(3,4,5-trimethoxyphenyl)-N-methyl-nitrone with (Z)-2-EWG-1-bromo-1-nitroethenes. Comput. Theor. Chem. 2018, 1125, 77–85. [Google Scholar] [CrossRef]
- Jasiński, R.; Dresler, E.; Mikulska, M.; Polewski, D. [3+2] Cycloadditions of 1-halo-1-nitroethenes with (Z)-C-(3,4,5-trimethoxyphenyl)-N-methyl-nitrone as regio- and stereocontrolled source of novel bioactive compounds: Preliminary studies. Curr. Chem. Lett. 2016, 5, 123–128. [Google Scholar] [CrossRef]
- Jasiński, R.; Ziółkowska, M.; Demchuk, O.M.; Maziarka, A. Regio- and stereoselectivity of polar [2+3] cycloaddition reactions between (Z)-C-(3,4,5-trimethoxyphenyl)-N-methylnitrone and selected (E)-2-substituted nitroethenes. Cent. Eur. J. Chem. 2014, 12, 586–593. [Google Scholar] [CrossRef]
- Jasiński, R. Regio- and stereoselectivity of [2+3]cycloaddition of nitroethene to (Z)-N-aryl-C-phenylnitrones. Collect. Czech. Chem. Commun. 2009, 74, 1341–1349. [Google Scholar] [CrossRef]
- Jasiński, R. Selenyl analog of the (Z)-C,N-diphenylnitrone as the TAC in [3+2] cycloaddition with nitroethene: A DFT computational study. Phosphorus Sulfur Silicon Relat. Elem. 2020, 195, 871–876. [Google Scholar] [CrossRef]
- Kula, K.; Łapczuk-Krygier, A. A DFT computational study on the [3+2] cycloaddition between parent thionitrone and nitroethene. Curr. Chem. Lett. 2018, 7, 27–34. [Google Scholar] [CrossRef]
- Jasiński, R. A stepwise, zwitterionic mechanism for the 1,3-dipolar cycloaddition between (Z)-C-4-methoxyphenyl-N-phenylnitrone and gem-chloronitroethene catalysed by 1-butyl-3-methylimidazolium ionic liquid cations. Tetrahedron Lett. 2015, 56, 532–535. [Google Scholar] [CrossRef]
- Jasiński, R. First example of stepwise, zwitterionic mechanism for bicyclo[2.2.1]hept-5-ene (norbornene) formation process catalyzed by the 1-butyl-3-methylimidazolium cations. Monatshefte für Chemie 2016, 147, 1207–1213. [Google Scholar] [CrossRef] [Green Version]
- Jasiński, R. Competition between the one-step and two-step, zwitterionic mechanisms in the [2+3] cycloaddition of gem-dinitroethene with (Z)-C, N-diphenylnitrone: A DFT computational study. Tetrahedron 2013, 69, 927–932. [Google Scholar] [CrossRef]
- Tartakovskii, V.A.; Sebastianova, I.A.; Novikov, S.S. O-мeтиловый зφиp нитpодимeтилмaлонaтa в peaкции 1,3-диполяpноgо циклопpиcоeдинeния. Zhurnal Obshchei Khimii 1968, 4, 240–243. [Google Scholar]
- Kącka-Zych, A. Push-pull nitronates in the 32CAwith nitroethylene: Molecular Electron Density Theory study. J. Mol. Graph. Model. 2020, 97, 107549. [Google Scholar] [CrossRef] [PubMed]
- Loska, R.; Mąkosza, M. Simple method for the introduction of tetrafluoroethyl substituents into nitrogen heterocycles. Mendeleev Commun. 2006, 16, 161–163. [Google Scholar] [CrossRef]
- Jin, H.; Rudolph, M.; Rominger, F.; Hashmi, A.S.K. The Carbocation-Catalyzed Intermolecular Formal [2+2+1] Cycloaddition of Ynamides with Quinoxaline N-Oxides. ACS Catal. 2019, 9, 11663–11668. [Google Scholar] [CrossRef]
- Cramer, C.J. Essentials of Computational Chemistry. Theories and Models; Wiley: Chichester, UK, 2002; pp. 121–152. [Google Scholar]
- Elender, K.; Riebel, P.; Weber, A.; Sauer, J. 1,3-Dipolar Cycloaddition Reactions of Stable Bicyclic and Monocyclic Azomethine Ylides: Kinetic Aspects. Tetrahedron 2000, 56, 4261–4265. [Google Scholar] [CrossRef]
- Domingo, L.R.; Kula, K.; Ríos-Gutiérrez, M. Unveiling the Reactivity of Cyclic Azomethine Ylides in 32CAReactions within the Molecular Electron Density Theory. Eur. J. Org. Chem. 2020, 37, 5938–5948. [Google Scholar]
- Mloston, G.; Urbaniak, K.; Domagała, M. Thermal [2+3]-Cycloadditions of trans-1-Methyl-2,3-diphenylaziridine with C=S and C=C Dipolarophiles: An Unexpected Course with Dimethyl Dicyanofumarate. Helvetica Chimica Acta 2009, 92, 2631–2642. [Google Scholar] [CrossRef]
- Żmigrodzka, M.; Dresler, E.; Hordyjewicz-Baran, Z.; Kulesza, R.; Jasiński, R. A unique example of noncatalyzed 32CAinvolving (2E)-3-aryl-2-nitroprop-2-enenitriles. Chem. Heterocycl. Compd. 2017, 53, 1161–1162. [Google Scholar] [CrossRef]
- Jasiński, R.; Kula, K.; Kącka, A.; Mirosław, B. Unexpected course of reaction between (E)-2-aryl-1-cyano-1-nitroethenes and diazafluorene: Why is there no 1,3-dipolar cycloaddition? Monatshefte für Chemie 2017, 148, 909–915. [Google Scholar] [CrossRef] [Green Version]
- Beltrame, P.; Sartirana, P.; Vintani, C. Relative rates of the concurrent reactions in the addition of a substituted benzonitrile oxide to arylacetylenes. J. Chem. Soc. B 1971, 814–817. [Google Scholar] [CrossRef]
- Dondoni, A.; Barbaro, G. Kinetics of addition and cycloaddition of phenylacetylene to benzonitrile N-oxides. Competitive concerted and stepwise mechanisms. J. Chem. Soc. Perkin Trans. 1974, 1591–1594. [Google Scholar] [CrossRef]
- Baran, J.; Mayr, H. Mechanistic impact of oxime formation accompanying 1,3-dipolar cycloadditions of nitrile oxides. J. Org. Chem. 1989, 54, 5012–5016. [Google Scholar] [CrossRef] [Green Version]
- Jasiński, R. Nitroacetylene as dipolarophile in [2+3] cycloaddition reactions with allenyl-type three-atom components: DFT computational study. Monatshefte für Chemie 2015, 146, 591–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siadati, S.A. An example of a stepwise mechanism for the catalyst-free 1,3-dipolar cycloaddition between a nitrile oxide and an electron rich alkene. Tetrahedron Lett. 2015, 56, 4857–4863. [Google Scholar] [CrossRef]
- Siadati, S.A. The Effect of Position Replacement of Functional Groups on the Stepwise character of 1,3-Dipolar Reaction of a Nitrile Oxide and an Alkene. Helv. Chim. Acta 2016, 99, 273–280. [Google Scholar] [CrossRef]
- Quast, H.; Regnat, D.; Peters, E.M.; Peters, K.; von Schnering, H.G. Zwitterions as Intermediates of the 1,3-Dipolar Cycloaddition of Electrophilic Azides to 5-Alkylidenedihydrotetrazoles-the Other Non-Concerted Limiting Case. Angew. Chem. Int. Ed. EngI. 1990, 29, 695–697. [Google Scholar] [CrossRef]
- Quast, H.; Ach, M.; Ivanova, S.; Peters, I.K.; von Schnering, H.G. Zwitterions as Intermediates in 1,3-Dipolar Cycloadditions of Electrophilic Azides to 2-Alkylidenetetrahydroimidazoles and 2-Alkylidenedihydrobenzimidazoles. Liebigs Ann. 1996, 1996, 1551–1558. [Google Scholar] [CrossRef]
- Shimizu, N.; Bartlett, P.D.; Worth, F. Cycloaddition of Diazoalkanes to Penta- and Hexafluoroacetones. Isolation of A 3 -1,3,4-Oxadiazolines and Their Decomposition via Carbonyl Ylides. J. Am. Chem. Soc. 1978, 100, 4260–4267. [Google Scholar] [CrossRef]
- Jasiński, R. On the question of zwitterionic intermediates in 1,3-dipolar cycloadditions between hexafluoroacetone and sterically crowded diazocompounds. J. Fluor. Chem. 2015, 176, 35–39. [Google Scholar] [CrossRef]
- Mlostoń, G.; Celeda, M.; Jasiński, R.; Heimgartner, H. Experimental and Computational Studies on Stepwise [3+2]-Cycloadditions of Diaryldiazomethanes with Electron-Deficient Dimethyl (E)- and (Z)-2,3-Butenedioates. Eur. J. Org. Chem. 2019, 2019, 422–431. [Google Scholar] [CrossRef] [Green Version]
- Mlostoń, G.; Jasiński, R.; Kula, K.; Heimgartner, H. A DFT Study on the Barton–Kellogg Reaction—The Molecular Mechanism of the Formation of Thiiranes in the Reaction between Diphenyldiazomethane and Diaryl Thioketones. Eur. J. Org. Chem. 2020, 2020, 176–182. [Google Scholar] [CrossRef]
- Huisgen, R.; Langhals, E. 1,3-Dipolar cycloadditions of diphenyldiazomethane to thioketones: Rate measurements disclose thiones to be superdipolarophiles. Heteroat. Chem. 2006, 17, 433–442. [Google Scholar] [CrossRef]
- Mlostoń, G.; Urbaniak, K.; Pawlak, A.; Heimgartner, H. New Applications of Hetaryl Thioketones for the Synthesis of Hetaryl-Substituted Ethenes via ’Two-Fold Extrusion Reaction. Heterocycles 2016, 93, 127–139. [Google Scholar]
Azomethine imines | Nitrones | Nitrile ylides | |
Structure: | |||
Pseudodiradical | Pseudoradical | Zwitterionic | Carbenoid |
Reactivity: | |||
Pdr-tpe | Pmr-type | Zw-type | Cb-type |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jasiński, R.; Dresler, E. On the Question of Zwitterionic Intermediates in the [3+2] Cycloaddition Reactions: A Critical Review. Organics 2020, 1, 49-69. https://doi.org/10.3390/org1010005
Jasiński R, Dresler E. On the Question of Zwitterionic Intermediates in the [3+2] Cycloaddition Reactions: A Critical Review. Organics. 2020; 1(1):49-69. https://doi.org/10.3390/org1010005
Chicago/Turabian StyleJasiński, Radomir, and Ewa Dresler. 2020. "On the Question of Zwitterionic Intermediates in the [3+2] Cycloaddition Reactions: A Critical Review" Organics 1, no. 1: 49-69. https://doi.org/10.3390/org1010005