Understanding the Molecular Mechanism of the Rearrangement of Internal Nitronic Ester into Nitronorbornene in Light of the MEDT Study
"> Figure 1
<p>(<b>a</b>) ELF localization domains of <b>1</b>, represented at an isosurface value of the Electron Localization Function (ELF) = 0.75; (<b>b</b>) ELF basin attractor positions, together with the most representative valence basin populations; (<b>c</b>) Lewis-like structure of <b>1</b> together with the natural atomic charges, obtained through an Natural Population Analysis (NPA). Negative charges are colored in red, and positive charges are colored in blue. ELF valence basin population and natural atomic charges are given in average number of electrons, e.</p> "> Figure 2
<p>ELF localization domains, represented at isosurface values of ELF = 0.75, together with their attractor positions for the points of IRC defining Phases I–VII along the rearrangement of nitronic ester <b>1</b> into nitronorbornene <b>2</b>.</p> "> Figure 3
<p>Graphical representation of the basin population changes during the rearrangement of nitronic ester <b>1</b> into nitronorbornene <b>2</b>. Point dotted curves in grey represent the sum of disynaptic basins describing a bond region or monosynaptic basins describing lone pairs.</p> "> Figure 4
<p>ELF localization domains, represented at isosurface values of ELF = 0.75, together with their attractor positions and analysis of Noncovalent Interactions (NCIs) for the transition state <b>TS</b> of the rearrangement of nitronic ester <b>1</b> into nitronorbornene <b>2</b>.</p> "> Scheme 1
<p>General scheme of the rearrangement of internal nitronic ester <b>1</b> into nitronorbornene <b>2</b>. B3LYP/6-31G(d) relative energy with respect to <b>1</b> is given in kcal·mol<sup>−1</sup>.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. ELF and NPA Characterization of the Structure of Internal Nitronic Ester 1
2.2. BET and NCIs Study of the Transformation Nitronic Ester 1 into Nitronorbornene 2
2.3. MEDT Study of the Rearrangement of Internal Nitronic Ester 1 into Nitronorbornene 2
3. Computational Methods
4. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
References
- Gregoritza, M.; Brandl, F.P. The Diels–Alder reaction: A powerful tool for the design of drug delivery systems and biomaterials. Eur. J. Pharm. Biopharm. 2015, 97, 438–453. [Google Scholar] [CrossRef] [PubMed]
- Nimmo, C.M.; Shoichet, M.S. Regenerative biomaterials that ‘‘click’’: Simple, aqueous-based protocols for hydrogel synthesis, surface immobilization, and 3D patterning. Bioconj. Chem. 2011, 22, 2199–2209. [Google Scholar] [CrossRef] [PubMed]
- Lallana, E.; Sousa-Herves, A.; Fernandez-Trillo, F.; Riguera, R.; Fernandez-Megia, E. Click chemistry for drug delivery nanosystems. Pharm. Res. 2011, 29, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Denmark, S.E.; Thorarensen, A. Tandem [4+2]/[3+2] Cycloadditions of Nitroalkenes. Chem. Rev. 1996, 96, 137–166. [Google Scholar] [CrossRef]
- Denmark, S.E.; Cottell, J.J. Nitronates. In Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products; Padwa, A., Pearson, W., Eds.; Wiley, J. & Sons Inc.: New Jersey, NJ, USA, 2003; Volume 2, pp. 83–167. [Google Scholar]
- Denmark, S.E.; Gomez, E. Inter- and Intramolecular [4+2] Cycloaddition of Nitroalkenes with Allenylsilanes. A Case of Unexpected Regioselectivity. Heterocycles 2002, 58, 129–136. [Google Scholar] [CrossRef]
- Chai, Y.; Hong, S.; Lindsay, H.A.; McFarland, C.; McIntosh, M.C. New aspects of the Ireland and related Claisen rearrangements. Tetrahedron 2002, 58, 2905–3110. [Google Scholar] [CrossRef]
- Ito, H.; Taguchi, T. Asymmetric Claisen rearrangement. Chem. Soc. Rev. 1999, 28, 43–50. [Google Scholar] [CrossRef]
- Woodward, R.B.; Hoffmann, R. The Conservation of Orbital Symmetry; VCH: Weinheim, Germany, 1971. [Google Scholar]
- Wade, P.A.; Pipic, A.; Santhanaraman, M.; Le, H.T. Formation and [3,3]-sigmatropic rearrangement of O-allyl nitronic esters: A new route to γ,δ-unsaturated nitro compounds. Chem. Commun. 2009, 3531–3532. [Google Scholar] [CrossRef]
- Wade, P.A.; Murray, J.K.; Shah-Patel, J.S.; Carroll, P.J. Generation and in situ Diels–Alder reactions of activated nitroethylene derivatives. Tetrahedron Lett. 2002, 43, 2585–2588. [Google Scholar] [CrossRef]
- Wade, P.A.; Pipic, A.; Zeller, M.; Tsetsakos, P. Sequential Diels–Alder/[3,3]-sigmatropic rearrangement reactions of β-nitrostyrene with 3-methyl-1,3-pentadiene. Beilstein J. Org. Chem. 2013, 9, 2137–2146. [Google Scholar] [CrossRef] [Green Version]
- Çelebi-Ölçüm, N.; Ess, D.H.; Aviyente, V.; Houk, K.N. Effect of Lewis Acid Catalysts on Diels–Alder and Hetero-Diels–Alder Cycloadditions Sharing a Common Transition State. J. Org. Chem. 2008, 73, 7472–7480. [Google Scholar] [CrossRef] [PubMed]
- Ess, D.H.; Wheeler, S.E.; Iafe, R.G.; Xu, L.; Çelebi-Ölçüm, N.; Houk, K.N. Bifurcations on potential energy surfaces of organic reactions. Angew. Chem. Int. Ed. 2008, 47, 7592–7601. [Google Scholar] [CrossRef] [PubMed]
- Çelebi-Ölçüm, N.; Ess, D.H.; Aviyente, V.; Houk, K.N. Lewis Acid Catalysis Alters the Shapes and Products of Bis-Pericyclic Diels–Alder Transition States. J. Am. Chem. Soc. 2007, 129, 4528–4529. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Wade, P.A.; Sohlberg, K. Formation and sigmatropic rearrangement of PhCOC(NO2)CH2 cycloadducts of 1,3-cyclohexadiene: A theoretical study. Tetrahedron 2010, 66, 845–851. [Google Scholar] [CrossRef]
- Jasiński, R. β-Trifluoromethylated nitroethenes in Diels–Alder reaction with cyclopentadiene: A DFT computational study. J. Fluor. Chem. 2018, 206, 1–7. [Google Scholar] [CrossRef]
- Jasiński, R. One-step versus two-step mechanism of Diels–Alder reaction of 1-chloro-1-nitroethene with cyclopentadiene and furan. J. Mol. Gr. Model. 2017, 75, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Steglenko, D.V.; Kletsky, M.E.; Kurbatov, S.V.; Tatarov, A.V.; Minkin, V.I.; Goumont, R.; Terrier, R. A theoretical and experimental study of the polar Diels–Alder cycloaddition of cyclopentadiene with nitrobenzodifuroxan. J. Phys. Org. Chem. 2009, 22, 298–307. [Google Scholar] [CrossRef]
- Gomez, M.V.; Aranda, A.I.; Moreno, A.; Cossio, F.P.; Cozar, A.; Diaz-Ortiz, A.; Hoz, A.; Prieto, P. Microwave-assisted reactions of nitroheterocycles with dienes. Diels–Alder and tandem hetero Diels–Alder/[3,3] sigmatropic shift. Tetrahedron 2009, 65, 5328–5336. [Google Scholar] [CrossRef]
- Domingo, L.R. A new C–C bond formation model based on the quantum chemical topology of electron density. RSC Adv. 2014, 4, 32415–32428. [Google Scholar] [CrossRef] [Green Version]
- Kącka-Zych, A.; Domingo, L.R.; Ríos-Gutiérrez, M.; Jasiński, R. Understanding the mechanism of the decomposition reaction of nitroethyl benzoate through the Molecular Electron Density Theory. Chem. Acc. 2017, 136, 129–138. [Google Scholar] [CrossRef]
- Kącka-Zych, A.; Domingo, L.R.; Jasiński, R. Does a fluorinated Lewis acid catalyst change the molecular mechanism of the decomposition process of nitroethyl carboxylates? Res. Chem. Int. 2018, 44, 325–337. [Google Scholar] [CrossRef]
- Domingo, L.R. Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry. Molecules 2016, 21, 1319. [Google Scholar] [CrossRef] [PubMed]
- Geerlings, P.; Pro, F.; Langenaeker, W. Conceptual Density Functional Theory. Chem. Rev. 2003, 103, 1793–1874. [Google Scholar] [CrossRef] [PubMed]
- Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P. Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity. Molecules 2016, 21, 748. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D.; Edgecombe, K.E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 1990, 92, 5397–5403. [Google Scholar] [CrossRef]
- Emamian, S.; Lu, T.; Domingo, L.R.; Saremi, L.H.; Ríos-Gutiérrez, M. A Molecular Electron Density Theory study of the chemo- and regioselective [3+2] cycloaddition reactions between trifluoroacetonitrile N-oxide and thioketones. Chem. Phys. 2018, 501, 128–137. [Google Scholar] [CrossRef]
- Ayouchia, H.B.E.; Lahoucine, B.; Anane, H.; Ríos-Gutiérrez, M.; Domingo, L.R.; Stiriba, S.E. Experimental and Theoretical MEDT Study of the Thermal [3+2] Cycloaddition Reactions of Aryl Azides with Alkyne Derivatives. Chem. Sel. 2018, 3, 1215–1223. [Google Scholar] [CrossRef]
- Domingo, L.R.; Ríos-Gutiérrez, M.; Silvi, B.; Pérez, P. The Mysticism of Pericyclic Reactions. A Contemporary Rationalisation of Organic Reactivity Based on the Electron Denisty Analysis. Eur. J. Org. Chem. 2018, 9, 1107–1120. [Google Scholar] [CrossRef]
- Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P. A Molecular Electron Density Theory Study of the Reactivity and Selectivities in [3+2] Cycloaddition Reactions of C,N-Dialkyl Nitrones with Ethylene Derivatives. J. Org. Chem. 2018, 83, 2182–2197. [Google Scholar] [CrossRef]
- Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P. An MEDT study of the carbenoid-type [3+2] cycloaddition reactions of nitrile ylides with electron-deficient chiral oxazolidinones. Org. Biomol. Chem. 2016, 14, 10427–10436. [Google Scholar] [CrossRef]
- Domingo, L.R.; Ríos-Gutiérrez, M.; Adjieufack, I.; Ndassa, I.M.; Nouhou, C.M.; Mbadcam, J.K. Molecular Electron Density Theory Study of Fused Regioselectivity in the Intramolecular [3+2] Cycloaddition Reaction of Nitrones. Chem. Sel. 2018, 3, 5412–5420. [Google Scholar] [CrossRef]
- Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P. A Molecular Electron Density Theory Study of the Role of the Copper-Metallation of Azomethine Ylides in [3+2] Cycloaddition Reactions. J. Org. Chem. 2018, 83, 10959–10973. [Google Scholar] [CrossRef] [PubMed]
- Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P. A Molecular Electron Density Theory Study of the Competitiveness of Polar Diels–Alder and Polar Alder Ene Reactions. Molecules 2018, 23, 1913. [Google Scholar] [CrossRef] [PubMed]
- Domingo, L.R.; Acharjee, N. Cycloaddition of C-phenyl-N-methyl nitrone to acyclic olefin bearing electron donating substituent: A molecular electron density theory study. Chem. Sel. 2018, 3, 8373–8380. [Google Scholar] [CrossRef]
- Fernández-Herrera, M.A.; Zavala-Oseguera, C.; Cabellos, J.L.; Sandoval-Ramirez, J.; Domingo, L.R.; Merino, G. Understanding the high reactivity of triazolinediones in Diels–Alder reactions. A DFT study. J. Mol. Model. 2014, 20, 2207–2213. [Google Scholar] [CrossRef] [PubMed]
- Noury, S.; Krokidis, K.; Fuster, F.; Silvi, B. Computational tools for the electron localization function topological analysis. Comput. Chem. 1999, 23, 597–604. [Google Scholar] [CrossRef]
- Silvi, B. The synaptic order: A key concept to understand multicenter bonding. J. Mol. Struct. 2002, 614, 3–10. [Google Scholar] [CrossRef]
- Lewis, G.N. The atom and the molecule. J. Am. Chem. Soc. 1916, 38, 762–785. [Google Scholar] [CrossRef]
- González, C.; Schlegel, H.B. Improved algorithms for reaction path following: Higher-order implicit algorithms. J. Chem. Phys. 1991, 95, 5853–5860. [Google Scholar] [CrossRef]
- Woodward, R.B.; Hoffmann, R. The Conservation of Orbital Symmetry. Angew. Chem. Int. Ed. Engl. 1969, 8, 781–853. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A.; Vreven, T.J.; Kudin, K.N.; Burant, J.C.; et al. Gaussian 16 rev A.1; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, W.Y.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Zhao, Y.; Schultz, N.E.; Truhlar, D.G. Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. J. Chem. Theory Comput. 2016, 2, 364–382. [Google Scholar] [CrossRef]
- Hehre, W.J.; Radom, L.; Schleyer, P.V.R.; Pople, J.A. Ab initio Molecular Orbital Theory; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Fukui, K. Formulation of the reaction coordinate. J. Phys. Chem. 1970, 74, 4161–4163. [Google Scholar] [CrossRef]
- González, C.; Schlegel, H.B. Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 1990, 94, 5523–5527. [Google Scholar] [CrossRef]
- Cances, M.T.; Mennunci, V.; Tomasi, J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. [Google Scholar] [CrossRef]
- Cossi, M.; Barone, V.; Cammi, R.; Tomasi, T. Ab initio study of solvated molecules: A new implementation of the polarizable continuum model. Chem. Phys. Lett. 1996, 255, 327–335. [Google Scholar] [CrossRef]
- Barone, V.; Cossi, M.; Tomasi, T. Geometry optimization of molecular structures in solution by the polarizable continuum model. Comput. Chem. 1998, 19, 404–417. [Google Scholar] [CrossRef]
- Tapia, O. Solvent effect theories: Quantum and classical formalisms and their applications in chemistry and biochemistry. J. Math. Chem. 1992, 10, 139–181. [Google Scholar] [CrossRef]
- Tomasi, J.; Persico, M. Molecular interactions in solution: An overview of methods based on continuous distributions of the solvent. Chem. Rev. 1994, 94, 2027–2094. [Google Scholar] [CrossRef]
- Johnson, E.R.; Keinan, S.; Mori-Sanchez, P.; Contreras-Garcia, J.; Cohen, J.; Yang, A.W. Revealing Non-Covalent Interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Garcia, J.; Johnson, E.R.; Keinan, S.; Chaudret, R.; Piquemal, J.P.; Beratan, D.N.; Yang, W. NCIPLOT: A program for plotting non-covalent interaction regions. J. Chem. Theory Comput. 2011, 7, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Reed, A.E.; Weinstock, R.B.; Weinhold, F. Natural population analysis. J. Chem. Phys. 1985, 83, 735–746. [Google Scholar] [CrossRef]
- Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 1988, 88, 899–926. [Google Scholar] [CrossRef]
- Krokidis, X.; Noury, S.; Silvi, B. Characterization of Elementary Chemical Processes by Catastrophe Theory. J. Phys. Chem. A 1997, 101, 7277–7282. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Points | 1 | P0 | P1 | P2 | TS | P3 | P4 | P5 | 2 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Catastrophes | C† | C† | F | F | C† | C† | |||||||||||||||||
Phases | I | II | III | IV | V | VI | VII | ||||||||||||||||
d(O9-C1) | 1.459 | 1.533 | 1.844 | 1.929 | 2.641 | 2.930 | 2.776 | 2.814 | 3.700 | ||||||||||||||
d(C7-C3) | 3.472 | 3.276 | 3.189 | 3.170 | 2.745 | 2.305 | 2.266 | 2.049 | 1.573 | ||||||||||||||
ΔE a | −4.8 | 0.0 | 3.6 | 9.4 | 13.7 | 10.7 | 6.8 | 2.1 | 1.0 | ||||||||||||||
GEDT | 0.31 | 0.31 | 0.32 | 0.32 | 0.34 | 0.24 | 0.17 | 0.14 | 0.12 | ||||||||||||||
V(C1, C2) | 2.03 | 2.04 | 2.27 | 2.35 | 2.96 | 3.18 | 1.55 | 1.63 | 1.79 | ||||||||||||||
V(C2, C3) | 1.85 | 1.83 | 1.78 | 3.41 | 2.92 | 2.45 | 2.42 | 2.25 | 2.02 | ||||||||||||||
V(O4) | 2.38 | 2.48 | 2.70 | 2.86 | 4.48 | 2.82 | 2.78 | 2.62 | 2.53 | ||||||||||||||
V’(O4) | 2.43 | 2.37 | 2.12 | 1.94 | 1.86 | 1.91 | 2.20 | 2.51 | |||||||||||||||
V(O9) | 2.56 | 2.68 | 3.14 | 3.04 | 3.02 | 2.85 | 2.85 | 2.87 | 2.84 | ||||||||||||||
V’(O9) | 2.68 | 2.77 | 3.00 | 2.99 | 2.88 | 2.98 | 2.97 | 2.88 | 2.83 | ||||||||||||||
V(O9, C1) | 1.19 | 1.05 | |||||||||||||||||||||
V(C7) | 0.50 | 0.62 | 0.62 | 0.65 | 0.83 | 1.11 | 1.13 | ||||||||||||||||
V’(C2, C3) | 1.86 | 1.85 | 1.71 | ||||||||||||||||||||
V’(C7) | 0.45 | 0.40 | 0.41 | 0.45 | |||||||||||||||||||
V’(C1, C2) | 1.66 | 1.70 | 1.71 | ||||||||||||||||||||
V(C7, C3) | 1.74 | 2.02 | |||||||||||||||||||||
V(C3) | 0.34 | 0.36 | |||||||||||||||||||||
V(C1) | 0.11 | 0.15 |
Group | Phases | d1(O9-C1) d2(C7-C3) | GEDT | ∆E | Topological Characterization | Chemical Process |
---|---|---|---|---|---|---|
A | I–II | 1.53 ≤ d1 < 1.93 3.28 ≥ d2 > 3.17 | 0.32 | 3.6 | Disappearance of the V(O9, C1) disynaptic basin | Rupture of the O9-C1 bond |
B | III–IV | 1.93 ≤ d1 < 2.93 3.17 ≥ d2 > 2.31 | 0.34 | 13.7 | Disappearance of the V’(C2, C3) disynaptic basin, V(C1) and V’(C7) monosynaptic basins, and joining of the two V(O4) and V’(O4) monosynaptic basins into the V(O4) monosynaptic basin | Rupture of the C2-C3 double bond |
C | V | 2.93 ≤ d1 < 2.78 2.31 ≥ d2 > 2.27 | 0.17 | 6.8 | Formation of the V(C3) monosynaptic basin and the split of the V(C1, C2) disynaptic basin into two V(C1,C2) and V’(C1, C2) disynaptic basins and the V(O4) monosynaptic basin into two V(O4) and V’(O4) monosynaptic basins | Formation of the C1-C2 double bond |
D | VI–VII | 2.78 ≤ d1 < 3.70 2.27 ≥ d2 > 1.57 | 0.12 | 1.0 | Disappearance of V(C7) and V(C3) and formation of the V(C7-C3) disynaptic basin | Formation of the C7-C3 bond |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kącka-Zych, A. Understanding the Molecular Mechanism of the Rearrangement of Internal Nitronic Ester into Nitronorbornene in Light of the MEDT Study. Molecules 2019, 24, 462. https://doi.org/10.3390/molecules24030462
Kącka-Zych A. Understanding the Molecular Mechanism of the Rearrangement of Internal Nitronic Ester into Nitronorbornene in Light of the MEDT Study. Molecules. 2019; 24(3):462. https://doi.org/10.3390/molecules24030462
Chicago/Turabian StyleKącka-Zych, Agnieszka. 2019. "Understanding the Molecular Mechanism of the Rearrangement of Internal Nitronic Ester into Nitronorbornene in Light of the MEDT Study" Molecules 24, no. 3: 462. https://doi.org/10.3390/molecules24030462