Cognitive Engagement and Subjective Well-Being in Adults: Exploring the Role of Domain-Specific Need for Cognition
Abstract
:1. Introduction
1.1. Need for Cognition and Subjective Well-Being
1.2. Explaining Processes
1.2.1. Trait Self-Control
1.2.2. Emotion Regulation Strategies
1.3. Domain Specificity of Need for Cognition
1.4. Present Research
2. Material and Methods
2.1. Procedure
2.2. Participants
2.3. Materials and Methods
2.3.1. Need for Cognition
2.3.2. Domain-General and Domain-Specific Life Satisfaction
2.3.3. Affective Well-Being
2.3.4. Emotion Regulation Strategies
2.3.5. Trait Self-Control
2.3.6. Further Variables
2.4. Statistical Analysis
3. Results
3.1. Associations of Need for Cognition with Subjective Well-Being
3.2. Incremental Validity of Domain-Specific Need for Cognition
3.2.1. Positive Affect
3.2.2. Life Satisfaction
3.2.3. Study-Related Satisfaction
3.2.4. Job Satisfaction
3.3. Mediation Analyses
4. Discussion
4.1. Associations Between NFC and Subjective Well-Being
4.2. Incremental Predictive Value of Domain-Specific Need for Cognition
4.3. Mediating Processes
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Additional Statistical Results
Model 1 | Model 2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Predictors | b | SE | β | t | p | df | b | SE | β | t | p | df |
(Intercept) | 29.39 | 0.85 | −0.03 [−0.29, 0.23] | 34.54 | <0.001 | 1071 | 29.52 | 0.69 | −0.02 [0.23, 0.18] | 42.77 | <0.001 | 1070 |
NFCgeneral | 0.37 | 0.04 | 0.31 [0.25, 0.36] | 10.44 | <0.001 | 1071 | 0.17 | 0.05 | 0.15 [0.06, 0.23] | 3.38 | 0.001 | 1070 |
NFCdomain | 0.22 | 0.04 | 0.22 [0.13, 0.30] | 5.02 | <0.001 | 1070 | ||||||
Random effects | ||||||||||||
τ00 sample | 0.58 | 0.44 | ||||||||||
τ00 domain | 0.86 | 0.46 | ||||||||||
ICC | .04 | .03 | ||||||||||
R2marg./R2cond. | 0.091/0.128 | 0.115/0.138 | ||||||||||
∆R2marg. | 0.091 | 0.024 |
Model 1 | Model 2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Predictors | b | SE | β | t | p | df | b | SE | β | t | p | df |
(Intercept) | 4.64 | 0.22 | −0.02 [−0.36, 0.32] | 21.20 | <0.001 | 1071 | 4.67 | 0.19 | −0.01 [−0.30, 0.28] | 24.36 | <0.001 | 1070 |
NFCgeneral | 0.03 | 0.01 | 0.11 [0.06, 0.17] | 3.82 | <0.001 | 1071 | −0.02 | 0.01 | −0.06 [−0.15, 0.02] | −1.43 | 0.153 | 1070 |
NFCdomain | 0.05 | 0.01 | 0.24 [0.16, 0.33] | 5.53 | <0.001 | 1070 | ||||||
Random effects | ||||||||||||
τ00 sample | 0.12 | 0.10 | ||||||||||
τ00 domain | 0.01 | 0.00 | ||||||||||
ICC | 0.08 | 0.07 | ||||||||||
R2marg./R2cond. | 0.013/0.093 | 0.039/0.103 | ||||||||||
∆R2marg. | 0.013 | 0.026 |
Satisfaction with Study Subject | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | |||||||||||
Predictors | b | SE | β | t | p | df | b | SE | β | t | p | df |
(Intercept) | 68.63 | 1.66 | 0.00 [−0.09, 0.09] | 41.42 | <0.001 | 411 | 69.47 | 1.60 | 0.00 [−0.09, 0.09] | 43.55 | <0.001 | 410 |
NFCgeneral | 0.78 | 0.19 | 0.20 [0.10, 0.29] | 4.06 | <0.001 | 411 | −0.24 | 0.25 | −0.06 [−0.18, 0.06] | −0.95 | 0.342 | 410 |
NFCstudy | 1.26 | 0.21 | 0.38 [0.26, 0.50] | 6.07 | <0.001 | 410 | ||||||
Random effects | ||||||||||||
τ00 sample | 0.00 | 0.00 | ||||||||||
R2marg. | 0.038 | 0.117 | ||||||||||
∆R2marg. | 0.038 | 0.079 | ||||||||||
Coping with Study-Related Stress | ||||||||||||
(Intercept) | 58.62 | 2.16 | −0.00 [−0.10, 0.10] | 27.11 | <0.001 | 411 | 59.12 | 2.16 | −0.00 [−0.10, 0.10] | 27.42 | <0.001 | 410 |
NFCgeneral | 0.37 | 0.25 | 0.07 [−0.02, 0.17] | 1.48 | 0.140 | 411 | −0.22 | 0.34 | −0.04 [−0.17, 0.09] | −0.66 | 0.510 | 410 |
NFCstudy | 0.74 | 0.28 | 0.17 [0.04, 0.30] | 2.62 | 0.009 | 410 | ||||||
Random effects | a | |||||||||||
τ00 sample | 0.00 | 0.00 | ||||||||||
R2marg.a | 0.005 | 0.021 | ||||||||||
∆R2marg. | 0.005 | 0.016 |
Model 1 | Model 2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Predictors | b | SE | β | t | p | df | b | SE | β | t | p | df |
(Intercept) | 28.25 | 0.88 | 0.07 [−0.20, 0.34] | 31.95 | <0.001 | 657 | 28.32 | 0.82 | 0.07 [−0.19, 0.32] | 34.36 | <0.001 | 656 |
NFCgeneral | 0.18 | 0.04 | 0.16 [0.09, 0.23] | 4.20 | <0.001 | 657 | −0.14 | 0.07 | −0.12 [−0.24, −0.00] | −2.00 | 0.046 | 656 |
NFCjob | 0.36 | 0.06 | 0.36 [0.24, 0.47] | 5.88 | <0.001 | 656 | ||||||
Random effects | ||||||||||||
τ00 sample | 1.80 | 1.52 | ||||||||||
ICC | 0.05 | 0.05 | ||||||||||
R2marg./R2cond. | 0.025/0.077 | 0.072/0.116 | ||||||||||
∆R2marg. | 0.025 | 0.047 |
References
- Abler, B., and H. Kessler. 2009. Emotion Regulation Questionnaire—Eine deutschsprachige Fassung des ERQ von Gross und John [Emotion Regulation Questionnaire—A German version of the ERQ by Gross and John]. Diagnostica 55: 144–52. [Google Scholar] [CrossRef]
- Ackerman, P. 1996. A theory of adult intellectual development: Process, personality, interests, and knowledge. Intelligence 22: 227–57. [Google Scholar] [CrossRef]
- Aldao, A., S. Nolen-Hoeksema, and S. Schweizer. 2010. Emotion-regulation strategies across psychopathology: A meta-analytic review. Clinical Psychology Review 30: 217–37. [Google Scholar] [CrossRef] [PubMed]
- Baer, L. H., N. Tabri, M. Blair, D. Bye, K. Z. H. Li, and D. Pushkar. 2013. Longitudinal associations of Need for Cognition, cognitive activity, and depressive symptomatology with cognitive function in recent retirees. The Journals of Gerontology: Series B 68: 655–64. [Google Scholar] [CrossRef] [PubMed]
- Barchielli, B., C. Cricenti, F. Gallè, E. A. Sabella, F. Liguori, G. Da Molin, G. Liguori, G. B. Orsi, A. M. Giannini, S. Ferracuti, and et al. 2022. Climate changes, natural resources depletion, COVID-19 pandemic, and Russian-Ukrainian war: What is the impact on habits change and mental health? International Journal of Environmental Research and Public Ealth 19: 11929. [Google Scholar] [CrossRef]
- Bates, D., M. Mächler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48. [Google Scholar] [CrossRef]
- Bertrams, A., and O. Dickhäuser. 2009. Messung dispositioneller Selbstkontroll-Kapazität. Eine deutsche Adaptation der Kurzform der Self-Control Scale (SCS-K-D) [Measuring dispositional self-control capacity. A German adaptation of the short form of the Self-Control Scale (SCS-K-D)]. Diagnostica 55: 2–10. [Google Scholar] [CrossRef]
- Bertrams, A., and O. Dickhäuser. 2012. Passionate thinkers feel better: Self-control capacity as mediator of the relationship between need for cognition and affective adjustment. Journal of Individual Differences 33: 69–75. [Google Scholar] [CrossRef]
- Blaise, M., T. Marksteiner, A. Krispenz, and A. Bertrams. 2021. Measuring motivation for cognitive effort as state. Frontiers in Psychology 12: 785094. [Google Scholar] [CrossRef]
- Busseri, M. A. 2018. Examining the structure of subjective well-being through meta-analysis of the associations among positive affect, negative affect, and life satisfaction. Personality and Individual Differences 122: 68–71. [Google Scholar] [CrossRef]
- Bye, D., and D. Pushkar. 2009. How need for cognition and perceived control are differentially linked to emotional outcomes in the transition to retirement. Motivation and Emotion 33: 320–32. [Google Scholar] [CrossRef]
- Cacioppo, J. T., and R. E. Petty. 1982. The need for cognition. Journal of Personality and Social Psychology 42: 116–31. [Google Scholar] [CrossRef]
- Cacioppo, J. T., R. E. Petty, J. A. Feinstein, and W. B. G. Jarvis. 1996. Dispositional differences in cognitive motivation: The life and times of individuals varying in need for cognition. Psychological Bulletin 119: 197–253. [Google Scholar] [CrossRef]
- de Ridder, D., F. Kroese, and M. Gillebaart. 2018. Whatever happened to self-control? A proposal for integrating notions from trait self-control studies into state self-control research. Motivation Science 4: 39–49. [Google Scholar] [CrossRef]
- de Ridder, D., G. Lensvelt-Mulders, C. Finkenauer, F. M. Stok, and R. F. Baumeister. 2012. Taking stock of self-control: A meta-analysis of how trait self-control relates to a wide range of behaviors. Personality and Social Psychology Review 16: 76–99. [Google Scholar] [CrossRef]
- Diener, E. 1984. Subjective Well-Being. Psychological Bulletin 95: 542–75. [Google Scholar] [CrossRef] [PubMed]
- Diener, E., R. E. Lucas, and C. N. Scollon. 2006. Beyond the hedonic treadmill: Revising the adaptation theory of well-being. American Psychologist 61: 305–14. [Google Scholar] [CrossRef]
- Epstein, S., R. Pacini, V. Denes-Raj, and H. Heier. 1996. Individual differences in intuitive-experiential and analytical-rational thinking styles. Journal of Personality and Social Psychology 71: 390–405. [Google Scholar] [CrossRef]
- Faul, F., E. Erdfelder, A. Buchner, and A.-G. Lang. 2009. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods 41: 1149–60. [Google Scholar] [CrossRef]
- Feist, G. J. 2012. Predicting interest in and attitudes toward science from personality and need for cognition. Personality and Individual Differences 52: 771–75. [Google Scholar] [CrossRef]
- Fischer, L., and H. E. Lück. 2014. Allgemeine Arbeitszufriedenheit [General job satisfaction]. Zusammenstellung Sozialwissenschaftlicher Items und Skalen. [Google Scholar] [CrossRef]
- Fleischhauer, M., S. Enge, B. Brocke, J. Ullrich, A. A. Strobel, and A. A. Strobel. 2010. Same or different? Clarifying the relationship of need for cognition to personality and intelligence. Personality and Social Psychology Bulletin 36: 82–96. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K. 2011. On conceptualizing self-control as more than the effortful inhibition of impulses. Personality and Social Psychology Review 15: 352–66. [Google Scholar] [CrossRef] [PubMed]
- Gignac, G. E., and E. T. Szodorai. 2016. Effect size guidelines for individual differences researchers. Personality and Individual Differences 102: 74–78. [Google Scholar] [CrossRef]
- Glaesmer, H., G. Grande, E. Braehler, and M. Roth. 2011. The German version of the satisfactionwith life scale (SWLS) psychometric properties, validity, and population-based norms. European Journal of Psychological Assessment 27: 127–32. [Google Scholar] [CrossRef]
- Goldin, P. R., K. McRae, W. Ramel, and J. J. Gross. 2008. The neural bases of emotion regulation: Reappraisal and suppression of negative emotion. Biological Psychiatry 63: 577–86. [Google Scholar] [CrossRef]
- Grass, J., A. Strobel, and A. Strobel. 2017. Cognitive investments in academic success: The role of Need for Cognition at university. Frontiers in Psychology 8: 790. [Google Scholar] [CrossRef]
- Grass, J., J. Dörendahl, T. Losereit, S. Greiff, and A. Strobel. 2023. Thinking to promote happiness: Need for cognition, subjective well-being, and burnout in different populations. Journal of Research in Personality 105: 104383. [Google Scholar] [CrossRef]
- Grass, J., N. John, and A. Strobel. 2018. Freude am Denken als Schlüssel zum Erfolg? Die Bedeutung von Need for Cognition für subjektives Erleben und Leistung im Studium [The joy of thinking as the key to success? The importance of Need for Cognition for subjective experience and achievement in academic studies]. Zeitschrift für Pädagogische Psychologie 32: 145–54. [Google Scholar] [CrossRef]
- Grecucci, A., I. Messina, L. Amodeo, G. Lapomarda, C. Crescentini, H. Dadomo, M. Panzeri, A. Theuninck, and J. Frederickson. 2020. A dual route model for regulating emotions: Comparing models, techniques and biological mechanisms. Frontiers in Psychology 11: 930. [Google Scholar] [CrossRef]
- Gross, J. J., and O. P. John. 2003. Individual differences in two emotion regulation processes: Implications for affect, relationships, and well-being. Journal of Personality and Social Psychology 85: 348–62. [Google Scholar] [CrossRef] [PubMed]
- Harman, J. L. 2011. Individual differences in need for cognition and decision making in the Iowa Gambling Task. Personality and Individual Differences 51: 112–16. [Google Scholar] [CrossRef]
- Haugtvedt, C. P., R. E. Petty, and J. T. Cacioppo. 1992. Need for cognition and advertising: Understanding the role of personality variables in consumer behavior. Journal of Consumer Psychology 1: 239–60. [Google Scholar] [CrossRef]
- Hayes, A. F. 2022. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach, 3rd ed. New York: The Guilford Press. [Google Scholar]
- Henning, B., and P. Vorderer. 2001. Psychological escapism: Predicting the amount of television viewing by need for cognition. Journal of Communication 51: 100–20. [Google Scholar] [CrossRef]
- Hill, B. D., J. D. Foster, C. Sofko, E. M. Elliott, and J. T. Shelton. 2016. The interaction of ability and motivation: Average working memory is required for Need for Cognition to positively benefit intelligence and the effect increases with ability. Personality and Individual Differences 98: 225–28. [Google Scholar] [CrossRef]
- Hui, Q., C. Yao, S. Huang, and X. You. 2023. Need for Cognition and depressive symptoms: A mediation model of dysexecutive function and reappraisal. Current Psychology 42: 14673–80. [Google Scholar] [CrossRef]
- Inzlicht, M., K. M. Werner, J. L. Briskin, and B. W. Roberts. 2021. Integrating models of self-regulation. Annual Review of Psychology 72: 319–45. [Google Scholar] [CrossRef] [PubMed]
- Janke, S., and A. Glöckner-Rist. 2014. Deutsche Version der Positive and Negative Affect Schedule (PANAS) [German Version of the Positive and Negative Affect Schedule (PANAS)]. Zusammenstellung Sozialwissenschaftlicher Items und Skalen 10. [Google Scholar] [CrossRef]
- Keller, U., A. Strobel, R. Martin, and F. Preckel. 2017. Domain-specificity of Need for Cognition among high school students. European Journal of Psychological Assessment 35: 607–616. [Google Scholar] [CrossRef]
- Kretzschmar, A., M. Spengler, A. -L. Schubert, R. Steinmayr, and M. Ziegler. 2018. The relation of personality and intelligence—What can the brunswik symmetry principle tell us? Journal of Intelligence 6: 30. [Google Scholar] [CrossRef]
- Kuznetsova, A., P. B. Brockhoff, and R. H. B. Christensen. 2017. lmerTest Package: Tests in linear mixed effects models. Journal of Statistical Software 82: 1–26. [Google Scholar] [CrossRef]
- Lavrijsen, J., M. Vansteenkiste, M. Boncquet, and K. Verschueren. 2021. Does motivation predict changes in academic achieve- ment beyond intelligence and personality? A multitheoretical perspective. Journal of Educational Psychology 114: 772–90. [Google Scholar] [CrossRef]
- LimeSurvey GmbH. 2022. LimeSurvey: An Open Source Survey Tool, Version 5.3.19; LimeSurvey GmbH. Available online: https://help.limesurvey.org/portal/en/kb/articles/how-to-cite-limesurvey (accessed on 28 October 2024).
- LimeSurvey GmbH. 2023. LimeSurvey: An Open Source Survey Tool, Version 5.6.9; LimeSurvey GmbH. Available online: https://www.limesurvey.org (accessed on 28 October 2024).
- Liu, Q., and J. C. Nesbit. 2024. The relation between Need for Cognition and academic achievement: A meta-analysis. Review of Educational Research 94: 155–92. [Google Scholar] [CrossRef]
- Lua, V. Y., W. M. Ooi, A. I. Najib, C. Tan, N. M. Majeed, A. K. Y. Leung, and A. Hartanto. 2024. Think your way to happiness? Investigating the role of need for cognition in well-being through a three-level meta-analytic approach. Motivation and Emotion 48: 75–99. [Google Scholar] [CrossRef]
- Mischel, W., O. Ayduk, M. G. Berman, B. J. Casey, I. H. Gotlib, J. Jonides, E. Kross, T. Teslovich, N. L. Wilson, V. Zayas, and et al. 2011. ‘Willpower’ over the life span: Decomposing self-regulation. Social Cognitive and Affective Neuroscience 6: 252–56. [Google Scholar] [CrossRef] [PubMed]
- Moffitt, T. E., L. Arseneault, D. Belsky, N. Dickson, R. J. Hancox, H. Harrington, R. Houts, R. Poulton, B. W. Roberts, S. Ross, and et al. 2011. A gradient of childhood self-control predicts health, wealth, and public safety. Proceedings of the National Academy of Sciences of the United States of America 108: 2693–98. [Google Scholar] [CrossRef]
- Mussel, P. 2013. Intellect: A theoretical framework for personality traits related to intellectual achievements. Journal of Personality and Social Psychology 104: 885–906. [Google Scholar] [CrossRef]
- Mussel, P., N. Ulrich, J. J. B. Allen, R. Osinsky, and J. Hewig. 2016. Patterns of theta oscillation reflect the neural basis of individual differences in epistemic motivation. Scientific Reports 6: 29245. [Google Scholar] [CrossRef]
- Nishiguchi, Y., K. Takano, and Y. Tanno. 2016. The need for cognition mediates and moderates the association between depressive symptoms and impaired effortful control. Psychiatry Research 241: 8–13. [Google Scholar] [CrossRef]
- Pavlova, I., A. M. Rogowska, and S. X. Zhang. 2024. Mental Health and well-being during the COVID-19 pandemic and after the Russian invasion of Ukraine. Journal of Community Health 49: 173–82. [Google Scholar] [CrossRef]
- Posit Team. 2023. RStudio: Integrated Development Environment for R. Boston: Posit Software, PBC. Available online: http://www.posit.co/ (accessed on 1 October 2024).
- Prolific. 2023. Prolific’s Attention and Comprehension Check Policy. Available online: https://researcher-help.prolific.com/en/article/fb63bb (accessed on 28 October 2024).
- QuestBack GmbH. 2019. Enterprise Feedback Suite: EFS Survey. Version EFS Fall. Köln: QuestBack GmbH. Available online: http://www.unipark.de/ (accessed on 10 July 2020).
- R Core Team. 2022. R: A language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 1 October 2024).
- Reeves, A. L., P. J. Watson, A. Ramsey, and R. J. Morris. 1995. Private self-consciousness factors, need for cognition, and depression. Journal of Social Behavior and Personality 10: 431–43. [Google Scholar]
- Scharbert, J., S. Humberg, L. Kroencke, T. Reiter, S. Sakel, J. ter Horst, K. Utesch, S. D. Gosling, G. Harari, S. C. Matz, and et al. 2024. Psychological well-being in Europe after the outbreak of war in Ukraine. Nature Communications 15: 1202. [Google Scholar] [CrossRef] [PubMed]
- Scherer, A., M. Boecker, M. Pawelzik, S. Gauggel, and T. Forkmann. 2017. Emotion suppression, not reappraisal, predicts psychotherapy outcome. Psychotherapy Research 27: 143–53. [Google Scholar] [CrossRef] [PubMed]
- Schönbrodt, F. D., and M. Perugini. 2013. At what sample size do correlations stabilize? Journal of Research in Personality 47: 609–12. [Google Scholar] [CrossRef]
- Strobel, A., A. Farkas, J. Hoyer, U. Melicherova, V. Köllner, and A. Strobel. 2021. Cognitive motivation as a resource for affective adjustment and mental health. Frontiers in Psychology 12: 581681. [Google Scholar] [CrossRef] [PubMed]
- Strobel, A., K. Anacker, and A. Strobel. 2017. Cognitive engagement mediates the relationship between positive life events and positive emotionality. Frontiers in Psychology 8: 1861. [Google Scholar] [CrossRef]
- Tangney, J. P., R. F. Baumeister, and A. L. Boone. 2004. High self-control predicts good adjustment, less pathology, better grades, and interpersonal success. Journal of Personality 72: 271–324. [Google Scholar] [CrossRef]
- von Stumm, S., and P. Ackerman. 2013. Investment and intellect: A review and meta-analysis. Psychological Bulletin 139: 841–69. [Google Scholar] [CrossRef]
- Wennerhold, L., and M. Friese. 2023. Challenges in the conceptualization of trait self-control as a psychological construct. Social and Personality Psychology Compass 17: 1–14. [Google Scholar] [CrossRef]
- Westermann, R., E. Heise, K. Spies, and U. Trautwein. 1996. Identifikation und Erfassung von Komponenten der Studienzufriedenheit [Identifiying and assessing components of study satisfaction]. Psychologie in Erziehung und Unterricht 43: 1–22. [Google Scholar]
- Williams-Piehota, P., T. R. Schneider, J. Pizarro, L. Mowad, and P. Salovey. 2003. Matching health messages to information-processing styles: Need for cognition and mammography utilization. Health Communication 15: 375–92. [Google Scholar] [CrossRef] [PubMed]
- Yazdani, N., and K. L. Siedlecki. 2021. Mediators of the relationship between cognition and subjective well-being. Journal of Happiness Studies 22: 3091–109. [Google Scholar] [CrossRef]
- Zainal, N. H., and M. G. Newman. 2022. Curiosity helps: Growth in need for cognition bidirectionally predicts future reduction in anxiety and depression symptoms across 10 years. Journal of Affective Disorders 296: 642–52. [Google Scholar] [CrossRef] [PubMed]
- Zerna, J., A. Strobel, and A. Strobel. 2024. The role of need for cognition in well-being—Review and meta-analyses of associations and potentially underlying mechanisms. Collabra: Psychology 10: 1–29. [Google Scholar] [CrossRef]
- Zerna, J., N. Engelmann, A. Strobel, and A. Strobel. 2022. Need for cognition and burnout in teachers—A replication and extension study. Health Psychology Open 9: 205510292211396. [Google Scholar] [CrossRef]
Sample 1 | Sample 2 | Sample 3 | |
---|---|---|---|
N | 451 | 335 | 346 |
Age | Mdn = 21–29 years a | M = 30.75 ± 12.28 years | M = 32.4 ± 8.5 years |
Gender | 73.4% female 26.6% male | 72.5% female 27.2% male 0.3% diverse | 32.7% female 66.8% male 0.6% diverse |
Student Subsamples | |||
N | 258 | 157 | - |
Age | Mdn = 21–29 years a | M = 23.03 ± 3.35 years | - |
Gender | 76.0% female 24.0% male | 79.0% female 20.4% male 0.6% diverse | - - |
Employed (Sub)samples | |||
N | 159 | 156 | 346 |
Age | Mdn = 30–39 years a | M = 37.2 ± 12.2 years | 32.4 ± 8.5 years |
Gender | 69.2% female 30.8% male | 64.1% female 35.9% male | 32.7% female 66.8% male 0.6% diverse |
Work status | 66.0% full-time | 78.2% full-time | 81.5% full-time |
German | English a |
---|---|
1. Beim Arbeiten [im Studium] löse ich gerne Aufgaben, bei denen man richtig nachdenken muss. | At work [at university], I like solving problems that require hard thinking. |
2. Beim Arbeiten [im Studium] mag ich Situationen, in denen ich richtig nachdenken muss. | At work [at university], I like situations that require me to think hard. |
3. Wenn ich beim Arbeiten [im Studium] Aufgaben zum Nachdenken bekomme, dann freue ich mich. | At work [at university], I’m happy when I get an assignment that requires me to think hard. |
4. Beim Arbeiten [im Studium] denke ich sehr gerne nach. | At work [at university], I like to think a lot. |
5. Beim Arbeiten [im Studium] macht mir Nachdenken Spaß. | At work [at university], thinking is fun for me. |
M | SD | Cronbach’s α | |||||||
---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S1 | S2 | S3 | S1 | S2 | S3 | |
NFC | 8.37 c | 6.52 d | 8.03 | 4.89 c | 5.32 d | 5.01 | 0.91 | 0.92 | 0.94 |
NFCstudy a | 5.68 | 3.82 | - | 5.88 | 6.18 | - | 0.94 | 0.94 | - |
NFCjob b | 8.41 | 6.40 | 6.71 | 5.26 | 6.02 | 5.94 | 0.95 | 0.95 | 0.96 |
Positive affect | 33.03 | 31.98 | 32.10 | 5.88 | 6.31 | 6.32 | 0.83 | 0.86 | 0.85 |
Negative affect | 19.03 | 18.65 | 18.25 | 6.05 | 5.79 | 7.06 | 0.85 | 0.84 | 0.90 |
Life satisfaction | 5.09 | 4.94 | 4.53 | 1.14 | 1.18 | 1.32 | 0.84 | 0.87 | 0.90 |
Job satisfaction b | 30.58 | 30.57 | 28.18 | 5.63 | 5.40 | 5.95 | 0.86 | 0.84 | 0.86 |
Study satisfaction a | |||||||||
Subject-related | 74.94 | 72.70 | - | 20.21 | 19.90 | - | 0.92 | 0.90 | - |
Conditions | 59.11 | 49.55 | - | 26.31 | 26.65 | - | 0.85 | 0.84 | - |
Coping with stress | 62.20 | 59.62 | - | 26.70 | 24.23 | - | 0.87 | 0.84 | - |
Self-control | 3.13 | 3.16 | 3.12 | 0.61 | 0.60 | 0.62 | 0.82 | 0.81 | 0.83 |
Reappraisal | 4.70 | 4.45 | 4.59 | 1.04 | 0.95 | 1.01 | 0.83 | 0.78 | 0.85 |
Suppression | 3.60 | 3.41 | 4.11 | 1.20 | 1.16 | 1.27 | 0.75 | 0.74 | 0.82 |
PA | NA | Life Satisfaction | Reappraisal | Suppression | Self-Control | ||
---|---|---|---|---|---|---|---|
NFCgeneral | Sample 1 | 0.29 *** | −0.06 | 0.09 | 0.20 *** | 0.11 * | 0.25 *** |
Sample 2 | 0.31 *** | −0.02 | 0.14 * | 0.16 ** | 0.04 | 0.11 * | |
Sample 3 | 0.36 *** | −0.06 | 0.17 ** | 0.12 * | 0.02 | 0.20 *** | |
NFCstudy | Sample 1 | 0.25 *** | −0.08 | 0.16 ** | 0.16 ** | 0.07 | 0.13 * |
Sample 2 | 0.25 ** | −0.10 | 0.15 | 0.09 | 0.01 | 0.20 * | |
NFCjob | Sample 1 | 0.39 *** | −0.12 | 0.21 ** | 0.22 ** | 0.01 | 0.27 *** |
Sample 2 | 0.28 *** | 0.06 | 0.22 ** | 0.14 | −0.02 | 0.03 | |
Sample 3 | 0.38 *** | −0.09 | 0.24 *** | 0.13 * | −0.02 | 0.26 *** |
Job Satisfaction | Study Satisfaction | ||||
---|---|---|---|---|---|
Subject-Related | With Conditions | Coping with Stress | |||
NFCgeneral | Sample 1 | 0.11 | 0.31 *** | −0.03 | 0.07 |
Sample 2 | 0.26 ** | 0.16 * | 0.01 | 0.16 * | |
Sample 3 | 0.20 *** | - | - | - | |
NFCdomain | Sample 1 | 0.25 ** | 0.36 *** | 0.01 | 0.12 |
Sample 2 | 0.25 ** | 0.25 ** | 0.02 | 0.22 ** | |
Sample 3 | 0.33 *** | - | - | - |
Student Sample 1 (N = 258) | |||||||||
Predictor | Model 1 | Model 2 | |||||||
B | SE | β | B | SE | β | ||||
Constant | 30.72 *** | 0.68 | 30.81 *** | 0.68 | |||||
NFCgeneral | 0.21 ** | 0.08 | 0.17 | 1.00 | 0.10 | 0.08 | |||
NFCstudy | 0.14 | 0.08 | 0.14 | ||||||
R2/R2korr | 0.030/0.026 | 0.040/0.033 | |||||||
∆R2 | 0.030 ** | 0.010 | |||||||
Student Sample 2 (N = 157) | |||||||||
Predictor | Model 1 | Model 2 | Model 3 | ||||||
B | SE | β | B | SE | β | B | SE | β | |
Constant | 21.91 *** | 3.30 | 19.99 *** | 3.28 | 20.59 *** | 3.35 | |||
Age | 0.38 ** | 0.14 | 0.19 | 0.36 * | 0.14 | 0.18 | 0.34 * | 0.14 | 0.17 |
NFCgeneral | 0.40 *** | 0.10 | 0.32 | 0.28 * | 0.13 | 0.22 | |||
NFCstudy | 0.16 | 0.12 | 0.15 | ||||||
R2/R2korr | 0.038/0.031 | 0.240/0.129 | 0.153/0.137 | ||||||
∆R2 | 0.038 * | 0.102 *** | 0.013 | ||||||
Employed Sample 1 (N = 159) | |||||||||
Predictor | Model 1 | Model 2 | Model 3 | ||||||
B | SE | β | B | SE | β | B | SE | β | |
Constant | 30.50 *** | 1.65 | 27.72 *** | 1.71 | 26.91 *** | 1.79 | |||
Age | 0.85 * | 0.38 | 0.18 | 0.72 * | 0.35 | 0.15 | 0.82 * | 0.36 | 0.18 |
NFCgeneral | 0.36 *** | 0.08 | 0.30 | 0.14 | 0.11 | 0.12 | |||
NFCjob | 0.29 ** | 0.11 | 0.27 | ||||||
R2/R2korr | 0.033/0.027 | 0.125/0.114 | 0.162/0.146 | ||||||
∆R2 | 0.033 | 0.092 *** | 0.037 ** | ||||||
Employed Sample 2 (N = 156) | |||||||||
Predictor | Model 1 | Model 2 | Model 3 | ||||||
B | SE | β | B | SE | β | B | SE | β | |
Constant | 34.57 *** | 0.76 | 31.89 *** | 0.96 | 31.67 *** | 0.95 | |||
Gender a | −2.30 * | 0.95 | −0.19 | −1.85 * | 0.91 | −0.16 | −1.69 | 0.89 | −0.14 |
NFCgeneral | 0.34 *** | 0.08 | 0.32 | 0.10 | 0.12 | 0.10 | |||
NFCjob | 0.28* | 0.11 | 0.29 | ||||||
R2/R2korr | 0.037/0.031 | 0.137/0.125 | 0.170/0.153 | ||||||
∆R2 | 0.037 * | 0.099 *** | 0.033 * | ||||||
Employed Sample 3 (N = 346) | |||||||||
Predictor | Model 1 | Model 2 | |||||||
B | SE | β | B | SE | β | ||||
Constant | 28.49 *** | 0.60 | 28.83 *** | 0.61 | |||||
NFCgeneral | 0.45 *** | 0.06 | 0.36 | 0.18 | 0.12 | 0.15 | |||
NFCjob | 0.27 ** | 0.10 | 0.25 | ||||||
R2/R2korr | 0.127/0.124 | 0.146/0.141 | |||||||
∆R2 | 0.127 *** | 0.019 ** |
Student Sample 1 (N = 258) | |||||||||
Predictor | Model 1 | Model 2 | Model 3 | ||||||
B | SE | β | B | SE | β | B | SE | β | |
Constant | 6.39 *** | 0.51 | 6.31 *** | 0.54 | 6.31 *** | 0.53 | |||
Age | −0.46 * | 0.18 | −0.20 | −0.45 * | 0.18 | −0.19 | −0.44 * | 0.18 | −0.19 |
NFCgeneral | 0.01 | 0.01 | .04 | −0.02 | 0.02 | −0.10 | |||
NFCstudy | 0.04 * | 0.02 | 0.20 | ||||||
R2/R2korr | 0.038/0.034 | 0.039/0.032 | 0.061/0.050 | ||||||
∆R2 | 0.038 ** | 0.001 | 0.022 * | ||||||
Student Sample 2 (N = 157) | |||||||||
Predictor | Model 1 | Model 2 | Model 3 | ||||||
B | SE | β | B | SE | β | B | SE | β | |
Constant | 4.35 *** | 0.21 | 4.09 *** | 0.25 | 4.12 *** | 0.25 | |||
Gender a | 0.62 ** | 0.24 | 0.21 | 0.69 ** | 0.24 | 0.23 | 0.69 ** | 0.23 | 0.23 |
NFCgeneral | 0.03 | 0.02 | 0.15 | −0.00 | 0.02 | −0.02 | |||
NFCstudy | 0.05 * | 0.02 | 0.26 | ||||||
R2/R2korr | 0.043/0.036 | 0.064/0.051 | 0.103/0.085 | ||||||
∆R2 | 0.043 ** | 0.021 | 0.039 * | ||||||
Employed Sample 1 (N = 159) | |||||||||
Predictor | Model 1 | Model 2 | Model 3 | ||||||
B | SE | β | B | SE | β | B | SE | β | |
Constant | 4.86 *** | 0.30 | 4.75 *** | 0.30 | 4.64 *** | 0.31 | |||
Age | 0.10 | 0.07 | 0.12 | 0.09 | 0.07 | 0.11 | 0.11 | 0.07 | 0.13 |
NFCgeneral | 0.01 | 0.02 | 0.07 | −0.02 | 0.03 | −0.09 | |||
NFCjob | 0.04 * | 0.02 | 0.22 | ||||||
R2/R2korr | 0.14/0.008 | 0.019/0.006 | 0.044/0.025 | ||||||
∆R2 | 0.014 | 0.004 | 0.025 * | ||||||
Employed Sample 2 (N = 156) | |||||||||
Predictor | Model 1 | Model 2 | |||||||
B | SE | β | B | SE | β | ||||
Constant | 4.78 *** | 0.19 | 4.76 *** | 0.19 | |||||
NFCgeneral | 0.04 | 0.02 | 0.18 | −0.00 | 0.03 | −0.02 | |||
NFCjob | 0.05 * | 0.02 | 0.26 | ||||||
R2/R2korr | 0.032/0.026 | 0.059/0.046 | |||||||
∆R2 | 0.032 * | 0.027 * | |||||||
Employed Sample 3 (N = 346) | |||||||||
Predictor | Model 1 | Model 2 | |||||||
B | SE | β | B | SE | β | ||||
Constant | 4.22 *** | 0.14 | 4.30 *** | 0.14 | |||||
NFCgeneral | 0.04 * | 0.02 | 0.14 | −0.02 | 0.03 | −0.08 | |||
NFCjob | 0.06 ** | 0.02 | 0.27 | ||||||
R2/R2korr | 0.020/0.017 | 0.042/0.036 | |||||||
∆R2 | 0.020 ** | 0.021 ** |
Satisfaction with Study Subject | ||||||
Student Sample 1 (N = 258) | ||||||
Predictor | Model 1 | Model 2 | ||||
B | SE | β | B | SE | β | |
Constant | 67.38 *** | 2.56 | 68.28 *** | 2.57 | ||
NFCgeneral | 0.99 *** | 0.28 | 0.24 | −0.13 | 0.42 | −0.03 |
NFCstudy | 1.34 ** | 0.36 | 0.39 | |||
R2/R2korr | 0.056/0.052 | 0.137/0.130 | ||||
∆R2 | 0.056 *** | 0.082 *** | ||||
Student Sample 2 (N = 157) | ||||||
Predictor | Model 1 | Model 2 | ||||
B | SE | β | B | SE | β | |
Constant | 69.97 *** | 2.43 | 70.71 *** | 2.35 | ||
NFCgeneral | 0.46 | 0.30 | 0.12 | −0.39 | 0.44 | −0.10 |
NFCstudy | 1.12 ** | 0.38 | 0.35 | |||
R2/R2korr | 0.015/0.008 | 0.086/0.074 | ||||
∆R2 | 0.015 | 0.071 *** | ||||
Coping with Study-Related Stress | ||||||
Student Sample 2 (N = 157) | ||||||
Predictor | Model 1 | Model 2 | ||||
B | SE | β | B | SE | β | |
Constant | 55.97 *** | 3.02 | 56.58 *** | 2.93 | ||
NFCgeneral | 0.61 | 0.40 | 0.13 | −0.08 | 0.55 | −0.02 |
NFCstudy | 0.93 * | 0.47 | 0.24 | |||
R2/R2korr | 0.018/0.011 | 0.051/0.038 | ||||
∆R2 | 0.018 | 0.033 * |
Employed Sample 1 (N = 159) | |||||||||
Predictor | Model 1 | Model 2 | Model 3 | ||||||
B | SE | β | B | SE | β | B | SE | β | |
Constant | 27.21 *** | 1.62 | 27.29 *** | 1.75 | 26.15 *** | 1.74 | |||
Age | 0.80 * | 0.37 | 0.17 | 0.80 * | 0.37 | 0.17 | 0.94 * | 0.37 | 0.20 |
NFCgeneral | −0.01 | 0.10 | −0.01 | −0.32 ** | 0.11 | −0.27 | |||
NFCjob | 0.41 *** | 0.09 | 0.38 | ||||||
R2/R2korr | 0.029/0.023 | 0.029/0.016 | 0.103/0.085 | ||||||
∆R2 | 0.029* | 0.000 | 0.074 *** | ||||||
Employed Sample 2 (N = 156) | |||||||||
Predictor | Model 1 | Model 2 | |||||||
B | SE | β | B | SE | β | ||||
Constant | 28.62 *** | 0.78 | 28.58 *** | 0.78 | |||||
NFCgeneral | 0.27 ** | 0.08 | 0.28 | 0.17 | 0.12 | 0.18 | |||
NFCjob | 0.12 | 0.12 | 0.15 | ||||||
R2/R2korr | 0.077/0.071 | 0.084/0.072 | |||||||
∆R2 | 0.077 *** | 0.007 | |||||||
Employed Sample 3 (N = 346) | |||||||||
Predictor | Model 1 | Model 2 | |||||||
B | SE | β | B | SE | β | ||||
Constant | 26.50 *** | 0.64 | 27.10 *** | 0.62 | |||||
NFCgeneral | 0.21 ** | 0.07 | 0.18 | −0.27 * | 012 | −0.23 | |||
NFCjob | 0.48 *** | 0.10 | 0.48 | ||||||
R2/R2korr | 0.031/0.028 | 0.099/0.094 | |||||||
∆R2 | 0.031 ** | 0.068 *** |
Predictor | Sample | Indirect Effects | Direct b | |||
Total a | SCS b | Reappraisal b | Suppression b | |||
Positive Affect | ||||||
NFCgeneral | Sample 1 | 0.10 [0.05, 0.14] * | x | x | x | x |
Sample 2 | 0.06 [0.01, 0.11] * | ns | x | ns | x | |
Sample 3 | 0.09 [0.04, 0.14] * | x | x | ns | x | |
NFCstudy | Sample 1 | 0.07 [0.01, 0.13] * | x | x | ns | x |
Sample 2 | 0.07 [−0.01, 0.16] | x | ns | ns | x | |
NFCjob | Sample 1 | 0.13 [0.05, 23] * | x | ns | ns | x |
Sample 2 | 0.06 [−0.02, 0.15] | ns | x | ns | x | |
Sample 3 | 0.11 [0.06, 0.18] * | x | x | ns | x | |
Life Satisfaction | ||||||
NFCgeneral | Sample 1 | 0.10 [0.06, 0.15] * | x | x | x | ns |
Sample 2 | 0.05 [−0.01, 0.09] | ns | x | ns | x | |
Sample 3 | 0.08 [0.03, 0.12] * | x | x | ns | ns | |
NFCstudy | Sample 1 | 0.07 [0.02, 0.13] * | x | x | ns | ns |
Sample 2 | 0.09 [0.01, 0.19] * | x | ns | ns | ns | |
NFCjob | Sample 1 | 0.12 [0.04, 0.22] * | x | ns | ns | ns |
Sample 2 | 0.03 [−0.03, 0.10] | ns | ns | ns | x | |
Sample 3 | 0.09 [0.04, 0.14] * | x | x | ns | x | |
Study-Related Satisfaction: Subject-Related | ||||||
NFCgeneral | Sample 1 | 0.01 [−0.03, 0.06] | ns | ns | ns | ns |
Sample 2 | 0.05 [−0.02, 0.12] | ns | ns | ns | ns | |
NFCstudy | Sample 1 | 0.04 [−0.01, 0.09] | ns | x | ns | x |
Sample 2 | 0.07 [0.01, 0.14] * | x | ns | ns | x | |
Study-Related Satisfaction: Coping | ||||||
NFCgeneral | Sample 1 | 0.01 [−0.04, 0.06] | ns | ns | ns | ns |
Sample 2 | 0.04 [−0.01, 0.12] | ns | ns | ns | ns | |
NFCstudy | Sample 1 | 0.01 [−0.03, 0.05] | ns | ns | ns | ns |
Sample 2 | 0.04 [−0.02, 0.12] | ns | ns | ns | x | |
Job Satisfaction | ||||||
NFCgeneral | Sample 1 | 0.05 [0.00, 0.12] * | ns | x | ns | x |
Sample 2 | 0.01 [−0.04, 0.07] | ns | ns | ns | x | |
Sample 3 | 0.03 [−0.00, 0.07] | x | ns | ns | x | |
NFCjob | Sample 1 | 0.06 [0.00, 0.13] * | x | ns | ns | ns |
Sample 2 | 0.01 [−0.04, 0.08] | ns | ns | ns | x | |
Sample 3 | 0.04 [0.01, 0.08] * | x | ns | ns | x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grass, J.; Strobel, A. Cognitive Engagement and Subjective Well-Being in Adults: Exploring the Role of Domain-Specific Need for Cognition. J. Intell. 2024, 12, 110. https://doi.org/10.3390/jintelligence12110110
Grass J, Strobel A. Cognitive Engagement and Subjective Well-Being in Adults: Exploring the Role of Domain-Specific Need for Cognition. Journal of Intelligence. 2024; 12(11):110. https://doi.org/10.3390/jintelligence12110110
Chicago/Turabian StyleGrass, Julia, and Anja Strobel. 2024. "Cognitive Engagement and Subjective Well-Being in Adults: Exploring the Role of Domain-Specific Need for Cognition" Journal of Intelligence 12, no. 11: 110. https://doi.org/10.3390/jintelligence12110110