Nothing Special   »   [go: up one dir, main page]

You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,488)

Search Parameters:
Keywords = self-control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5699 KiB  
Article
A Light-Steered Self-Rowing Liquid Crystal Elastomer-Based Boat
by Zongsong Yuan, Jinze Zha and Junxiu Liu
Polymers 2025, 17(6), 711; https://doi.org/10.3390/polym17060711 - 7 Mar 2025
Abstract
Conventional machines often face limitations due to complex controllers and bulky power supplies, which can hinder their reliability and operability. In contrast, self-excited movements can harness energy from a stable environment for self-regulation. In this study, we present a novel model of a [...] Read more.
Conventional machines often face limitations due to complex controllers and bulky power supplies, which can hinder their reliability and operability. In contrast, self-excited movements can harness energy from a stable environment for self-regulation. In this study, we present a novel model of a self-rowing boat inspired by paddle boats. This boat is powered by a liquid crystal elastomer (LCE) turntable that acts as a motor and operates under consistent illumination. We investigated the dynamic behavior of the self-rowing boat under uniform illumination by integrating the photothermal reaction theory of LCEs with a nonlinear dynamic framework. The primary equations were solved using the fourth-order Runge–Kutta method. Our findings reveal that the model exhibits two modes of motion under steady illumination: a static pattern and a self-rowing pattern. The transition between these modes is influenced by the interaction of the driving and friction torques generated by photothermal energy. This study quantitatively analyzes the fundamental conditions necessary for initiating a self-rowing motion and examines how various dimensionless parameters affect the speed of the self-rowing system. The proposed system offers several unique advantages, including a simple structure, easy control, and independence from electronic components. Furthermore, it has the potential for miniaturization and integration, enhancing its applicability in miniature machines and systems. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

Figure 1
<p>A self-rowing paddle boat system based on the LCE turntable system. (<b>a</b>) 3D view of LCE-based boat; (<b>b</b>) side view of LCE-based boat; (<b>c</b>) enlarged view of the engine; (<b>d</b>) reference state; (<b>e</b>) force analysis of the ball; (<b>f</b>) force analysis of the boat. Under steady illumination, the boat can self-rowing continuously.</p>
Full article ">Figure 2
<p>The time histories and phase trajectories of the LCE-based boat system for the two main motion modes. (<b>a</b>,<b>b</b>) Static pattern with parameters of <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>M</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>f</mi> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>T</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>g</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>α</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>L</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>l</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>β</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>δ</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>k</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>l</mi> </msub> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>k</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>s</mi> </msub> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mi>π</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>0.25</mn> <mi>π</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>w</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>c</b>,<b>d</b>) Self-rowing with parameters of <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>M</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>f</mi> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>T</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>g</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>α</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>L</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>l</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>β</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>δ</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>k</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>l</mi> </msub> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>k</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>s</mi> </msub> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mi>π</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>0.25</mn> <mi>π</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>w</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>The cyclical variation in key kinematic parameters of the system in self-rowing mode. (<b>a</b>) Torque applied during self-rowing as a function of the angle of rotation; (<b>b</b>) torque from damping as a function of the angle of rotation; (<b>c</b>) boat self-rowing speed <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>v</mi> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math> as a function of time; (<b>d</b>) change in position of the mass sphere <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>L</mi> <mo stretchy="true">¯</mo> </mover> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> as a function of time; (<b>e</b>) elastic force <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>F</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>l</mi> </msub> </mrow> </semantics></math> as a function of time; and (<b>f</b>) elastic force <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>F</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>l</mi> </msub> </mrow> </semantics></math> as a function of angle.</p>
Full article ">Figure 4
<p>The movement of a LCE-based boat throughout a self-rowing cycle. The boat is propelled forward continuously by the shrinkage and recovery of the LCE rope, driven by the photothermal effect, completing a full self-rowing cycle.</p>
Full article ">Figure 5
<p>Influence of the dimensionless maximum frictional torque <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>M</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>f</mi> </msub> </mrow> </semantics></math> on the self-rowing of the system, with <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>T</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>g</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>α</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>L</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>l</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>β</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>δ</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>k</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>l</mi> </msub> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>k</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>s</mi> </msub> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mi>π</mi> </mrow> </semantics></math>. (<b>a</b>) Limit cycles; (<b>b</b>) The self-rowing speed of a boat driven by an LCE turntable. As <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>M</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>f</mi> </msub> </mrow> </semantics></math> increases, self-rowing speed <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>v</mi> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math> of the system’s self-rowing decreases.</p>
Full article ">Figure 6
<p>Influence of the dimensionless limit temperature <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>T</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mn>0</mn> </msub> </mrow> </semantics></math> on the self-rowing of the system, with <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>M</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>f</mi> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>g</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>α</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>L</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>l</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>β</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>δ</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>k</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>l</mi> </msub> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>k</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>s</mi> </msub> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mi>π</mi> </mrow> </semantics></math>. (<b>a</b>) Limit cycles; (<b>b</b>) the self-rowing speed of a boat driven by an LCE turntable. As <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>T</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mn>0</mn> </msub> </mrow> </semantics></math> increases, self-rowing speed <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>v</mi> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math> of the system’s self-rowing increases.</p>
Full article ">Figure 7
<p>Influence of the dimensionless gravitational acceleration <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>g</mi> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math> on the self-rowing of the system, with <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>M</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>f</mi> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>T</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>α</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>L</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>l</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>β</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>δ</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>k</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>l</mi> </msub> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>k</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>s</mi> </msub> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mi>π</mi> </mrow> </semantics></math>. (<b>a</b>) Limit cycles; (<b>b</b>) the self-rowing speed of a boat driven by an LCE turntable. As <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>g</mi> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math> increases, self-rowing speed <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>v</mi> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math> of the system’s self-rowing increases.</p>
Full article ">Figure 8
<p>Influence of the dimensionless thermal shrinkage coefficient <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>α</mi> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math> on the self-rowing, with <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>M</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>f</mi> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>T</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>g</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>L</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>l</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>β</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>δ</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>k</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>l</mi> </msub> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>k</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>s</mi> </msub> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mi>π</mi> </mrow> </semantics></math>. (<b>a</b>) Limit cycles; (<b>b</b>) the self-rowing speed of a boat driven by an LCE turntable. As <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>α</mi> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math> increases, the self-rowing speed <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>v</mi> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math> of the system’s self-rowing increases.</p>
Full article ">Figure 9
<p>Influence of dimensionless initial position <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>L</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mn>0</mn> </msub> </mrow> </semantics></math> on the self-rowing of the system, with <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>M</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>f</mi> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>T</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>g</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>α</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>l</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>β</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>δ</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>k</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>l</mi> </msub> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>k</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>s</mi> </msub> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mi>π</mi> </mrow> </semantics></math>. (<b>a</b>) Limit cycles; (<b>b</b>) the self-rowing speed of a boat driven by an LCE turntable. As <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>L</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mn>0</mn> </msub> </mrow> </semantics></math> increases, the self-rowing speed <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>v</mi> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math> of the system’s self-rowing decreases.</p>
Full article ">Figure 10
<p>Influence of the dimensionless length <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>l</mi> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math> of paddle on the self-rowing of the system, with <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>M</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>f</mi> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>T</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>g</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>α</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>L</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>β</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>δ</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>k</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>l</mi> </msub> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>k</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>s</mi> </msub> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mi>π</mi> </mrow> </semantics></math>. (<b>a</b>) Limit cycles; (<b>b</b>) the self-rowing speed of a boat driven by an LCE turntable. As <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>l</mi> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math> increases, the self-rowing speed <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>v</mi> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math> of the system’s self-rowing increases and then decreases.</p>
Full article ">Figure 11
<p>Influence of the dimensionless damping factor <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>β</mi> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math> on the self-rowing of the system, with <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>M</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>f</mi> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>T</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>g</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>α</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>L</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>l</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>δ</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>k</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>l</mi> </msub> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>k</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>s</mi> </msub> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mi>π</mi> </mrow> </semantics></math>. (<b>a</b>) Limit cycles; (<b>b</b>) the self-rowing speed of a boat driven by an LCE turntable. As <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>β</mi> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math> increases, the self-rowing speed <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>v</mi> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math> of the system’s self-rowing decreases.</p>
Full article ">Figure 12
<p>Influence of the dimensionless rolling resistance coefficient <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>δ</mi> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math> on the self-rowing of the system, with <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>M</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>f</mi> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>T</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>g</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>α</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>L</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>l</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>β</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>k</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>l</mi> </msub> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>k</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>s</mi> </msub> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mi>π</mi> </mrow> </semantics></math>. (<b>a</b>) Limit cycles; (<b>b</b>) the self-rowing speed of a boat driven by an LCE turntable. As <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>δ</mi> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math> increases, the self-rowing speed <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>v</mi> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math> of the system’s self-rowing decreases.</p>
Full article ">Figure 13
<p>Influence of the dimensionless elastic stiffness of LCE−rope <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>k</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>l</mi> </msub> </mrow> </semantics></math> on the self-rowing of the system, with <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>M</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>f</mi> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>T</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>g</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>α</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>L</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>l</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>β</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>δ</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>k</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>s</mi> </msub> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mi>π</mi> </mrow> </semantics></math>. (<b>a</b>) Limit cycles; (<b>b</b>) the self-rowing speed of a boat driven by an LCE turntable. As <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>k</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>l</mi> </msub> </mrow> </semantics></math> increases, self-rowing speed <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>v</mi> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math> of the system’s self-rowing increases.</p>
Full article ">Figure 14
<p>Influence of the dimensionless elastic stiffness of spring <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>k</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>s</mi> </msub> </mrow> </semantics></math> on the self-rowing of the system, with <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>M</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>f</mi> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>T</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>g</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>α</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>L</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>l</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>β</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>δ</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>k</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>l</mi> </msub> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mi>π</mi> </mrow> </semantics></math>. (<b>a</b>) Limit cycles; (<b>b</b>) the self-rowing speed of a boat driven by an LCE turntable. As <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>k</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>s</mi> </msub> </mrow> </semantics></math> increases, the self-rowing speed <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>v</mi> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math> of the system’s self-rowing decreases.</p>
Full article ">Figure 15
<p>Influence of <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>0</mn> </msub> </mrow> </semantics></math> on the self-rowing of the system, with <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>M</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>f</mi> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>T</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>g</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>α</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>L</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>l</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>β</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>δ</mi> <mo stretchy="true">¯</mo> </mover> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>k</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>l</mi> </msub> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi>k</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mi>s</mi> </msub> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>. (<b>a</b>) Limit cycles; (<b>b</b>) the self-rowing speed of a boat driven by an LCE turntable. As <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>0</mn> </msub> </mrow> </semantics></math> increases, the self-rowing speed <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>v</mi> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math> of the system’s self-rowing increases and then decreases.</p>
Full article ">
15 pages, 1514 KiB  
Article
Prevalence and Socioeconomic Disparities of Cigar Use in China: Findings from the China Health Literacy Survey with a Focus on the ‘Knowledgeable but Economically Marginalized’ (KEM) Population
by Yi Liu, Yinghua Li, Xin Xia, Zhao Liu, Zheng Su, Rui Qin, Ying Xie, Zhenxiao Huang, Anqi Cheng, Xinmei Zhou, Jinxuan Li, Xiaowen Wei, Qingqing Song, Liang Zhao, Dan Xiao and Chen Wang
Healthcare 2025, 13(6), 583; https://doi.org/10.3390/healthcare13060583 - 7 Mar 2025
Abstract
Background: Cigar smoking poses significant public health challenges due to its rising prevalence and associated health risks. However, research on cigar use in China remains limited. This study investigates the prevalence, demographic characteristics, and key factors associated with cigar use among Chinese [...] Read more.
Background: Cigar smoking poses significant public health challenges due to its rising prevalence and associated health risks. However, research on cigar use in China remains limited. This study investigates the prevalence, demographic characteristics, and key factors associated with cigar use among Chinese adults. Methods: We analyzed data from the 2018–2019 China Health Literacy Survey, including 86,701 participants aged 20–69 years. Multistage stratified sampling was employed, and logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for factors associated with cigar use. Weighted data were applied to ensure national representation. Results: Of the 86,701 respondents, 1025 participants reported having used cigars, including 248 exclusive cigar users and 777 dual users of cigars and other tobacco products. Cigar use was significantly higher among men (1.93%) than women (0.05%). Most users were aged 50–59, with a mean age of 49.3 years. Factors associated with cigar use among men included higher education (for college and higher, OR: 1.81; 95% CI: 1.42–2.30), lower household income (for income < 20,000, OR: 1.02; 95% CI: 1.08–1.53), poor self-reported health (OR: 1.45; 95% CI: 1.15–1.83), and severe nicotine dependence (FTND ≥ 7 points, OR: 2.09, 95% CI: 1.67–2.61). Cigar use prevalence showed notable regional variation, with the highest rates observed in northern and eastern provinces. Interpretation: The estimated number of cigar users in China is approximately 10.46 million. Male cigar users often represent a unique demographic: “knowledgeable but economically marginalized” individuals, characterized by higher education but lower economic status. Tailored tobacco control measures addressing regional disparities, socioeconomic factors, and marketing-driven misconceptions about cigars are essential to reduce public health impacts. Full article
Show Figures

Figure 1

Figure 1
<p>Prevalence of cigar use in Chinese adults. Note: (<b>A</b>,<b>B</b>) the prevalence of cigar users by annual family income and education level based on men; (<b>C</b>,<b>D</b>) the prevalence of cigar users by annual family income and education level based on women.</p>
Full article ">Figure 2
<p>Prevalence of cigar users among the Chinese general population.</p>
Full article ">Figure A1
<p>Flow diagram of study sampling procedure.</p>
Full article ">Figure A2
<p>Flow diagram of participants through the study.</p>
Full article ">
12 pages, 286 KiB  
Article
Cross-Sectional and Longitudinal Associations Among Weight Stigma, Psychological Distress, and Eating Behaviors in Youth with Obesity: A Clinical Sample
by Wee Shen Khoo, Ying-Chu Chen, Yen-Yin Chou, Yu-Wen Pan, Yun-Han Weng and Meng-Che Tsai
Medicina 2025, 61(3), 466; https://doi.org/10.3390/medicina61030466 - 7 Mar 2025
Abstract
Background and Objectives: Obesity in youth is a growing public health concern, placing them at higher risk for adverse physical and psychological outcomes. Understanding the predictors that affect weight management, particularly the role of internalized weight stigma, psychosocial factors, and eating behaviors, [...] Read more.
Background and Objectives: Obesity in youth is a growing public health concern, placing them at higher risk for adverse physical and psychological outcomes. Understanding the predictors that affect weight management, particularly the role of internalized weight stigma, psychosocial factors, and eating behaviors, is essential for developing an effective intervention at longitudinal follow-up. Materials and Methods: We enrolled 102 youths with obesity aged 10 to 18 years old from clinical settings. Baseline demographic data, psychosocial measures, including the Weight Self-Stigma Questionnaire (WSSQ) and Hospital Anxiety and Depression Scale (HADS), and eating behavior scales, such as the Three-Factor Eating Questionnaire (TFEQ-R21) and eating disorder as Sick, Control, One, Fat, Food questionnaire (SCOFF), were collected in the first visit. We conducted a study with both cross-sectional and longitudinal components. Correlational bivariate analysis was conducted to explore relationships between key variables. The factors affecting BMI changes were investigated using generalized estimating equations (GEEs) as part of a longitudinal analysis. Results: The mean age of participants was 13.22 years and 63.7% were male. Bivariate correlation analysis revealed positive relationships between initial BMI Z-scores and WSSQ scores (r = 0.196, p < 0.05). In bivariate analysis, a negative correlation was found between the difference in BMI Z-scores and visit number (r = −0.428, p < 0.01). GEE analysis demonstrated that initial BMI Z-scores (coefficient = 1.342, p < 0.001) and anxiety (coefficient = 0.050, p < 0.001) were significant positive predictors of BMI Z-scores, while depression was negatively associated (coefficient = −0.081, p < 0.001). Excluding the TFEQ subscales, SCOFF improved the model’s QIC and highlighted WSSQ as a significant, albeit weak, predictor (p = 0.615 in the full model versus p < 0.05 in the reduced model). Conclusions: Psychosocial factors, particularly anxiety and weight stigma, are associated with elevated BMI Z-scores in youth affected by obesity in this study. The baseline age, BMI Z-score, internalized weight stigma, and psychological stress influenced the body weight trajectory over time. Frequent clinical follow-ups contribute to improved BMI outcomes. Future research may examine the efficacy of weight management by reducing weight stigma and psychological distress along with the outpatient care of obesity. Full article
(This article belongs to the Section Pediatrics)
10 pages, 196 KiB  
Case Report
Advancing Telemedicine Using Smart Insulin Pens with Continuous Glucose Monitoring and Telecommunication Systems: A Case Series
by Lakshmi G. Singh, Chikara Gothong, Garrett I. Ash, Reynier Hernandez and Elias K. Spanakis
J. Clin. Med. 2025, 14(6), 1794; https://doi.org/10.3390/jcm14061794 - 7 Mar 2025
Abstract
Background: Multiple daily injections (MDIs) have been a mainstay for insulin delivery by persons with type 1 diabetes mellitus (T1DM). “Smart” insulin pens (SIPs) offer several advantages over traditional insulin pens, such as a memory function, bolus calculator, and reminders for patients to [...] Read more.
Background: Multiple daily injections (MDIs) have been a mainstay for insulin delivery by persons with type 1 diabetes mellitus (T1DM). “Smart” insulin pens (SIPs) offer several advantages over traditional insulin pens, such as a memory function, bolus calculator, and reminders for patients to take their insulin. SIPs can integrate with CGM, allowing for the collection of accurate insulin and glucose data, which can integrate into combined reports. Using these technologies along with telecommunication modalities provides an infrastructure to improve the way in which healthcare can be delivered to those with diabetes. Methods: Four cases of uncontrolled T1DM managed by MDIs (and not insulin pumps) and deemed to have plateaued in their management were selected to retrospectively review to identify potential advantages of SIP/CGM along with telemedicine as a method of care delivery. Results: This case series revealed potential benefits of this model of care delivery, such as the ability to identify dysglycemia patterns not discernible prior to the use of SIP/CGM, use combined reports as a visual education tool to provide targeted insulin and dietary education, and improve patient engagement in diabetes self-care behaviors. Conclusions: We described the benefits of using SIPs and CGM technologies along with telecommunication solutions, as a novel concept for a comprehensive telemedicine system, to improve management of glycemic control and diabetes self-management capabilities. Full article
Show Figures

Graphical abstract

Graphical abstract
Full article ">
27 pages, 5777 KiB  
Article
Flash Flood Regionalization for the Hengduan Mountains Region, China, Combining GNN and SHAP Methods
by Yifan Li, Chendi Zhang, Peng Cui, Marwan Hassan, Zhongjie Duan, Suman Bhattacharyya, Shunyu Yao and Yang Zhao
Remote Sens. 2025, 17(6), 946; https://doi.org/10.3390/rs17060946 - 7 Mar 2025
Viewed by 18
Abstract
The Hengduan Mountains region (HMR) is vulnerable to flash flood disasters, which account for the largest proportion of flood-related fatalities in China. Flash flood regionalization, which divides a region into homogeneous subdivisions based on flash flood-inducing factors, provides insights for the spatial distribution [...] Read more.
The Hengduan Mountains region (HMR) is vulnerable to flash flood disasters, which account for the largest proportion of flood-related fatalities in China. Flash flood regionalization, which divides a region into homogeneous subdivisions based on flash flood-inducing factors, provides insights for the spatial distribution patterns of flash flood risk, especially in ungauged areas. However, existing methods for flash flood regionalization have not fully reflected the spatial topology structure of the inputted geographical data. To address this issue, this study proposed a novel framework combining a state-of-the-art unsupervised Graph Neural Network (GNN) method, Dink-Net, and Shapley Additive exPlanations (SHAP) for flash flood regionalization in the HMR. A comprehensive dataset of flash flood inducing factors was first established, covering geomorphology, climate, meteorology, hydrology, and surface conditions. The performances of two classic machine learning methods (K-means and Self-organizing feature map) and three GNN methods (Deep Graph Infomax (DGI), Deep Modularity Networks (DMoN), and Dilation shrink Network (Dink-Net)) were compared for flash-flood regionalization, and the Dink-Net model outperformed the others. The SHAP model was then applied to quantify the impact of all the inducing factors on the regionalization results by Dink-Net. The newly developed framework captured the spatial interactions of the inducing factors and characterized the spatial distribution patterns of the factors. The unsupervised Dink-Net model allowed the framework to be independent from historical flash flood data, which would facilitate its application in ungauged mountainous areas. The impact analysis highlights the significant positive influence of extreme rainfall on flash floods across the entire HMR. The pronounced positive impact of soil moisture and saturated hydraulic conductivity in the areas with a concentration of historical flash flood events, together with the positive impact of topography (elevation) in the transition zone from the Qinghai–Tibet Plateau to the Sichuan Basin, have also been revealed. The results of this study provide technical support and a scientific basis for flood control and disaster reduction measures in mountain areas according to local inducing conditions. Full article
(This article belongs to the Special Issue Advancing Water System with Satellite Observations and Deep Learning)
Show Figures

Figure 1

Figure 1
<p>(<b>a</b>) The digital elevation model of the Hengduan Mountains region (HMR) in China, with the historical flash flood events from 1950 to 2015 marked as black dots; (<b>b</b>) the location of the HMR with the provinces involved marked in grey.</p>
Full article ">Figure 2
<p>The framework of flash flood regionalization.</p>
Full article ">Figure 3
<p>Variations of (<b>a</b>) <span class="html-italic">DBI</span> and (<b>b</b>) <span class="html-italic">CQI</span> with the cluster number (<span class="html-italic">K</span>) for K-means, SOFM, DGI, DMoN, and Dink-Net.</p>
Full article ">Figure 4
<p>The regionalization maps by (<b>a</b>) K-means, (<b>b</b>) SOFM, (<b>c</b>) DGI, (<b>d</b>) DmoN, and (<b>e</b>) Dink-Net with 12 clusters. In the clustering result obtained by DMoN method with 12 clusters, the number of grids among the clusters is extremely unbalanced. Therefore, there are only 7 clusters in (<b>d</b>).</p>
Full article ">Figure 5
<p>(<b>a</b>) The regionalization map by Dink-Net with 12 subdivisions; (<b>b</b>) quantity and density, and (<b>c</b>) Z-score of the historical flash flood events in each subdivision of the regionalization map. The locations of historical flash flood events are marked with black dots in (<b>a</b>). The event number/event density has been marked for several subdivisions in panel (<b>b</b>), and the mean Z-score values have been presented in panel (<b>c</b>).</p>
Full article ">Figure 6
<p>(<b>a</b>) The locations of the Regions SW-1, SW-7, SE-8, NW-3, NW-4, M-6, and M-12 in the HMR; (<b>b</b>,<b>c</b>): topography and vegetation for Regions SW-1 and SW-7, with low relief and sub-high latitude mountain and mixed coniferous broad-leaved forest; (<b>d</b>,<b>e</b>): topography and vegetation for Region SE-8, with low relief and sub-high latitude mountain and the vegetation of shrub or farmland; (<b>f</b>,<b>g</b>) show the deep dry, hot valley canyon with sparse shrubs in Regions NW-3 and NW-4; (<b>h</b>,<b>i</b>) refer to the wide river valley on Western Sichuan plateau and the vegetation of alpine meadows and shrubland in Regions M-6 and M-12. All photos were taken by Yifan Li.</p>
Full article ">Figure 7
<p>The average of SHAP absolute values (average impact on model output magnitude) of inducing factors on the regionalization result from the SHAP model for the entire Hengduan Mountains region (HMR).</p>
Full article ">Figure 8
<p>The SHAP value of the top 20 important inducing factors for each 2 × 2 km<sup>2</sup> grid in (<b>a</b>) Region SW-1, (<b>b</b>) Region SW-7, and (<b>c</b>) Region SE-8. Each dot in a panel represents the data for a grid. The inducing factors in each panel are ranked in descending order according to the factors’ local impact in each subdivision. The dot color indicates the attribute values of the corresponding factors, with red referring to the high attribute values of a factor. The <span class="html-italic">x</span>-axis value represents the SHAP values that quantify the factors’ impact on the classification tendency for that grid.</p>
Full article ">Figure 9
<p>The SHAP value spatial distribution of inducing factors for each subdivision: (<b>a</b>) temperature; (<b>b</b>) mean of maximum 12 h rainfall ((P<sub>12h</sub>)<sub>mean</sub>); (<b>c</b>) mean of maximum 24 h rainfall ((P<sub>24h</sub>)<sub>mean</sub>); (<b>d</b>) elevation (Dem); (<b>e</b>) soil moisture (Smoisture); and (<b>f</b>) soil saturated hydraulic conductivity (Ks).</p>
Full article ">
16 pages, 2059 KiB  
Review
Demystifying the New Dilemma of Brain Rot in the Digital Era: A Review
by Ahmed Mohamed Fahmy Yousef, Alsaeed Alshamy, Ahmed Tlili and Ahmed Hosny Saleh Metwally
Brain Sci. 2025, 15(3), 283; https://doi.org/10.3390/brainsci15030283 - 7 Mar 2025
Viewed by 138
Abstract
Background/Objectives: The widespread phenomenon of “brain rot”, named the Oxford Word of the Year 2024, refers to the cognitive decline and mental exhaustion experienced by individuals, particularly adolescents and young adults, due to excessive exposure to low-quality online materials, especially on social [...] Read more.
Background/Objectives: The widespread phenomenon of “brain rot”, named the Oxford Word of the Year 2024, refers to the cognitive decline and mental exhaustion experienced by individuals, particularly adolescents and young adults, due to excessive exposure to low-quality online materials, especially on social media. The present study is exploratory and interpretative in nature, aiming to investigate the phenomenon of “brain rot”, with a focus on its key pillars, psychological factors, digital behaviors, and the cognitive impact resulting from the overconsumption of low-quality digital content. Methods: This study employs a rapid review approach, examining research published between 2023 and 2024 across PubMed, Google Scholar, PsycINFO, Scopus, and Web of Science. It explores the causes and effects of brain rot, focusing on the overuse of social media, video games, and other digital platforms. Results: The findings reveal that brain rot leads to emotional desensitization, cognitive overload, and a negative self-concept. It is associated with negative behaviors, such as doomscrolling, zombie scrolling, and social media addiction, all linked to psychological distress, anxiety, and depression. These factors impair executive functioning skills, including memory, planning, and decision-making. The pervasive nature of digital media, driven by dopamine-driven feedback loops, exacerbates these effects. Conclusions: The study concludes by offering strategies to prevent brain rot, such as controlling screen time, curating digital content, and engaging in non-digital activities. Given the increasing prevalence of digital engagement, it is essential to explore a variety of strategies, including mindful technology use, to support cognitive health and emotional well-being. The results can guide various stakeholders—policymakers, practitioners, researchers, educators, and parents or caregivers—in addressing the pervasive impact of brain rot and promoting a balanced approach to technology use that fosters cognitive resilience among adolescents and young adults. Full article
(This article belongs to the Special Issue Focus on Mental Health and Mental Illness in Adolescents)
Show Figures

Figure 1

Figure 1
<p>Steps of conducting a rapid review [<a href="#B23-brainsci-15-00283" class="html-bibr">23</a>].</p>
Full article ">Figure 2
<p>Data selection process.</p>
Full article ">Figure 3
<p>Relationship between the most frequently repeated words for factors that contribute to the recognition of “brain rot”.</p>
Full article ">Figure 4
<p>The relationships between digital behaviors and cognitive control and decline.</p>
Full article ">Figure 5
<p>Relationship between internet addiction behaviors and cognitive poverty among young people.</p>
Full article ">Figure 6
<p>The correlational analysis of screen time and improved mental health and cognitive functions.</p>
Full article ">
15 pages, 337 KiB  
Article
Harnessing Metacognition for Safe and Responsible AI
by Peter B. Walker, Jonathan J. Haase, Melissa L. Mehalick, Christopher T. Steele, Dale W. Russell and Ian N. Davidson
Technologies 2025, 13(3), 107; https://doi.org/10.3390/technologies13030107 - 6 Mar 2025
Viewed by 55
Abstract
The rapid advancement of artificial intelligence (AI) technologies has transformed various sectors, significantly enhancing processes and augmenting human capabilities. However, these advancements have also introduced critical concerns related to the safety, ethics, and responsibility of AI systems. To address these challenges, the principles [...] Read more.
The rapid advancement of artificial intelligence (AI) technologies has transformed various sectors, significantly enhancing processes and augmenting human capabilities. However, these advancements have also introduced critical concerns related to the safety, ethics, and responsibility of AI systems. To address these challenges, the principles of the robustness, interpretability, controllability, and ethical alignment framework are essential. This paper explores the integration of metacognition—defined as “thinking about thinking”—into AI systems as a promising approach to meeting these requirements. Metacognition enables AI systems to monitor, control, and regulate the system’s cognitive processes, thereby enhancing their ability to self-assess, correct errors, and adapt to changing environments. By embedding metacognitive processes within AI, this paper proposes a framework that enhances the transparency, accountability, and adaptability of AI systems, fostering trust and mitigating risks associated with autonomous decision-making. Additionally, the paper examines the current state of AI safety and responsibility, discusses the applicability of metacognition to AI, and outlines a mathematical framework for incorporating metacognitive strategies into active learning processes. The findings aim to contribute to the development of safe, responsible, and ethically aligned AI systems. Full article
26 pages, 1347 KiB  
Article
Communication Intervention to Improve Young Adults’ Food Safety Practices: The Benefits of Using Congruent Framing
by Michela Vezzoli, Valentina Carfora and Patrizia Catellani
Nutrients 2025, 17(5), 928; https://doi.org/10.3390/nu17050928 - 6 Mar 2025
Viewed by 131
Abstract
Background/Objectives: Improving food safety practices among young adults is critical to public health, but effective communication strategies are under-researched. This study investigated the effectiveness of a 12-day message-based intervention to promote safe food handling practices using a randomised controlled trial. Methods: A total [...] Read more.
Background/Objectives: Improving food safety practices among young adults is critical to public health, but effective communication strategies are under-researched. This study investigated the effectiveness of a 12-day message-based intervention to promote safe food handling practices using a randomised controlled trial. Methods: A total of 588 participants (aged 18 to 35 years) were randomly assigned to one of four experimental conditions or to a control group. Participants in the intervention groups received daily messages via a mobile app, while the control group received no messages. The intervention combined belief-based content to raise awareness with skill-based content to teach practical food handling, framed by either positive or negative emotional appeals. The experimental conditions differed in message congruence, with belief-based and skill-based content framed either consistently (both positive or both negative) or inconsistently (one positive, one negative). To assess the impact of the intervention, self-reported adherence to food safety practices, food safety awareness, and self-efficacy were measured at baseline and post-intervention. Results: The results showed that the intervention significantly improved food safety practices, especially when the messages were congruent in valence. Pre-intervention self-efficacy moderated the effects, with higher self-efficacy increasing receptivity to certain messages, while lower self-efficacy benefited from a different framing. Self-efficacy, but not awareness, mediated behaviour change, highlighting its key role in the success of the intervention. Conclusions: These results emphasise the importance of message valence congruence and individual self-efficacy levels in designing effective food safety interventions. Future research should investigate long-term intervention effects, adaptive mHealth strategies, and tailored communication approaches to maximise engagement and sustained behaviour change. Full article
Show Figures

Figure 1

Figure 1
<p>Flow chart of participants through each stage.</p>
Full article ">Figure 2
<p>Examples of congruent or incongruent messages framed positively or negatively.</p>
Full article ">Figure 3
<p>Theoretical moderated mediation model.</p>
Full article ">
22 pages, 3818 KiB  
Review
Navigating Diabetes in Pregnancy: Critical Approaches to Mitigate Risks and Improve Outcomes for Mother and Child
by Zoe Paige Garvey, Abhishek Gupta, Nicole Taylor, Mahesh Thirunavukkarasu and Nilanjana Maulik
Metabolites 2025, 15(3), 180; https://doi.org/10.3390/metabo15030180 - 6 Mar 2025
Viewed by 194
Abstract
With the increasing prevalence of diabetes and its growing impact on maternal and fetal health, management during pregnancy has become critical. This review describes the pathophysiology of insulin resistance during pregnancy, adverse outcomes correlated with diabetic pregnancies, and current management strategies. We investigate [...] Read more.
With the increasing prevalence of diabetes and its growing impact on maternal and fetal health, management during pregnancy has become critical. This review describes the pathophysiology of insulin resistance during pregnancy, adverse outcomes correlated with diabetic pregnancies, and current management strategies. We investigate two leading approaches to managing pregnant patients with diabetes—lifestyle intervention and drug treatment. Lifestyle intervention, including dietary counseling, exercise regimens, patient education, and self-administered blood glucose monitoring, has demonstrated promising results in the management and prevention of gestational diabetes mellitus (GDM). Early intervention and treatment of at-risk patients have been critical for positive outcomes. Drug treatment, focusing on the utilization of insulin, insulin analogs, and antihyperglycemic agents has shown efficacy in achieving glycemic control and improving maternal and neonatal outcomes. These findings indicate that a combination of early lifestyle intervention and targeted drug treatment yields the most benefit in managing diabetes in pregnancy. To augment treatment, continuous glucose monitoring and telemedicine have become valuable tools in managing diabetes during pregnancy. Future research should aim to develop more effective antihyperglycemic agents, improve telehealth accessibility, and enhance preconception care for women at risk of developing GDM. By addressing these areas, we can significantly reduce the adverse outcomes associated with diabetes in pregnancy and improve overall maternal and fetal health. Full article
Show Figures

Figure 1

Figure 1
<p>The flow diagram represents the metabolism of glucose–insulin during pregnancy. (1) Insulin is released from pancreas and regulates glucose level in the blood stream. (2) In a normal pregnancy, the placenta generally produces placental growth hormone (PGH) and releases inflammatory cytokines; (3) consequently, adipose tissue activates lipolysis. (4) This increases fatty acids (FFAs) and glucose in the blood stream, and (5) these are required for the development of the placenta and for the fetus to grow healthy, (6) which leads to the development of gestational diabetes mellitus in some pregnant women. Blue down arrow represents downregulation and white arrow represents upregulation. Adapted from Dennise Lizárraga et al. and reproduced with permission [<a href="#B11-metabolites-15-00180" class="html-bibr">11</a>].</p>
Full article ">Figure 2
<p>Metabolic adaptations of late gestation and the impact of gestational diabetes. <math display="inline"><semantics> <mrow> <mo>↑</mo> </mrow> </semantics></math> increased; <math display="inline"><semantics> <mrow> <mo>↓</mo> </mrow> </semantics></math> decreased; TNFa: tumor necrosis factor-alpha; hPGH: human placental growth factor; PL: placental lactogen; PrL: prolactin; GSIS: glucose-stimulated insulin secretion. Adapted from Brittany L. Moyce Gruber et al. and reproduced with permission [<a href="#B14-metabolites-15-00180" class="html-bibr">14</a>].</p>
Full article ">Figure 3
<p>The flow diagram shows the molecular mechanisms underlying insulin resistance in normal pregnancy physiology and gestational diabetes mellitus. During states of insulin resistance, there is increased secretion of human placental lactogen (hPL), estrogen, progesterone, cortisol, and prolactin. They generally favor the increased release of free fatty acids, which are predominantly metabolized by mothers, allowing for the shunting of glucose towards fetal metabolism. DM2: type 2 diabetes mellitus; GSIS: glucose-stimulated insulin secretion; hPL: human placental lactogen; INS-R: insulin receptor; IRS-1: insulin receptor substrate-I; PI3K: Phosphoinositide 3-Kinase; GLUT4: Glucose transporter 4; p70 S6K1: P70-S6 Kinase 1; PPARy: peroxisome proliferator-activated receptor; ↑ represents increased; ↓ represents decreased. Adapted from Joselyn Rojas et al. and reproduced with permission [<a href="#B13-metabolites-15-00180" class="html-bibr">13</a>].</p>
Full article ">Figure 4
<p>This figure denotes factors affecting fetal growth in diabetic pregnancies. <span class="html-italic">Insulin resistance</span> induces glucose intolerance, resulting in hyperglycemia. This, in turn, causes maternal hyperglycemia by hyperinsulinemia, which in turn reduces fetal blood glucose levels but also increases fetal adipose tissue and enhances growth. In addition, placental growth hormones facilitate fetal gluconeogenesis and lipogenesis, further contributing to enhanced fetal growth. IGF1: insulin-like growth factor-1; T1DM: type 1 diabetes mellitus; T2DM: type 2 diabetes mellitus; hPL: human placental lactogen; hpGF: human placental growth factor; IGFBP-3: insulin-like growth factor-binding protein 3. ↑ represents increased; ↓ represents decreased Adapted from Asher Ornoy et al. and reproduced with permission [<a href="#B16-metabolites-15-00180" class="html-bibr">16</a>].</p>
Full article ">Figure 5
<p>Alterations in DNA methylation and miRNA expression in the placenta from women with GDM will alter the expression and function of genes involved in metabolic and cellular pathways. As a result of these changes, the neonate is susceptible to hypoglycemia, hyperinsulinemia, macrosomia, metabolic disorders, and reduced variability of pancreatic β-cells. This susceptibility may later lead to the development of metabolic syndrome, obesity, diabetes, and cardiovascular complications. ↑ represents increased; ↓ represents decreased Adapted from Dennise Lizárraga et al. and reproduced with permission [<a href="#B11-metabolites-15-00180" class="html-bibr">11</a>]. Created with BioRender (<a href="https://BioRender.com" target="_blank">https://BioRender.com</a>).</p>
Full article ">Figure 6
<p>Unique molecular mechanism of metformin in various pathways. Metformin reduces insulin resistance, insulin secretion, glucose blood levels, inflammation, and angiogenesis as well as resulting in a reduction in cell growth and metabolism that mediates its anti-tumor activity. These effects are regulated by both AMPK-dependent or -independent mechanisms that lead to the inhibition of mTOR signaling. (Abbreviations: ACC, acetyl-CoA carboxylase; AMPK, 5′ adenosine monophosphate-activated protein kinase; IGF, insulin-like growth factor; EGF, epidermal growth factor; FAS, fatty acid synthase; PAI-1, plasminogen-activator inhibitor-1; PI3K, Phosphatidylinositol-4,5-bisphosphate 3-kinase; TSC2, tuberous sclerosis 2; mTOR, mechanistic target of rapamycin; VEGF, vascular endothelial growth factor). Adapted from Roberto Romero et al. and reproduced with permission [<a href="#B75-metabolites-15-00180" class="html-bibr">75</a>]. Created with BioRender (<a href="https://BioRender.com" target="_blank">https://BioRender.com</a>).</p>
Full article ">
23 pages, 3342 KiB  
Article
Tuning Electromagnetically Induced Transparency in a Double GaAs/AlGaAs Quantum Well with Modulated Doping
by C. A. Dagua-Conda, J. A. Gil-Corrales, R. V. H. Hahn, R. L. Restrepo, M. E. Mora-Ramos, A. L. Morales and C. A. Duque
Crystals 2025, 15(3), 248; https://doi.org/10.3390/cryst15030248 - 6 Mar 2025
Viewed by 211
Abstract
Including an n-doped layer in asymmetric double quantum wells restricts confined carriers into V-shaped potential profiles, forming discrete conduction subbands and enabling intersubband transitions. Most studies on doped semiconductor heterostructures focus on how external fields and structural parameters dictate optical absorption. However, [...] Read more.
Including an n-doped layer in asymmetric double quantum wells restricts confined carriers into V-shaped potential profiles, forming discrete conduction subbands and enabling intersubband transitions. Most studies on doped semiconductor heterostructures focus on how external fields and structural parameters dictate optical absorption. However, electromagnetically induced transparency remains largely unexplored. Here, we show that the effect of an n-doped layer GaAs/AlxGa1−xAs in an asymmetric double quantum well system is quite sensitive to the width and position of the doped layer. By self-consistently solving the Poisson and Schrödinger’s equations, we determine the electronic structure using the finite element method within the effective mass approximation. We found that the characteristics of the n-doped layer can modulate the resonance frequencies involved in the electromagnetically induced transparency phenomenon. Our results demonstrate that an n-doped layer can control the electromagnetically induced transparency effect, potentially enhancing its applications in optoelectronic devices. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

Figure 1
<p>(<b>a</b>) Schematic diagram of a GaAs/Al<sub>0.3</sub>Ga<sub>0.7</sub> As double quantum well system centered at the origin of the x-axis subject to an external electric field <span class="html-italic">F</span> polarized along the heterostructure growth direction, with <math display="inline"><semantics> <msub> <mi>L</mi> <mi>L</mi> </msub> </semantics></math> (<math display="inline"><semantics> <msub> <mi>L</mi> <mi>R</mi> </msub> </semantics></math>) denoting the left (right) well and <math display="inline"><semantics> <msub> <mi>L</mi> <mi>b</mi> </msub> </semantics></math> the barrier width, respectively. The doping layer (dashed red line) of <math display="inline"><semantics> <mi>δ</mi> </semantics></math>-width is inside the well (GaAs) at a <math display="inline"><semantics> <mi>ξ</mi> </semantics></math> separation from the origin. (<b>b</b>) Three-level ladder system configuration to study the electromagnetically induced transparency process.</p>
Full article ">Figure 2
<p>(<b>a</b>,<b>c</b>) Self-consistent potential <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>sc</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (solid black line) and electron confining potential <math display="inline"><semantics> <msub> <mi>V</mi> <mi>in</mi> </msub> </semantics></math> (dashed black line) for GaAs/Al<sub>0.3</sub>Ga<sub>0.7</sub> As, demonstrating two scenarios for the variations in the self-consistent potential seen by the electrons and probability densities <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>ψ</mi> <mi>ν</mi> </msub> <msup> <mrow> <mo>|</mo> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> </mrow> </semantics></math>), with right-hand well width <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mi>R</mi> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> nm (<b>a</b>) and <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mi>R</mi> </msub> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math> nm (<b>c</b>). In (<b>b</b>), the energy levels of the first three subbands as a function of the right-hand well width <math display="inline"><semantics> <msub> <mi>L</mi> <mi>R</mi> </msub> </semantics></math>. Note that the energies associated with the states presented in (<b>a</b>,<b>c</b>) correspond to the minimum and maximum values of the parameter sweep, respectively.</p>
Full article ">Figure 3
<p>(<b>a</b>,<b>c</b>) Modifications in the self-consistent potential of GaAs/Al<sub>0.3</sub>Ga<sub>0.7</sub> As induced by the external electric field with <math display="inline"><semantics> <mrow> <mi>F</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> kV/cm (<b>a</b>) and <math display="inline"><semantics> <mrow> <mi>F</mi> <mo>=</mo> <mn>33</mn> </mrow> </semantics></math> kV/cm (<b>c</b>). In (<b>b</b>), the energy levels of the first three subbands are shown as a function of the external electric field.</p>
Full article ">Figure 4
<p>(<b>a</b>,<b>c</b>) Modifications in the GaAs/Al<sub>0.3</sub>Ga<sub>0.7</sub> As self-consistent potential induced by the location of the doped layer of <math display="inline"><semantics> <mi>δ</mi> </semantics></math>-width with <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>=</mo> <mo>−</mo> <mn>13</mn> </mrow> </semantics></math> nm (<b>a</b>) and <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>=</mo> <mn>15</mn> </mrow> </semantics></math> nm (<b>c</b>). In (<b>b</b>), the energy levels of the first three subbands are shown as a function of the doped delta layer location.</p>
Full article ">Figure 5
<p>(<b>a</b>,<b>c</b>) Modifications in the GaAs/Al<sub>0.3</sub>Ga<sub>0.7</sub> As self-consistent potential induced by the doped layer width with <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> nm (<b>a</b>) and <math display="inline"><semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math> nm (<b>c</b>). In (<b>b</b>), the energy levels of the first three subbands are shown as a function of the doped delta layer width.</p>
Full article ">Figure 6
<p>(<b>a</b>–<b>d</b>) Electron density in terms of the <span class="html-italic">x</span>-coordinate for different configurations of the double quantum well. Two different values are shown for the width of the right-hand well (<b>a</b>), the applied electric field (<b>b</b>), the doped layer position (<b>c</b>), and the width of the doped layer (<b>d</b>).</p>
Full article ">Figure 7
<p>The product <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>E</mi> <mn>10</mn> </msub> <msup> <mrow> <mo>|</mo> </mrow> <mn>2</mn> </msup> <msup> <mrow> <mo>|</mo> <msub> <mi>M</mi> <mn>10</mn> </msub> <mo>|</mo> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math> with respect to the right-hand well width (<b>a</b>), of the externally applied electric field intensity (<b>b</b>), of the doped layer position (<b>c</b>), and of the doped layer width (<b>d</b>). For each figure, the parameters are the same as those in <a href="#crystals-15-00248-f001" class="html-fig">Figure 1</a>, <a href="#crystals-15-00248-f002" class="html-fig">Figure 2</a>, <a href="#crystals-15-00248-f003" class="html-fig">Figure 3</a>, <a href="#crystals-15-00248-f004" class="html-fig">Figure 4</a> and <a href="#crystals-15-00248-f005" class="html-fig">Figure 5</a>.</p>
Full article ">Figure 8
<p>(<b>a</b>–<b>d</b>) 2D contour plots for the electromagnetically induced transparency as a function of the photon energy. In (<b>a</b>), the effect of variations in the width of the right-hand well, the applied electric field (<b>b</b>), the location of the doped layer (<b>c</b>), and the width of the doped layer (<b>d</b>). For each figure, the parameters are the same as those in <a href="#crystals-15-00248-f001" class="html-fig">Figure 1</a>, <a href="#crystals-15-00248-f002" class="html-fig">Figure 2</a>, <a href="#crystals-15-00248-f003" class="html-fig">Figure 3</a>, <a href="#crystals-15-00248-f004" class="html-fig">Figure 4</a> and <a href="#crystals-15-00248-f005" class="html-fig">Figure 5</a>.</p>
Full article ">Figure 9
<p>Linear optical absorption coefficient (shaded curves), and electromagnetically induced transparency (unshaded curves) with respect to the incident photon energy. In (<b>a</b>) the effect of the position of the doped layer with <math display="inline"><semantics> <mi>δ</mi> </semantics></math>-width, in (<b>b</b>) the effect of the doped layer position. For each panel, the parameters are the same as those in <a href="#crystals-15-00248-f001" class="html-fig">Figure 1</a>, <a href="#crystals-15-00248-f002" class="html-fig">Figure 2</a>, <a href="#crystals-15-00248-f003" class="html-fig">Figure 3</a>, <a href="#crystals-15-00248-f004" class="html-fig">Figure 4</a> and <a href="#crystals-15-00248-f005" class="html-fig">Figure 5</a>.</p>
Full article ">Figure A1
<p>(<b>a</b>,<b>c</b>) Self-consistent potential <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>sc</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> (solid black line) and electron confining potential <math display="inline"><semantics> <msub> <mi>V</mi> <mi>in</mi> </msub> </semantics></math> (dashed black line) for GaAs/Al<sub>0.3</sub>Ga<sub>0.7</sub> As, demonstrating two scenarios for the variations in the self-consistent potential seen by the electrons and probability densities <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>ψ</mi> <mi>ν</mi> </msub> <msup> <mrow> <mo>|</mo> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> </mrow> </semantics></math>), with right-hand well width <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mi>R</mi> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> nm (a) and <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mi>R</mi> </msub> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math> nm (<b>c</b>). In (<b>b</b>), the energy levels of the first three subbands as a function of the right-hand well width <math display="inline"><semantics> <msub> <mi>L</mi> <mi>R</mi> </msub> </semantics></math>. Coloured solid lines show the results obtained assuming the same effective mass for well and barrier, whereas dots represent the results obtained distinguishing the effective masses of well (<math display="inline"><semantics> <mrow> <msup> <mi>m</mi> <mo>*</mo> </msup> <mo>=</mo> <mn>0.067</mn> <msub> <mi>m</mi> <mn>0</mn> </msub> </mrow> </semantics></math>) and barrier (<math display="inline"><semantics> <mrow> <msup> <mi>m</mi> <mo>*</mo> </msup> <mo>=</mo> <mn>0.09</mn> <msub> <mi>m</mi> <mn>0</mn> </msub> </mrow> </semantics></math>).</p>
Full article ">
14 pages, 653 KiB  
Article
Bifurcation and Dynamics Analysis of a Piecewise-Linear van der Pol Equation
by Wenke Li, Nanbin Cao and Xia Liu
Axioms 2025, 14(3), 197; https://doi.org/10.3390/axioms14030197 - 6 Mar 2025
Viewed by 103
Abstract
In this study, we examine the bifurcations and dynamics of a piecewise linear van der Pol equation—a model that captures self-sustained oscillations and is applied in various scientific disciplines, including electronics, neuroscience, biology, and economics. The van der Pol equation is transformed into [...] Read more.
In this study, we examine the bifurcations and dynamics of a piecewise linear van der Pol equation—a model that captures self-sustained oscillations and is applied in various scientific disciplines, including electronics, neuroscience, biology, and economics. The van der Pol equation is transformed into a piecewise linear system to simplify the analysis of stability and controllability, which is particularly beneficial in engineering applications. This work explores the impact of increasing the number of linear segments on the system’s dynamics, focusing on the stability of the equilibria, phase portraits, and bifurcations. The findings reveal that while the bifurcation structure at critical values of the bifurcation parameter is complex, the topology of the piecewise linear model remains unaffected by an increase in the number of linear segments from three to four. This research contributes to our understanding of the dynamics of nonlinear systems with piecewise linear characteristics and has implications for the analysis and design of real-world systems exhibiting such behavior. Full article
Show Figures

Figure 1

Figure 1
<p>Nullclines (<span class="html-italic">v</span>-nullcline and <span class="html-italic">w</span>-nullcline), linear line segments of <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mrow> <mi>p</mi> <mi>w</mi> <mi>l</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>, and the corresponding regions of the PWL model (<a href="#FD7-axioms-14-00197" class="html-disp-formula">7</a>)–(<a href="#FD8-axioms-14-00197" class="html-disp-formula">8</a>) with <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>0.885</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>. From left to right, the slopes of <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mrow> <mi>l</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>L</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>L</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>L</mi> <mrow> <mi>r</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> are <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mrow> <mi>l</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>1.27</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mrow> <mi>r</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. The line segments <math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>L</mi> <mn>2</mn> </msub> </semantics></math> join at <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>w</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mo>−</mo> <mn>0.385</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>A persistence bifurcation occurs when <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math> for system (<a href="#FD7-axioms-14-00197" class="html-disp-formula">7</a>). The top row illustrates the transition of the equilibrium on <math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mi>l</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </semantics></math> from a stable node (left) to an unstable node on <math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math> (right) as <math display="inline"><semantics> <mi>λ</mi> </semantics></math> varies. Meanwhile, a large-amplitude limit cycle appears for <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>&gt;</mo> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math>, traversing four distinct zones. The bottom row shows the equilibrium on <math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mi>l</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </semantics></math> shifting from a stable node (left) to an unstable focus on <math display="inline"><semantics> <msub> <mi>L</mi> <mn>1</mn> </msub> </semantics></math> (right). Simultaneously, a small-amplitude limit cycle emerges when <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>&gt;</mo> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math>, passing through two specific zones, <math display="inline"><semantics> <msub> <mi>R</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>R</mi> <mrow> <mi>l</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </semantics></math>. The representative parameter values are <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mover accent="true"> <mi>v</mi> <mo stretchy="false">^</mo> </mover> <mo>,</mo> <mover accent="true"> <mi>w</mi> <mo stretchy="false">^</mo> </mover> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mo>−</mo> <mn>0.385</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>1.27</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>0.885</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>System (<a href="#FD7-axioms-14-00197" class="html-disp-formula">7</a>) experiences a persistence bifurcation when <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. The top row illustrates the transition of the equilibrium on <math display="inline"><semantics> <msub> <mi>L</mi> <mn>2</mn> </msub> </semantics></math> from an unstable focus (left) to a stable node located on <math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mi>r</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </semantics></math> (right) as <math display="inline"><semantics> <mi>λ</mi> </semantics></math> varies. Meanwhile, a small-amplitude limit cycle appears for <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>&lt;</mo> <mn>1</mn> </mrow> </semantics></math>, passing through two zones, <math display="inline"><semantics> <msub> <mi>R</mi> <mn>2</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>R</mi> <mrow> <mi>r</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </semantics></math>. The bottom row shows the equilibrium on <math display="inline"><semantics> <msub> <mi>L</mi> <mn>2</mn> </msub> </semantics></math> shifting from an unstable node (left) to a stable node on <math display="inline"><semantics> <msub> <mi>L</mi> <mrow> <mi>r</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </semantics></math> (right). Simultaneously, a large-amplitude limit cycle emerges when <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>&lt;</mo> <mn>1</mn> </mrow> </semantics></math>, traversing four distinct zones. The representative parameter values are the same as in <a href="#axioms-14-00197-f002" class="html-fig">Figure 2</a>.</p>
Full article ">Figure 4
<p>Schematic representations of five distinct phase portraits for system (<a href="#FD7-axioms-14-00197" class="html-disp-formula">7</a>). A small-amplitude limit cycle (red curve) exists when <math display="inline"><semantics> <mi>λ</mi> </semantics></math> is close to 1, which passes through two zones <math display="inline"><semantics> <msub> <mi>R</mi> <mn>2</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>R</mi> <mrow> <mi>r</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </semantics></math>. For all five cases, we take the value <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>1</mn> </msub> <mo>&lt;</mo> <msubsup> <mi>η</mi> <mrow> <mi>c</mi> <mi>r</mi> </mrow> <mo>−</mo> </msubsup> <mo>&lt;</mo> <msub> <mi>η</mi> <mn>2</mn> </msub> <mo>&lt;</mo> <mn>0</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Schematic representations of five distinct phase portraits for system (<a href="#FD7-axioms-14-00197" class="html-disp-formula">7</a>). A large-amplitude limit cycle (red curve) exists when <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>1</mn> <mo>&lt;</mo> <mi>λ</mi> <mo>&lt;</mo> <msub> <mi>v</mi> <mn>1</mn> </msub> </mrow> </semantics></math>, which passes through four zones <math display="inline"><semantics> <msub> <mi>R</mi> <mrow> <mi>l</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>R</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>R</mi> <mn>2</mn> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>R</mi> <mrow> <mi>r</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </semantics></math>.</p>
Full article ">Figure 6
<p>Illustrative phase portraits for the PWL VDP models, either with three or four linear segments, are presented. The top row depicts the VDP model comprising three linear segments, while the bottom row features the model with four linear segments. The phase portraits in the first column display a limit cycle, the second column shows a continuum of homoclinic orbits, and the last column demonstrates stable equilibrium. The representative parameter values are <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>0.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>1.27</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>0.885</mn> </mrow> </semantics></math>.</p>
Full article ">
14 pages, 2280 KiB  
Article
The Efficacy of Remineralizing Materials on Artificial Enamel Lesions: An In Vitro Study
by Gustė Klimaitė, Arūnas Vasiliauskas, Pranas Grinkevičius, Dominyka Grinkevičienė and Deivydas Šapalas
Medicina 2025, 61(3), 462; https://doi.org/10.3390/medicina61030462 - 6 Mar 2025
Viewed by 60
Abstract
Background and Objectives: Contemporary caries treatment seeks to preserve hard dental tissues as well as to promote lesion remineralization and biological tissue regeneration. While fluoride-based treatments remain the gold standard, their effectiveness has limitations, prompting interest in innovative remineralization technologies. Nano-hydroxyapatite (nano-HA) varnish [...] Read more.
Background and Objectives: Contemporary caries treatment seeks to preserve hard dental tissues as well as to promote lesion remineralization and biological tissue regeneration. While fluoride-based treatments remain the gold standard, their effectiveness has limitations, prompting interest in innovative remineralization technologies. Nano-hydroxyapatite (nano-HA) varnish and self-assembling peptide (SAP) P11-4 are promising biomimetic materials that promote enamel repair, yet long-term data on their efficacy are limited. The objectives of this study were to evaluate the effectiveness of nano-HA varnish and peptide P11-4 in restoring enamel surface hardness after artificial lesions in vitro and to compare them to a control group and fluoride varnish. Materials and Methods: Artificial enamel lesions were created on the buccal surfaces of 36 extracted human molars, which were randomly divided into four groups (n = 9): control, peptide P11-4, fluoride varnish, and nano-hydroxyapatite varnish. After applying the materials as per manufacturer instructions, specimens were stored in artificial saliva for 14 days. Enamel surface hardness was measured using the Vickers hardness test (HV) at baseline, after demineralization, and after remineralization. Statistical analysis was performed with “IBM SPSS 27.0” using non-parametric Kolmogorov–Smirnov, Kruskal–Wallis, Dunn’s, and Wilcoxon tests. Results: The mean baseline enamel hardness value was 323.95 (SD 33.47) HV. After 14 days of demineralization, the mean surface hardness of artificial enamel lesions significantly plummeted to 172.17 (SD 35.96) HV (p = 0.000). After 14 days of remineralization, the mean value significantly increased to 213.21 (SD 50.58) HV (p = 0.001). The results of the study revealed statistically significant enamel remineralization of the peptide P11-4 group in regard to the demineralized enamel (p < 0.05). In contrast, there were no significant results in other treatment groups (p > 0.05). Remineralization of enamel was the highest in samples from the P11-4 group (54.1%), followed by the nano-HA group (35.4%), FV group (17.8%), and control group (11.2%). There was a significant difference (p < 0.05) in the remineralizing ability between the peptide P11-4 and all other treatment groups. Conclusions: Self-assembling peptide P11-4 effectively remineralized artificial enamel lesions and proved to be significantly more effective compared to fluoride varnish and nano-hydroxyapatite varnish, showcasing its superior performance as a remineralizing agent. Full article
(This article belongs to the Topic Advances in Dental Materials)
Show Figures

Figure 1

Figure 1
<p>(<b>a</b>) “Anycubic Photon” 3D printer; (<b>b</b>) forms printed with the printer.</p>
Full article ">Figure 2
<p>Prepared molar tooth sample.</p>
Full article ">Figure 3
<p>Study methodological diagram.</p>
Full article ">Figure 4
<p>Vickers test procedure. (<b>a</b>) The position of the sample and indenter is determined; (<b>b</b>) The device mechanism is activated; (<b>c</b>) The microscope objective is adjusted; (<b>d</b>) The indentation size is measured.</p>
Full article ">Figure 5
<p>Tooth sample after demineralization.</p>
Full article ">Figure 6
<p>Boxplot of surface hardness for all samples at different measurement stages. Based on the non-parametric Wilcoxon test for dependent samples, a statistically significant difference was found between measurements (<sup>abc</sup> <span class="html-italic">p</span> ≤ 0.001), irrespective of the experimental groups.</p>
Full article ">Figure 7
<p>Boxplot of surface hardness for the third measurement, categorized by groups. Based on the non-parametric Kruskal Wallis test, a statistically significant difference was found between the P11-4 group (* <span class="html-italic">p</span>&lt; 0.05) and all other groups (<sup>abc</sup> <span class="html-italic">p</span> &lt; 0.05). No statistical significance was observed among the FV group and nano-HA group compared to the control group (<span class="html-italic">p</span> &gt; 0.05).</p>
Full article ">Figure 8
<p>Percentage change in enamel surface hardness (Δ<span class="html-italic">HV</span>%) after remineralization.</p>
Full article ">
16 pages, 1079 KiB  
Article
The Longitudinal Association Between Internet Addiction and Prosocial Behavior Among Chinese Adolescents: Testing a Moderated Mediation Model
by Wei-Xuan Liang, Wan-Yu Ye, Kai-Xin Ng, Kai Dou and Zhi-Jun Ning
Behav. Sci. 2025, 15(3), 322; https://doi.org/10.3390/bs15030322 - 6 Mar 2025
Viewed by 162
Abstract
Internet addiction has been associated with decreased prosocial behavior in adolescents, and minority studies have investigated the underlying mechanisms involved. This study aimed to examine the mediating effects of self-control and the moderating effects of peer rejection. A longitudinal study with two waves [...] Read more.
Internet addiction has been associated with decreased prosocial behavior in adolescents, and minority studies have investigated the underlying mechanisms involved. This study aimed to examine the mediating effects of self-control and the moderating effects of peer rejection. A longitudinal study with two waves (6 months apart) was used to measure internet addiction (T1), peer rejection (T1), self-control (T1/T2), and prosocial behavior (T1/T2) among 1048 secondary school students (Mage = 14.80 years old, SD = 1.61) in a southern Chinese metropolitan area. A longitudinal path analysis model was applied to analyze the data and derive insights about the relationships between these variables. The findings indicated that T1 internet addiction negatively influenced later prosocial behavior through reduced self-control, particularly among adolescents with lower levels of peer rejection. These findings clarify how internet addiction impairs prosocial development, and we propose a framework for intervention: mitigating peer rejection and harnessing self-control as a mediator to counteract the adverse effects of internet addiction. Full article
(This article belongs to the Section Psychiatric, Emotional and Behavioral Disorders)
Show Figures

Figure 1

Figure 1
<p>Conceptual moderated mediation model. Note: T1 = Time 1; T2 = Time 2. Same as below.</p>
Full article ">Figure 2
<p>The mediating effect of self-control in the relationship between internet addiction and prosocial behavior. Note: The unstandardized coefficients are reported. * <span class="html-italic">p</span> &lt; 0.05, *** <span class="html-italic">p</span> &lt; 0.001. The dashed line indicates a non-significant coefficient. Same as below.</p>
Full article ">Figure 3
<p>Moderated mediation model. * <span class="html-italic">p</span> &lt; 0.05, *** <span class="html-italic">p</span> &lt; 0.001.</p>
Full article ">Figure 4
<p>The relationship between internet addiction and self-control moderated by peer rejection.</p>
Full article ">
22 pages, 5774 KiB  
Article
Research and Demonstration of Operation Optimization Method of Zero-Carbon Building’s Compound Energy System Based on Day-Ahead Planning and Intraday Rolling Optimization Algorithm
by Biao Qiao, Jiankai Dong, Wei Xu, Ji Li and Fei Lu
Buildings 2025, 15(5), 836; https://doi.org/10.3390/buildings15050836 - 6 Mar 2025
Viewed by 151
Abstract
The compound energy system is an important component of zero-carbon buildings. Due to the complex form of the system and the difficult-to-capture characteristics of thermo-electric coupling interactions, the operation control of the zero-carbon building’s energy system is difficult in practical engineering. Therefore, it [...] Read more.
The compound energy system is an important component of zero-carbon buildings. Due to the complex form of the system and the difficult-to-capture characteristics of thermo-electric coupling interactions, the operation control of the zero-carbon building’s energy system is difficult in practical engineering. Therefore, it is necessary to carry out relevant optimization methods. This paper investigated the current research status of the control and scheduling of compound energy systems in zero-carbon buildings at home and abroad, selected a typical zero-carbon building as the research object, analyzed its energy system’s operational data, and proposed an operation scheduling algorithm based on day-ahead flexible programming and intraday rolling optimization. The multi-energy flow control algorithm model was developed to optimize the operation strategy of heat pump, photovoltaic, and energy storage systems. Then, the paper applied the algorithm model to a typical zero-carbon building project, and verified the actual effect of the method through the actual operational data. After applying the method in this paper, the self-absorption rate of photovoltaic power generation in the building increased by 7.13%. The research results provide a theoretical model and data support for the operation control of the zero-carbon building’s compound energy system, and could promote the market application of the compound energy system. Full article
(This article belongs to the Special Issue Research on Solar Energy System and Storage for Sustainable Buildings)
Show Figures

Figure 1

Figure 1
<p>Block diagram of a zero-carbon building’s compound energy system.</p>
Full article ">Figure 2
<p>Comparison of annual electricity consumption and power generation of zero-carbon buildings before transformation.</p>
Full article ">Figure 3
<p>Monthly electricity consumption and power generation of zero-carbon buildings before transformation.</p>
Full article ">Figure 4
<p>Monthly self-absorption rate of the building’s photovoltaic power generation before the transformation.</p>
Full article ">Figure 5
<p>Hourly electricity demand and photovoltaic power generation of zero-carbon buildings on a typical summer’s day before the renovation.</p>
Full article ">Figure 6
<p>Usage of photovoltaic power generation on a typical summer’s day before renovation.</p>
Full article ">Figure 7
<p>Hourly electricity consumption of zero-carbon buildings on a typical summer’s day before renovation.</p>
Full article ">Figure 8
<p>Technical path diagram of day-ahead planning and intraday rolling optimization algorithm.</p>
Full article ">Figure 9
<p>Structure of the SSA-CNN-LSTM prediction model.</p>
Full article ">Figure 10
<p>Flowchart of the day-ahead planning algorithm model.</p>
Full article ">Figure 11
<p>Flowchart of the intraday rolling optimization algorithm.</p>
Full article ">Figure 12
<p>Python/TRNSYS multi-energy flow coupling optimization control model of the zero-carbon building’s compound energy system.</p>
Full article ">Figure 13
<p>Comparison of annual electricity consumption and power generation of zero-carbon buildings after renovation.</p>
Full article ">Figure 14
<p>Monthly electricity consumption and local PV generation of zero-carbon office building after renovation.</p>
Full article ">Figure 15
<p>Monthly building self-absorption rate of photovoltaic power generation in zero-carbon office building after renovation.</p>
Full article ">Figure 16
<p>Hourly electricity demand and photovoltaic power generation of zero-carbon buildings on a typical summer’s day after renovation.</p>
Full article ">Figure 17
<p>Photovoltaic power generation usage of buildings on a typical summer’s day after renovation.</p>
Full article ">Figure 18
<p>Comparison between field test data and load prediction data.</p>
Full article ">Figure 19
<p>Supply-side sources of hourly electricity for zero-carbon buildings.</p>
Full article ">Figure 20
<p>Utilization schedule of photovoltaic power generation and battery conditions.</p>
Full article ">Figure 21
<p>Comparison of self-absorption rate of zero-carbon building’s photovoltaic power generation before and after renovation.</p>
Full article ">Figure 22
<p>Comparison of self-absorption rate of zero-carbon building’s photovoltaic power generation in different seasons before and after renovation.</p>
Full article ">Figure 23
<p>Comparison of self-absorption rate of a building’s PV power generation on a typical summer’s day before and after renovation.</p>
Full article ">
13 pages, 2500 KiB  
Article
Innovative Device to Control Self-Induced Instabilities Associated with the Swirling Flow from the Discharge Cone of Hydraulic Turbines
by Constantin Tănasă, Adrian Ciprian Stuparu, Alin Bosioc, Cristina Terteci, George Belgiu and Sorin Nanu
Actuators 2025, 14(3), 126; https://doi.org/10.3390/act14030126 - 6 Mar 2025
Viewed by 88
Abstract
In our previous research work, we investigated different methods to mitigate the vortex rope that appears in the draft tube of a Francis turbine when it operates at off-design operating points. The most promising results were obtained for a method involving an axial [...] Read more.
In our previous research work, we investigated different methods to mitigate the vortex rope that appears in the draft tube of a Francis turbine when it operates at off-design operating points. The most promising results were obtained for a method involving an axial jet of water. The minor disadvantage of this method was the high value of the flow rate of the water jet. Our present work focuses on another method that decreases the value of the flow rate of the jet. In this sense, a new device has been developed that produces a pulsating water jet, which mitigates the pressure fluctuations associated with the swirling flows. The objective of this paper is to use our experimental test rig to validate the efficiency of a pulsating water jet in mitigating the vortex rope. To perform that, pressure measurements were carried out at four test levels to evaluate the pressure amplitude evolution when the pulsating jet was deployed. From preliminary investigations, the results indicate that this method leads to a decrease of the pressure amplitude of the vortex rope, with a lower value of the flow rate of the jet. Full article
Show Figures

Figure 1

Figure 1
<p>(<b>a</b>) Formation of a vortex rope in the Francis turbine discharge cone; (<b>b</b>) Formation of a vortex rope according to Nishi et al. [<a href="#B6-actuators-14-00126" class="html-bibr">6</a>]; (<b>c</b>) The operating range.</p>
Full article ">Figure 2
<p>The new device VO for swirling flow control.</p>
Full article ">Figure 3
<p>(<b>a</b>) The test rig to achieve different techniques to control the decelerated swirling flow; (<b>b</b>) The swirl apparatus with the test section to measure the pressure field and the details of the swirl generator.</p>
Full article ">Figure 3 Cont.
<p>(<b>a</b>) The test rig to achieve different techniques to control the decelerated swirling flow; (<b>b</b>) The swirl apparatus with the test section to measure the pressure field and the details of the swirl generator.</p>
Full article ">Figure 4
<p>The test rig for swirling flow control techniques and details of the circuit with the new VO.</p>
Full article ">Figure 5
<p>Pressure fluctuations with the associated FFT for the original measurements, with helical vortex and pulsating water jet, <span class="html-italic">Q<sub>nom</sub></span> = 30 l/s.</p>
Full article ">Figure 5 Cont.
<p>Pressure fluctuations with the associated FFT for the original measurements, with helical vortex and pulsating water jet, <span class="html-italic">Q<sub>nom</sub></span> = 30 l/s.</p>
Full article ">Figure 6
<p>Dimensionless equivalent amplitude vs. S<sub>h</sub> number for the locations L0–L3 of the test section.</p>
Full article ">Figure 7
<p>Evaluation of the dimensionless equivalent amplitude for the cases with a pulsating jet (Q-jet = 3.6 l/s, <span class="html-italic">Q<sub>nom</sub></span> = 0 l/s), with a pulsating jet in operation (Q-jet = 3.6 l/s, <span class="html-italic">Q<sub>nom</sub></span> = 30 l/s), and without a pulsating jet/with vortex rope (Q-jet = 0 l/s, <span class="html-italic">Q<sub>nom</sub></span> = 30 l/s).</p>
Full article ">
Back to TopTop