Identification, Phylogeny, and Expression Profiling of Pineapple Heat Shock Proteins (HSP70) Under Various Abiotic Stresses
<p>Chromosome distribution of AcHSP70 genes in pineapple. The <span class="html-italic">AcHSP70s</span> were located on Chr 2, 3, 4, 7, 8, 13, 14, 16, 17, 19, 20, 21, 22, and 25. Chr: chromosome. The ruler located on the left side represents the chromosome length and is shown in megabase (Mb).</p> "> Figure 2
<p>The phylogenetic analysis of AcHSP70 proteins with <span class="html-italic">Arabidopsis</span>, cucumber (<span class="html-italic">Cucumis sativus</span> L.), rice (<span class="html-italic">Oryza sativa</span> L.), and maize (<span class="html-italic">Zea mays</span> L.). The phylogenetic tree was made by using MEGA 11.0 software with the neighbor-joining (NJ) method, and the bootstrap replications were set to 1000 times. Different colors represent four groups (I–IV), and stars represent <span class="html-italic">AcHSP70s</span>.</p> "> Figure 3
<p>Gene structures and conserved motifs of <span class="html-italic">AcHSP70s</span>. (<b>A</b>) Different colors represent the four groups of <span class="html-italic">AcHSP70</span> genes (I–IV). (<b>B</b>) The motifs of AcHSP70 proteins are shown as colored boxes. (<b>C</b>) Gene structures of <span class="html-italic">AcHSP70</span> genes. The yellow blocks represent the coding sequence (CDS), the green blocks represent the untranslated region (UTR), and the black lines represent introns.</p> "> Figure 4
<p>Three-dimensional structural analysis of <span class="html-italic">AcHSP70s</span>.</p> "> Figure 5
<p>The <span class="html-italic">cis</span>-acting elements in promoters of <span class="html-italic">AcHSP70</span> genes. The amounts of <span class="html-italic">cis</span>-elements in <span class="html-italic">AcHSP70s</span> promoter regions were displayed in different colors and numbers in the grid.</p> "> Figure 6
<p>Intraspecies synteny analysis of <span class="html-italic">AcHSP70</span> genes. The black curve represents duplication events between <span class="html-italic">AcHSP70</span> genes. Chr 1–25: Chromosome 1–25.</p> "> Figure 7
<p>Collinearity of <span class="html-italic">HSP70</span> genes in pineapple. The gray line represents the collinearity of all the genes in the pineapple, and the red line represents the collinearity of the <span class="html-italic">AcHSP70</span> genes.</p> "> Figure 8
<p>Expression profiles of <span class="html-italic">AcHSP70</span> family members in pineapple leaves with and without spines. Transcriptomic data (Le_1: Leaf apices; Le_2: Leaf base; Ro: Root; Fl: Flower; Fr: fruit) were analyzed using Log2(FPKM) values. The color scale on the right represents the relative expression level, from high (orange) to low (blue).</p> "> Figure 9
<p>Expression levels of <span class="html-italic">AcHSP70</span> genes under 0 h control (CK), 4 h, 12 h, 24 h, and 72 h of heat stress treatment. Data are expressed as means ± SD (<span class="html-italic">n</span> = <span class="html-italic">3</span>). Different letters indicate significant differences between groups (<span class="html-italic">p</span> < 0.05).</p> "> Figure 10
<p>Expression levels of <span class="html-italic">AcHSP70</span> genes under 0 h control (CK), 4 h, 12 h, 24 h, and 72 h of cold stress treatment. Data are expressed as means ± SD (<span class="html-italic">n</span> = <span class="html-italic">3</span>). Different letters indicate significant differences between groups (<span class="html-italic">p</span> < 0.05).</p> "> Figure 11
<p>Expression levels of <span class="html-italic">AcHSP70</span> genes under 0 h control (CK), 4 h, 12 h, 24 h, and 72 h of drought treatment. Data are expressed as means ± SD (<span class="html-italic">n</span> = <span class="html-italic">3</span>). Different letters indicate significant differences between groups (<span class="html-italic">p</span> < 0.05).</p> "> Figure 12
<p>Expression levels of <span class="html-italic">AcHSP70</span> genes under 0 h control (CK), 4 h, 12 h, 24 h, and 72 h of salt stress treatment. Data are expressed as means ± SD (<span class="html-italic">n</span> = <span class="html-italic">3</span>). Different letters indicate significant differences between groups (<span class="html-italic">p</span> < 0.05).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Identification and Chromosomal Localization of AcHSP70 Family
2.2. Phylogenetic Analysis of the AcHSP70 Family
2.3. Gene Structures and Conserved Motifs Analysis
2.4. Cis-Acting Elements Analysis of AcHSP70s Family
2.5. Intra-Species Synteny Analysis of the AcHSP70 Family
2.6. Tissue-Specific Expression Pattern of AcHSP70s
2.7. AcHSP70 Family Expression Analysis Under Heat Stress
2.8. AcHSP70 Family Expression Analysis Under Cold Stress
2.9. AcHSP70 Family Expression Analysis Under Drought Stress
2.10. AcHSP70 Family Expression Analysis Under Salt Stress
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Experimental Treatments
4.2. Identification of HSP70 Genes in Pineapple
4.3. Chromosome Localization Phylogenetic Relationships
4.4. Analysis of Gene Structures and Conserved Motifs
4.5. Prediction of AcHSP70 Structure and Promoter Cis-Acting Elements
4.6. Gene Replication and Collinearity Analysis of AcHSP70 Genes Family
4.7. Expression Pattern Analysis of AcHSP70 Genes
4.8. Expression Analysis of the AcHSP70 Family Under Various Abiotic Stress Conditions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, D.; Jing, M.; Dai, X.; Chen, Z.; Ma, C.; Chen, J. Current Status of Pineapple Breeding, Industrial Development, and Genetics in China. Euphytica 2022, 218, 85. [Google Scholar] [CrossRef]
- Song, K.; Zhang, X.; Liu, J.; Yao, Q.; Li, Y.; Hou, X.; Liu, S.; Qiu, X.; Yang, Y.; Chen, L.; et al. Integration of Metabolomics and Transcriptomics to Explore Dynamic Alterations in Fruit Color and Quality in ‘Comte de Paris’ Pineapples during Ripening Processes. Int. J. Mol. Sci. 2023, 24, 16384. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Liu, S.; Xiao, X.; Sun, W.; Lu, X.; Gao, Y.; He, J.; Zhu, Z.; Wu, Q.; Zhang, X. Integrative Analysis of Metabolome and Transcriptome Provides Insights into the Mechanism of Flower Induction in Pineapple (Ananas comosus (L.) Merr.) by Ethephon. Int. J. Mol. Sci. 2023, 24, 17133. [Google Scholar] [CrossRef] [PubMed]
- Sinaga, A.O.Y.; Marpaung, D.S.S. Abiotic stress-induced gene expression in pineapple as a potential genetic marker. Adv. Agrochem 2024, 3, 133–142. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, F.; Chai, M.; Xi, X.; Zhu, W.; Qi, J.; Liu, K.; Ma, S.; Su, H.; Tian, Y.; et al. Ectopic Overexpression of Pineapple Transcription Factor AcWRKY31 Reduces Drought and Salt Tolerance in Rice and Arabidopsis. Int. J. Mol. Sci. 2022, 23, 6269. [Google Scholar] [CrossRef]
- Bakır, M.; Uncuoğlu, A.A.; Özmen, C.Y.; Baydu, F.Y.; Kazan, K.; Kibar, U.; Schlauch, K.; Cushman, J.C.; Ergül, A. Comprehensive Expression Profiling Analysis to Investigate Salt and Drought Responding Genes in Wild Barley (Hordeum spontaneum L.). Plant Stress 2024, 11, 100315. [Google Scholar] [CrossRef]
- Kou, S.Y.; Wu, Z.G.; Li, H.Y.; Chen, X.; Liu, W.H.; Yuan, P.R.; Zhu, Z.H.; Yang, X.; Li, H.H.; Huang, P.; et al. Heterologous Expression of Heat-Shock Protein PpHSP70 Improves High Temperature and Drought Tolerance in Rice. Plant Stress 2023, 10, 100273. [Google Scholar] [CrossRef]
- Mugambwa, E.K. Effects of Climatic Variability on Pineapple Growing in Uganda: A Case Study of Pineapple Growers in Kangulumira Sub-County, Kayunga District; LAP Lambert Academic Publishing: Saarbrucken, Germany, 2014. [Google Scholar]
- Li, Z.; Li, G.; Cai, M.; Priyadarshani, S.V.G.N.; Aslam, M.; Zhou, Q.; Huang, X.; Wang, X.; Liu, Y.; Qin, Y. Genome-Wide Analysis of the YABBY Transcription Factor Family in Pineapple and Functional Identification of AcYABBY4 Involvement in Salt Stress. Int. J. Mol. Sci. 2019, 20, 5863. [Google Scholar] [CrossRef]
- Julius, I.P.; Tseng, H.; Lin, H.L. Low temperature effect on flower and fruit development of ‘Tainung No 17’ pineapple. Acta Hortic. 2015, 1166, 131–136. [Google Scholar] [CrossRef]
- Neales, T.F. Effect of Night Temperature on the Assimilation of Carbon Dioxide by Mature Pineapple Plants, Ananas comosus (L.) Merr. Aust. J. Biol. Sci. 1973, 26, 539–546. [Google Scholar] [CrossRef]
- Cunha, G.A. Applied aspects of pineapple flowering. Bragantia 2005, 64, 499–516. [Google Scholar] [CrossRef]
- Tarmizi, N.A.; Dolhaji, N. A review on chilling injury and antioxidant metabolism of pineapple (Ananas comosus). Food Res. 2022, 6, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, J. Effects of Salt Stress on Growth, Ion Concentration, and Quality of Pineapple Fruits. Commun. Soil Sci. Plant Anal. 2014, 45, 1949–1960. [Google Scholar] [CrossRef]
- Fan, C.; Yang, J.; Chen, R.; Liu, W.; Xiang, X. Identification and Expression Analysis of the Litchi HSP70 Family in Response to Abiotic Stress. J. Biotechnol. 2024, 40, 1102–1119. [Google Scholar] [CrossRef]
- Tiwari, L.D.; Khungar, L.; Grover, A. AtHsc70-1 negatively regulates the basal heat tolerance in Arabidopsis thaliana through affecting the activity of HsfAs and Hsp101. Plant J. 2020, 103, 2069–2083. [Google Scholar] [CrossRef]
- Lv, Y.; Wu, D.; Kong, C.; Yang, Y.; Gong, M. Identification and Interaction Analysis of the Hsp70 Gene Family and Corresponding miRNAs in Vernicia fordii, and Their Roles in Low Temperature Adaptation. Plant Physiol. J. 2022, 58, 1221–1235. [Google Scholar] [CrossRef]
- Juneja, S.; Saini, R.; Adhikary, A.; Yadav, R.; Khan, S.A.; Nayyar, H.; Kumar, S. Drought Priming Evokes Essential Regulation of Hsp Gene Families, Hsfs and Their Related miRNAs and Induces Heat Stress Tolerance in Chickpea. Plant Stress 2023, 10, 100189. [Google Scholar] [CrossRef]
- Wang, H.; Charagh, S.; Dong, N.; Lu, F.; Wang, Y.; Cao, R.; Ma, L.; Wang, S.; Jiao, G.; Xie, L.; et al. Genome-Wide Analysis of Heat Shock Protein Family and Identification of Their Functions in Rice Quality and Yield. Int. J. Mol. Sci. 2024, 25, 11931. [Google Scholar] [CrossRef]
- Rehman, A.; Atif, R.M.; Qayyum, A.; Du, X.; Hinze, L.; Azhar, M.T. Genome-Wide Identification and Characterization of HSP70 Gene Family in Four Species of Cotton. Genomics 2020, 112, 4442–4453. [Google Scholar] [CrossRef]
- Jasrotia, R.S.; Jaiswal, S.; Yadav, P.K.; Raza, M.; Iquebal, M.A.; Rai, A.; Kumar, D. Genome-Wide Analysis of HSP70 Family Protein in Vigna Radiata and Coexpression Analysis Under Abiotic and Biotic Stress. J. Comput. Biol. 2020, 27, 738–754. [Google Scholar] [CrossRef]
- Kozeko, L. Different Roles of Inducible and Constitutive HSP70 and HSP90 in Tolerance of Arabidopsis Thaliana to High Temperature and Water Deficit. Acta Physiol. Plant. 2021, 43, 58. [Google Scholar] [CrossRef]
- Liu, J.; Pang, X.; Cheng, Y.; Yin, Y.; Zhang, Q.; Su, W.; Hu, B.; Guo, Q.; Ha, S.; Zhang, J. The Hsp70 gene family in Solanum tuberosum: Genome-wide identification, phylogeny, and expression patterns. Sci. Rep. 2018, 8, 16628. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Feng, Y.; Wang, T.; Qu, J.; Xiao, H.; Ma, C.; Zhang, J. Identification and Expression Analysis of the Hsp70 Gene Family in Wheat and Its Ancestral Species. Pratacultural Sci. 2024, 33, 53–67. [Google Scholar] [CrossRef]
- Song, Z.; Pan, F.; Lou, X.; Wang, D.; Yang, C.; Zhang, B.; Zhang, H. Genome-wide identification and characterization of Hsp70 gene family in Nicotiana tabacum. Mol. Biol. Rep. 2019, 46, 1941–1954. [Google Scholar] [CrossRef]
- Rosenzweig, R.; Nillegoda, N.B.; Mayer, M.P.; Bukau, B. The Hsp70 chaperone network. Nat. Rev. Mol. Cell Biol. 2019, 20, 665–680. [Google Scholar] [CrossRef]
- Mayer, M.P.; Gierasch, L.M. Recent advances in the structural and mechanistic aspects of Hsp70 molecular chaperones. J. Biol. Chem. 2019, 6, 2085–2097. [Google Scholar] [CrossRef]
- Sharma, L.; Priya, M.; Kaushal, N.; Bhandhari, K.; Chaudhary, S.; Dhankher, O.P.; Prasad, P.V.; Siddique, K.H.; Nayyar, H. Plant Growth-Regulating Molecules as Thermoprotectants: Functional Relevance and Prospects for Improving Heat Tolerance in Food Crops. J. Exp. Bot. 2020, 71, 569–594. [Google Scholar] [CrossRef]
- Wang, X.; Tian, X.; Zhang, H.; Li, H.; Zhang, S.; Li, H.; Zhu, J. Genome-wide Analysis of the Maize LACS Gene Family and Functional Characterization of the ZmLACS9 Responses to Heat Stress. Plant Stress 2023, 10, 100271. [Google Scholar] [CrossRef]
- Neuner, G. Low Temperatures at Higher Elevations Require Plants to Exhibit Increased Freezing Resistance throughout the Summer Months. Environ. Exp. Bot. 2020, 169, 103882. [Google Scholar] [CrossRef]
- Rani, S. Effect of Biopriming and Nanopriming on Physio-Biochemical Characteristics of Cicer arietinum L. under Drought Stress. Plant Stress 2024, 12, 100466. [Google Scholar] [CrossRef]
- Etri, K.; Gosztola, B.; Végvári, G.; Ficzek, G.; Radácsi, P.; Simon, G.; Pluhár, Z. Unravelling the Impact of Drought and Salt Stresses on Thymus Pannonicus: Morpho-Physiological and Biochemical Insights. Plant Stress 2024, 13, 100557. [Google Scholar] [CrossRef]
- Xing, Y.; Liao, X.; Wu, H.; Qiu, J.; Wan, R.; Wang, X.; Yi, R.; Xu, Q.; Liu, X. Comparison of Different Varieties on Quality Characteristics and Microbial Activity of Fresh-Cut Pineapple During Storage. Foods 2022, 11, 2788. [Google Scholar] [CrossRef] [PubMed]
- Narwal, P. Genome-Wide Profiling of CBL Interacting Protein Kinases (CIPKs) in Banana Unveils Their Role in Abiotic Stress Signaling and Stress Tolerance Enhancement. Plant Stress 2024, 11, 100417. [Google Scholar] [CrossRef]
- Liu, X.; Chen, H.; Li, S.; Wang, L. Genome-Wide Identification of the Hsp70 Gene Family in Grape and Their Expression Profile during Abiotic Stress. Horticulturae 2022, 8, 743. [Google Scholar] [CrossRef]
- Jiang, L.; Hu, W.; Qian, Y.; Ren, Q.; Zhang, J. Genome-Wide Identification, Classification and Expression Analysis of the Hsf and Hsp70 Gene Families in Maize. Gene 2021, 770, 145348. [Google Scholar] [CrossRef]
- Panchy, N.; Lehti-Shiu, M.; Shiu, S.H. Evolution of Gene Duplication in Plants. Plant Physiol. 2016, 171, 2294–2316. [Google Scholar] [CrossRef]
- Zhao, R.; Dong, M.; Chen, A.; Gao, Y. Identification and Expression Pattern Analysis of the Heat Shock Protein 70 (HSP70) Gene Family in Moso Bamboo. J. Agric. Biotechnol. 2023, 31, 2058–2071. [Google Scholar] [CrossRef]
- Anik, T.R. Genome-Wide Characterization of the Glutathione S-Transferase Gene Family in Phaseolus Vulgaris Reveals Insight into the Roles of Their Members in Responses to Multiple Abiotic Stresses. Plant Stress 2024, 12, 100489. [Google Scholar] [CrossRef]
- Gholizadeh, F.; Mirmazloum, I.; Janda, T. Genome-Wide Identification of HKT Gene Family in Wheat (Triticum aestivum L.): Insights from the Expression of Multiple Genes (HKT, SOS, TVP and NHX) under Salt Stress. Plant Stress 2024, 13, 100539. [Google Scholar] [CrossRef]
- Salika, R.; Riffat, J. Abiotic stress responses in maize: A review. Acta Physiol. Plant. 2021, 43, 130. [Google Scholar] [CrossRef]
- Usman, M.G.; Rafii, M.Y.; Martini, M.Y.; Yusuff, O.A.; Ismail, M.R.; Miah, G. Molecular Analysis of Hsp70 Mechanisms in Plants and Their Function in Response to Stress. Biotechnol. Genet. Eng. Rev. 2017, 33, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Tabusam, J.; Shi, Q.; Feng, D.; Zulfiqar, S.; Shen, S.; Ma, W.; Zhao, J. HSP70 Gene Family in Brassica Rapa: Genome-Wide Identification, Characterization, and Expression Patterns in Response to Heat and Cold Stress. Cells 2022, 11, 2316. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Shu, H.; Gao, C.; Hao, Y.; Cheng, S.; Zhu, G.; Wang, Z. Analysis of HSP70 Gene Family in Chinese Pepper. J. Plant Sci. 2021, 39, 152–162. [Google Scholar] [CrossRef]
- Yoshida, T.; Fujita, Y.; Sayama, H.; Kidokoro, S.; Maruyama, K.; Mizoi, J.; Shinozaki, K.; Yamaguchi-Shinozaki, K. AREB1, AREB2, and ABF3 Are Master Transcription Factors That Cooperatively Regulate ABRE-dependent ABA Signaling Involved in Drought Stress Tolerance and Require ABA for Full Activation. Plant J. 2010, 61, 672–685. [Google Scholar] [CrossRef]
- Zhang, L.; Song, Z.; Li, F.; Li, X.; Ji, H.; Yang, S. The Specific MYB Binding Sites Bound by TaMYB in the GAPCp2/3 Promoters Are Involved in the Drought Stress Response in Wheat. BMC Plant Biol. 2019, 19, 366. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, W.; Chen, C.; Liang, Y.; Li, T.; Wu, Y.; Liu, H.; Wu, J.; Lin, W.; Li, J.; et al. The Pineapple Reference Genome: Telomere-to-telomere Assembly, Manually Curated Annotation, and Comparative Analysis. J. Integr. Plant Biol. 2024, 66, 2208–2225. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The Protein Families Database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef]
- Marchler, B.A.; Bo, Y.; Han, L.; He, J.; Lanczycki, C.J.; Lu, S.; Chitsaz, F.; Derbyshire, M.K.; Geer, R.C.; Gonzales, N.R.; et al. CDD/SPARCLE: Functional Classification of Proteins via Subfamily Domain Architectures. Nucleic Acids Res. 2017, 45, D200–D203. [Google Scholar] [CrossRef]
- Yang, H.; Yao, W.; Fan, X.; Lu, Y.; Wang, Y.; Ma, Z. Genome-Wide Identification and Analysis of WD40 Family and Its Expression in F. Vesca at Different Coloring Stages. Int. J. Mol. Sci. 2024, 25, 12334. [Google Scholar] [CrossRef]
- Lin, B.L.; Wang, J.S.; Liu, H.C.; Chen, R.W.; Meyer, Y.; Barakat, A.; Delseny, M. Genomic Analysis of the Hsp70 Superfamily in Arabidopsis Thaliana. Cell Stress Chaperones 2001, 6, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Xiao, L.; Zhao, J.; Hu, Z.; Zhou, Y.; Liu, S.; Wu, H.; Zhou, Y. Comprehensive Genomic Analysis and Expression Profile of Hsp70 Gene Family Related to Abiotic and Biotic Stress in Cucumber. Horticulturae 2023, 9, 1057. [Google Scholar] [CrossRef]
- Sarkar, N.K.; Kundnani, P.; Grover, A. Functional Analysis of Hsp70 Superfamily Proteins of Rice (Oryza sativa). Cell Stress Chaperones 2013, 18, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wu, X.; Qiu, S.; Zheng, H.; Lu, Y.; Peng, J.; Wu, G.; Chen, J.; Rao, S.; Yan, F. Genome-Wide Identification and Expression Profiling of the BZR Transcription Factor Gene Family in Nicotiana benthamiana. Int. J. Mol. Sci. 2021, 22, 10379. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wu, J.; Jing, X.; Khan, F.S.; Chen, Y.; Chen, Z.; Zhang, H.; Wei, Y. Genome-Wide Identification of Litchi SPL Gene Family and Expression Analysis in Pericarp Anthocyanin Biosynthesis. Horticulturae 2024, 10, 762. [Google Scholar] [CrossRef]
- Zhang, P.; Gao, W.; Guo, L.; Chen, M.; Ma, J.; Tian, T.; Wang, Y.; Zhang, X.; Wei, Y.; Chen, T.; et al. Functional Characterization of Plant Peptide-Containing Sulfated Tyrosine (PSY) Family in Wheat (Triticum aestivum L.). Int. J. Mol. Sci. 2024, 25, 12663. [Google Scholar] [CrossRef]
- Ma, X.; Ai, X.; Li, C.; Wang, S.; Zhang, N.; Ren, J.; Wang, J.; Zhong, C.; Zhao, X.; Zhang, H.; et al. A Genome-Wide Analysis of the Jasmonic Acid Biosynthesis Gene Families in Peanut Reveals Their Crucial Roles in Growth and Abiotic Stresses. Int. J. Mol. Sci. 2024, 25, 7054. [Google Scholar] [CrossRef]
- Wang, Z.; You, L.; Gong, N.; Li, C.; Li, Z.; Shen, J.; Wan, L.; Luo, K.; Su, X.; Feng, L.; et al. Comprehensive Expression Analysis of the WRKY Gene Family in Phoebe bournei under Drought and Waterlogging Stresses. Int. J. Mol. Sci. 2024, 25, 7280. [Google Scholar] [CrossRef]
- Bokolia, M.; Singh, B.; Kumar, A.; Goyal, N.; Singh, K.; Chhabra, R. Genome-Wide Identification of NAC Transcription Factors in Avena Sativa under Salinity Stress. Plant Stress 2023, 10, 100276. [Google Scholar] [CrossRef]
- Xiong, G.; Cui, D.; Tian, Y.; Schwarzacher, T.; Heslop-Harrison, J.S.; Liu, Q. Genome-Wide Identification of the Lectin Receptor-like Kinase Gene Family in Avena sativa and Its Role in Salt Stress Tolerance. Int. J. Mol. Sci. 2024, 25, 12754. [Google Scholar] [CrossRef]
- Xie, T.; Chen, C.; Li, C.; Liu, J.; Liu, C.; He, Y. Genome-wide investigation of WRKY gene family in pineapple: Evolution and expression profiles during development and stress. BMC Genom. 2018, 19, 490. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Hu, B.; Zhao, L.; Shi, D.; She, Z.; Huang, X.; Priyadarshani, S.V.; Niu, X.; Qin, Y. Differential Expression Analysis of Reference Genes in Pineapple (Ananas comosus L.) during Reproductive Development and Response to Abiotic Stress, Hormonal Stimuli. Trop. Plant Biol. 2019, 12, 67–77. [Google Scholar] [CrossRef]
- Shafique Khan, F.; Zeng, R.F.; Gan, Z.M.; Zhang, J.Z.; Hu, C.G. Genome-Wide Identification and Expression Profiling of the WOX Gene Family in Citrus sinensis and Functional Analysis of a CsWUS Member. Int. J. Mol. Sci. 2021, 22, 4919. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, R.; Wei, F.; Chen, Y.; Khan, F.S.; Wei, Y.; Zhang, H. Identification, Phylogeny, and Expression Profiling of Pineapple Heat Shock Proteins (HSP70) Under Various Abiotic Stresses. Int. J. Mol. Sci. 2024, 25, 13407. https://doi.org/10.3390/ijms252413407
Xu R, Wei F, Chen Y, Khan FS, Wei Y, Zhang H. Identification, Phylogeny, and Expression Profiling of Pineapple Heat Shock Proteins (HSP70) Under Various Abiotic Stresses. International Journal of Molecular Sciences. 2024; 25(24):13407. https://doi.org/10.3390/ijms252413407
Chicago/Turabian StyleXu, Rui, Fangjun Wei, Yanzhao Chen, Faiza Shafique Khan, Yongzan Wei, and Hongna Zhang. 2024. "Identification, Phylogeny, and Expression Profiling of Pineapple Heat Shock Proteins (HSP70) Under Various Abiotic Stresses" International Journal of Molecular Sciences 25, no. 24: 13407. https://doi.org/10.3390/ijms252413407
APA StyleXu, R., Wei, F., Chen, Y., Khan, F. S., Wei, Y., & Zhang, H. (2024). Identification, Phylogeny, and Expression Profiling of Pineapple Heat Shock Proteins (HSP70) Under Various Abiotic Stresses. International Journal of Molecular Sciences, 25(24), 13407. https://doi.org/10.3390/ijms252413407